首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Toxicity characteristic leaching procedure (TCLP) is a versatile short-term leaching protocol used to estimate the release of toxic metals from waste prior to disposal to a repository. This paper uses the integrated TCLP leachate data from tailings, tailings dam monitoring borehole data, and acidity ratio (AR) range of sulphide-rich ores to simulate the environmental TCLP As in tailings at the AngloGold Ashanti Obuasi mine in Ghana. The aim was to incorporate long-term leaching characteristics of tailings to minimise the risk of TCLP As test failure. The mean As concentration and pH value are 2.26 mg/l and 5.7 in TCLP leachate, 0.35 mg/l and 6.7 in monitoring boreholes, and?<?0.01 mg/l and 5.7 in control boreholes, respectively. The evaluation of the TCLP As data using a one-sample t test performed at 80% confidence interval has the upper confidence limit (UCL) of 2.41 mg/l; this value which constitutes the short-term characterised environmental TCLP As is below the USEPA criterion of 5 mg/l and, therefore, qualifies the waste as safe for disposal. Alternatively, TCLP leachate, borehole and AR data were integrated to simulate the long-term environmental TCLP As of 2.40 mg/l and pH value of 5.7, and As concentration and pH value of 0.01 mg/l and 6.7 in monitoring boreholes, respectively. Such laboratory simulations of TCLP As leaching aimed at achieving 0.01 mg/l in field monitoring data would provide a more robust predictive value for environmental management decision making due to long-term considerations.  相似文献   

2.
Acid rain has long been a great concern because of environmental and ecological problems; however, the effect of acid rain on soil acidification, loss of rare earth elements (REEs) via the leaching process, and transformation are rarely reported in rare earth mining areas. Through a simulated acid rain leaching experience, the effect of acid rain was studied on soil acidification and REEs leaching loss. The results showed that the tested soil had certain buffering capacity against nearly neutral rainwater. However, simulated acid rain of low and very low pH (pH ≤ 3.5) had a greater impact on soil acidification. After eluviating by simulated acid rain of pH 3.5 for 36 h, the pH of tailings, garden soil, paddy soil, and alluvial soil decreased by 20.41, 32.03, 13.60, 16.88, and 15.83 %, respectively, from the original values. For simulated acid rain of pH 2.5, it was 31.89, 44.76, 31.26, 29.87, and 29.15 %, respectively. After simulated acid rain eluviations of low and very low pH (pH ≤ 3.5), the order of the leaching rate of REEs in the tested soil was as follows: garden soil > tailings > paddy soil > alluvial soil. For nearly neutral rainwater (pH 4.5 simulated acid rain and pH 5.6 deionized water), the order was tailings > garden soil > paddy soil > alluvial soil. For simulated acid rain of the same pH, the leaching amounts of REEs in tailings and garden soil were higher than those in paddy soil and alluvial soil. After leaching by low and very low pH-simulated acid rain (pH ≤ 3.5), the peak value of the leaching amount of REEs in all tested soil appeared at 2 h, and then gradually reduced and reached a stable leaching state 20 h after leaching. On leaching by simulated acid rain of pH 2.5, the maximum REEs contents of leachate in tailings, garden soil, paddy soil, and alluvial soil were 156.35, 145.82, 99.88, and 85.97 mg/L, respectively. For pH 3.5 of simulated acid rain, it was 130.49, 110.49, 80.57, and 62.73 mg/L, respectively. On leaching by simulated acid rain of pH 4.5, the maximum contents of REEs in the leachate were 53.46 and 29.82 mg/L, respectively, which were observed after leaching for 6 h in tailings and garden soil that became stable 12 h after leaching. The contents of leached REEs in paddy soil and alluvial soil were always in a lower and stable state. After eluviations with deionized water of pH 5.6, the contents of leached REEs in other soils were lower, except for the slight fluctuations in tailings. The maximum content in the leachate of REEs was in the water-soluble and exchangeable fraction. When bound to carbonate fractions, REEs were not detected in the leachate. REEs bound to iron-manganese (Fe–Mn) oxides fraction and to organic matter fraction in the leachate possibly came from the tested soil or from the REEs transformation during the migration process. The content of residual fraction REEs in the leachate was very low.  相似文献   

3.
Column leaching experiments were used to determine the effects of an iron-rich hardpan layer, on the rate of tailings oxidation and the composition of leachate waters, from the Renison Bell tailings dams in western Tasmania, Australia. One-meter-long PVC columns, filled with tailings, cover material (Cassiterite Flotation Tailings) and hardpan samples from the tailings dams, were leached over a period of 14 weeks. Under dry cover conditions, when hardpan was present, the solute loads peaked at 21–49 days (Fe at 2,294 ppm and SO 4 2- at 4,700 ppm), and stabilised at much lower concentrations after 9 weeks. In contrast, the solute loads steadily increased over time in the column where hardpan was absent (SO 4 2- from 1,800 to 3,100 ppm, and Fe from 407 to 1,692 ppm). Under saturated cover conditions, the solute concentrations in the leachate also increased with time (SO 4 2-from 1,900 to 17,000 ppm, and Fe from 480 to 8,500 ppm). The presence of a hardpan layer between the reactive tailings and cover material has been found to improve leachate water chemistry and lessen the rate of sulphide oxidation.  相似文献   

4.
At the Kristineberg mine, northern Sweden, sulphidic mine tailings were remediated in an 8-year pilot-scale experiment using sewage sludge to evaluate its applicability as a sealing layer in a composite dry cover. Sediment, leachate water, and pore gas geochemistry were collected in the aim of determining if the sludge was an effective barrier material to mitigate acid rock drainage (ARD) formation. The sludge was an effective barrier to oxygen influx as it formed both a physical obstruction and functioned as an organic reactive barrier to prevent oxygen to the underlying tailings. Sulphide oxidation and consequential ARD formation did not occur. Sludge-borne trace elements accumulated in a reductive, alkaline environment in the underlying tailings, resulting in an effluent drainage geochemistry of Cd, Cu, Pb and Zn below 10 μg/L, high alkalinity (810 mg/L) and low sulphate (38 mg/L). In contrast, the uncovered reference tailings received a 0.35-m deep oxidation front and typical ARD, with dissolved concentrations of Cd, Zn and sulphate, 20.8 μg/L, 16,100 μg/L and 1,390 mg/L, respectively. Organic matter degradation in the sludge may be a limiting factor to the function of the sealing layer over time as 85 % loss of the organic fraction occurred over the 8-year experimental period due to aerobic and anaerobic degradation. Though the cover may function in the short to medium term (100 years), it is unlikely to meet the demands of a long-term remedial solution.  相似文献   

5.
Mine tailings at the former Delnite gold mine in northern Ontario were characterized to assess the impact of a biosolids cover on the stability of As species and evaluate options for long-term management of the tailings. Arsenic concentrations in the tailings range from 0.15 to 0.36 wt% distributed among goethite, pyrite and arsenopyrite. Pyrite and arsenopyrite occur as small and liberated particles that are enveloped by goethite in the uncovered tailings and the deeper portions of the biosolids-covered tailings. Sulfide particles in the shallower portions of the biosolids-covered tailings are free of goethite rims. Arsenic occurs predominantly as As5+ with minor amount of As1− in the uncovered tailings. Coinciding with the disappearence of goethite rims on sulfide particles, the biosolids-covered tailings have As3+ species gradually increasing in proportion towards the cover. Leaching tests indicated that the As concentrations in the leachate gradually increase from less than 0.085 to 13 mg/L and Fe from 28 to 179 mg/L towards the biosolids cover. These are in sheer contrast to the leachate concentrations of less than 0.085 mg/L As and 24–64 mg/L Fe obtained from the uncovered tailings confirming the role of biosolids-influenced reduction and mobilization of As in the form of As3+ species. The evidence suggests that reductive dissolution of goethite influenced by the biosolids-cover caused the mobilization of As as As3+ species.  相似文献   

6.
《Applied Geochemistry》2003,18(9):1361-1371
The study of inactive As-bearing tailings impoundments at the Khovu-Aksy mine-site (Russia) revealed high concentrations of As in the porewater of tailings solids and in their aqueous extracts, as well as in adjacent soils. In these investigations, experimental leaching of As-containing tailings was performed in the laboratory. The three types of solutions which were used in the leach experiments to model natural waters and waters of anthropogenic origin were H2O, HNO3 and NH4HCO3, and during leaching with these solutions As concentrations were maintained at 10±2, 16±1 and ∼20 mg/l. No low-pH waters were observed at the end of the leach experiments, where pH varied between 8.3 and 9.1. These alkaline pH conditions are attributed to the effect of acid consuming carbonate mineral dissolution reactions, which are also indicated by increased concentrations of Mg and Ca. Also, the solution of certain heavy metals (Co, Ni, Fe) was negligible compared to that of As, and these metals were assumed to have been conserved in the solid phase. Analysis of the leach solutions, and modeling of the results showed that As could be removed from the surface of different particles where it had been adsorbed, and also its concentration could increase with time from the breakdown of Ca(Mg)- and Ni(Co)-arsenate phases. In the absence of an effective remediation program, As release will continue to be an environmental problem.  相似文献   

7.
Hardpans, or cemented layers, form by precipitation and cementation of secondary minerals in mine tailings and may act as both physical and chemical barriers. Precipitation of secondary minerals during weathering of tailings can sequester metal(loid)s, thereby limiting their release to the environment. At Montague Gold Mines in Nova Scotia, tailings are partially cemented by the Fe arsenate mineral scorodite (FeAsO4·2H2O). Previous studies have shown that the formation of scorodite can effectively limit aqueous As concentrations due to its relatively low solubility (<1 mg/L at pH 3–4) and high As content (43–52 wt.% As2O5, this study). Co-existing waters and solids were sampled at Montague Gold Mines to identify present-day field conditions influencing scorodite precipitation and dissolution, and to better understand the mineralogical and chemical relationship between hardpan and tailings. In addition to scorodite, hardpan cements were found to include amorphous Fe arsenate and Fe oxyhydroxide. Nearly all hardpan is associated with historical arsenopyrite-bearing concentrate which provides a source of acidity, As5+ and Fe3+ for secondary mineral precipitation. Pore waters sampled from the hardpan have pH values ranging from 2.43 to 7.06. Waters with the lowest pH values also have the highest As concentrations (up to 35.8 mg/L) and are associated with the most extensive hardpan and greatest amount of weathered sulfide. Samples from areas with discontinuous hardpan and less sulfide have near-neutral pH and lower As concentrations. Detailed petrographic observations indicate that the identity and stability of As-bearing secondary minerals depends on the continued availability of sulfide concentrate. The results of this study are being used to develop remediation strategies for highly weathered, hardpan-bearing tailings that consider the stability of both primary and secondary minerals under various cover scenarios.  相似文献   

8.
The potential to use the alkaline residue products fly ash, green liquor dregs, and lime mud originating from paper mills as dry cover materials to seal tailings has been investigated. Metals concentration in lime mud and fly ash had the lowest and highest contents, respectively. The tailings (<1 % sulfur content, primarily pyrite) were disposed about 50 years ago and originated from the former Rönnskär mine site in Sweden. The results of chemical composition analysis show that the raw unoxidized tailings are active toward oxidation, while the components of the adjacent oxidized tailings are not. To quantify the release of metals from the tailings and to evaluate the effect of a sealing layer on oxidation and weathering of the tailings, batch leaching tests were conducted in which leachate from alkaline residue materials was fed to the tailings. The results show that a higher concentration of most trace elements is leached from the unoxidized tailings than from the oxidized tailings. Except As and Cr, the rest of analyzed metals (Cd, Cu, Ni, Pb) became immobilized in response to the increased pH as a consequence of the amendment. The three tested alkaline amendments show a similar potential for preventing the release of metals (with the exception of As and Cr) from the tailings. Under either aerobic or anaerobic conditions, microbial activity was found to be of minor importance. XRD analysis of the field samples revealed that it was feasible to use alkaline residue products in covering tailings, and that it was advantageous to use ash as a cover material more than dregs.  相似文献   

9.
Many abandoned mine sites in Cornwall, UK, are characterised by elevated concentrations of arsenic (As), which can cause contamination of surrounding soil and water resources. These sites have important historical value that requires access to be maintained, despite exposure of humans to toxins that may lead to health issues including hyperpigmentation keratosis (including skin cancers) and liver fibrosis. The abandoned mine tailings at Wheal Maid has been assessed for As-bearing mineralogy and stability taking into account the public footpaths made by the local council to areas of potential contamination.To assess the potential risk associated with these mine sites, the As concentration in waters along the tailings dam and Carnon River have been measured and range up to 3.6 ppm, which is 2 orders of magnitude above the WHO guideline value of 0.01 ppm for drinking water. Samples of water, rocks and soils from the mine tailings ponds and the Carnon River were analysed using Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) to determine the concentration of individual elements in each sample followed by mineral identification using X-Ray Diffraction (XRD). Mineralogical evaluation indicated that the majority of mine tailings consist of clay-rich rocks, with few associated As-bearing minerals. Scorodite (FeAsO4·2H2O) is observed in the mine tailings pond and appears critical to the As distribution and storage in this surface environment. Using the analysed water chemistry, a modified version of PHREEQC is used to calculate the saturation index of scorodite as a function of pH conditions. The strong variation of the solubility of this mineral with pH and oxidation state highlights potential risks for using scorodite for As fixation and storage.  相似文献   

10.
Environmental contamination with As and Sb caused by past mining activities at Sb mines is a significant problem in Slovakia. This study is focused on the environmental effects of the 5 abandoned Sb mines on water, stream sediment and soil since the mines are situated in the close vicinity of residential areas. Samples of mine wastes, various types of waters, stream sediments, soils, and leachates of the mine wastes, stream sediments and selected soils were analyzed for As and Sb to evaluate their geochemical dispersion from the mines. Mine wastes collected at the mine sites contained up to 5166 mg/kg As and 9861 mg/kg Sb. Arsenic in mine wastes was associated mostly with Fe oxides, whereas Sb was present frequently in the form of individual Sb, Sb(Fe) and Fe(Sb) oxides. Waters of different types such as groundwater, surface waters and mine waters, all contained elevated concentrations of As and Sb, reaching up to 2150 μg/L As and 9300 μg/L Sb, and had circum-neutral pH values because of the buffering capacity of abundant Ca- and Mg-carbonates. The concentrations of Sb in several household wells are a cause for concern, exceeding the Sb drinking water limit of 5 μg/L by as much as 25 times. Some attenuation of the As and Sb concentrations in mine and impoundment waters was expected because of the deposition of metalloids onto hydrous ferric oxides built up below adit entrances and impoundment discharges. These HFOs contained >20 wt.% As and 1.5 wt.% Sb. Stream sediments and soils have also been contaminated by As and Sb with the peak concentrations generally found near open adits and mine wastes. In addition to the discharged waters from open adits, the significant source of As and Sb contamination are waste-rock dumps and tailings impoundments. Leachates from mine wastes contained as much as 8400 μg/L As and 4060 μg/L Sb, suggesting that the mine wastes would have a great potential to contaminate the downstream environment. Moreover, the results of water leaching tests showed that Sb was released from the solids more efficiently than As under oxidizing conditions. This might partly explain the predominance of Sb over As in most water samples.  相似文献   

11.
Remediation of a legacy tin-tailings site in northeast Tasmania, Australia was carried out by statutory authorities. This study evaluated the fate of As and other deleterious trace metals Cd, Cu, Fe and Zn (among others) following the application of lime and fertiliser. Arsenic concentrations in the tailings ranged from 86 mg/kg to 0.26 wt%. Surface application of lime resulted in a 100-fold reduction in dissolved As concentrations in on-site surface waters; from an average of 196 µg/L prior to lime addition, to between 2.0 and 7.4 µg/L post-amendment. The concentration of other deleterious elements, however, varied between dry and wet cycles. The concentrations of Cd, Cu and Zn in surface waters were high and similar to pre-remediation levels during dry conditions (0.4, 13.5 and 6.1 mg/L, respectively), and only below freshwater ecosystem protection values during wet conditions. Bioaccumulation of Cd was observed in the naturally occurring coloniser, Juncus pallidus, with 4–5 times more Cd in the above-ground biomass relative to the tailings. Ferric arsenate (scorodite) was the dominant source of As identified in the tailings mineralogy. Hydrous ferric oxides and Fe-bearing cassiterite were also identified as hosting As. The pH increase in the surface lime-amended tailings was inferred to result in precipitation of observed hydrous ferric oxides, hematite and goethite, providing high-surface area for adsorption of arsenate onto positively charged surfaces. Jarosite was observed in both the surface lime-amended and subsurface non-amended tailings and suggests a continued supply of acidity to the pore waters despite the application of lime. Leaching experiments showed that As was more mobile in the lime-dosed tailings than in subsurface non-amended tailings, likely owing to desorption in alkaline pH conditions. By contrast, the mobility of Cd, Cu and Zn in the surface lime-amended tailings was reduced by at least two orders of magnitude compared with subsurface non-amended tailings. Evaluation of the applied rehabilitation strategy highlights the limits of a single chemical remediation approach to a polymetallic (including metalloids) waste with complex mineralogy and large seasonal fluctuations. Rehabilitation of metalliferous mine sites requires a complete understanding of all environmentally significant elements and their pathways into local receptors.  相似文献   

12.
Number 6 fuel oil is one of the most used energy sources for electricity generation. However, leaks can contaminate soil and also groundwater due to leaching. At old sites, the oil may have low toxicity but still contaminate groundwater with foul-tasting compounds even at low concentrations. The purpose of this study was to evaluate the feasibility of applying H2O2 to reduce the leaching potential of a fuel oil contaminated soil. A silt-loam soil was collected from a contaminated thermal-electric plant with a hydrocarbon concentration of 3.2% in soil producing 4.3 mg/l in leachate. Hydrogen peroxide was applied (0.1, 0.2, 0.3, 0.6, 1.2% dry weight basis), and petroleum hydrocarbons were measured in soil and leachate pre- and post-treatment (72 h). At first, the soil and leachate concentrations diminished linearly (24.4 and 27.3% in soil and leachate, respectively). This was followed by a phase in which the concentration in leachate diminished greatly (75.8%) although the concentration in soil was reduced only moderately (15.1%). Overall, hydrocarbons in leachates were reduced 82.4% even though concentrations in soil were only reduced 35.8%. Correlation analysis showed that at only 1.0% w/w H2O2 a concentration of petroleum hydrocarbons in leachate safe for human consumption (≤ 1 mg/l) could be obtained even with a final hydrocarbon concentration in soil > 2%. Thus, this study presents an alternative strategy for remediation of fuel oil contaminated soils in urban environments that protects water sources by focusing on contamination in leachates, without spending extra financial resources to reduce the hydrocarbon concentration in low-toxicity soil.  相似文献   

13.
The Furtei gold mine in Sardinia (Italy) exploits a volcanic-hosted high-sulphidation epithermal deposit. Large amounts of materials derived from exploitation are present in open pits, waste rock dumps and cyanidation tailings impoundment. Mineralized rocks in outcrops and waste dumps contain significant amounts of sulphides (mainly pyrite and enargite). These materials have a high potential for acid drainage generation and release of toxic elements (notably Cu and As, but also Al, Ni, Co and Cd) as pointed out by laboratory leaching tests and in agreement with chemical composition of waters draining the mining area, that show pH as low as 2, up to 180 mg/L Cu, up to 5 mg/L As, and up to 788 mg/L Al. On the other hand, leaching solutions and waters interacting with mineral assemblages of the propylitic alteration zone (mainly composed of chlorite, quartz, and calcite, with relic magmatic plagioclase) show higher pH, and lower metal loads. Leachates from cyanidation tailings show variable pH (between 6.2 and 9.7, depending on sulphide content in tailings); cyanide concentration varies between 110 µg/L and about 3 mg/L, whereas contents of toxic elements in leachates are, with the exception of Hg, within the limits of Italian regulations for non-dangerous industrial wastes. Reclamation plans provide for confinement of tailings within specific repositories. This measure should effectively reduce the environmental impact of these materials. Reclamation plans should also include an adequate management of other high-sulphide wastes.  相似文献   

14.
In northern Saskatchewan, Canada, high-grade U ores and the resulting tailings can contain high levels of As. An environmental concern in the U mining industry is the long-term stability of As within tailings management facilities (TMFs) and its potential transfer to the surrounding groundwater. To mitigate this problem, U mill effluents are neutralized with lime to reduce the aqueous concentration of As. This results in the formation of predominantly Fe3+–As5+ secondary mineral phases, which act as solubility controls on the As in the tailings discharged to the TMF. Because the speciation of As in natural systems is critical for determining its long-term environmental fate, characterization of As-bearing mineral phases and complexes within the deposited tailings is required to evaluate its potential transformation, solubility, and long-term stability within the tailings mass. In this study, synchrotron-based bulk X-ray absorption spectroscopy (XAS) was used to study the speciation of As and Fe in mine tailings samples obtained from the Deilmann TMF at Key Lake, Saskatchewan. Comparisons of K-edge X-ray absorption spectra of tailings samples and reference compounds indicate the dominant oxidation states of As and Fe in the mine tailings samples are +5 and +3, respectively, largely reflecting their generation in a highly oxic mill process, deposition in an oxidized environment, and complexation within stable oxic phases. Linear combination fit analyses of the K-edges for the Fe X-ray absorption near edge spectra (XANES) to reference compounds suggest Fe is predominantly present as ferrihydrite with some amount of the primary minerals pyrite (8–15% in some samples) and chalcopyrite (5–15% in some samples). Extended X-ray absorption fine structure (EXAFS) analysis of As K-edge spectra indicates that As5+ (arsenate) present in tailings samples is adsorbed to the ferrihydrite though an inner-sphere bidentate linkage.  相似文献   

15.
Sites of monomethylmercury (MMHg) production in Amazonian regions have been identified in hydraulic reservoirs, lake sediments and wetlands, but tailings ponds have not yet received sufficient attention for this purpose. This work evidenced high MMHg production within the water column and the interstitial water of two tailings ponds of French Guiana Au mines located; (i) in a small scale exploitation (Combat) where Hg was used for Au amalgamation, and (ii) in an industrial on-going Au mine (Yaoni) processing without Hg. The (MMHg)D maximum (2.5 ng L−1) occurred in the oxic water column above the sediment-water interface (SWI) of the most recent tailings pond (Combat), where the substrate was fresh, the redox transition was sharp and the pool of total Hg was large. In the Yaoni pond, the (MMHg)D maximum concentration (1.4 ng L−1) was located at the SWI where suboxic conditions prevailed. Using the (MMHg)D concentration as a proxy for Hg methylation rates, the present results show that Hg methylation may occur in various redox conditions in tailings ponds, and are favored in areas where the organic matter regeneration is more active.A 3-month long laboratory experiment was performed in oxic and anoxic boxes filled with high turbidity waters from the Combat Au mine to simulate tailings ponds. Slaked lime was added in an experimental set (2 mg L−1) and appeared to be very efficient for the reduction of suspended particulate matter (SPM) to environmentally acceptable concentrations. However, at the end of the experiment, large (MMHg)D concentrations were monitored under treated anoxic conditions with the (MMHg)D maximum located at the SWI above the Fe-reducing zones. No (MMHg)D was detected in oxic experiments. The use of slaked lime for SPM decantation appears to be an efficient and non-onerous process for Au miners to avoid Hg methylation in tailings ponds when it is combined with rapid drainage of the mine waters. A subsequent human intervention is however necessary for the recovery of soil structure through the cover of dried ponds with organic rich materials and reforestation to avoid the stagnation of rain waters and the occurrence of anoxia.  相似文献   

16.
Mineral processing operation at the Sarcheshmeh porphyry copper mine has produced huge quantities of tailings materials containing sulphide minerals in particular pyrite. These tailings materials were geochemically and mineralogically characterised to assess pyrite and chalcopyrite oxidation, acid mine drainage generation, and trace element mobility to lead development of a proper remediation plan. Five vertical trenches up to 4.2 m deep were excavated from the tailings surface, and 70 solid samples were taken in 0.3 m intervals. The samples were first mineralogically analysed. Pyrite was the main sulphide mineral found in the tailings. The gangue minerals include quartz ± muscovite–illite ± chlorite ± albite ± orthoclase ± halite. The samples were geochemically analysed for total concentrations of 62 elements, paste pH, SO4 2?, CO3 2?, and HCO3 ?. The maximum concentrations of SO4 2? (1,300, 1,170, 1,852, 1,960 and 837 mg/L) were observed at a depth of 0.9 m in profiles A, B, C, D and E, respectively. The tailings have a high acid-producing potential and low acid-neutralising potential (pyrite 4–6 wt %, calcite 1 wt %). Fe2(SO4)3, CuSO4, MgSO4 and MnSO4 were the dominant secondary sulphate minerals in the tailings. The lowest pH values (2.9, 3 and 3) were measured at a depth of 0.3 m in the profiles A, B and C, 3.9 at a depth of 0.6 m in the profile D and 3 at a depth of 0.9 m in the profile E. The upper portions of the profiles C (1.8 m) and D (2.1 m) were moderately oxidised, while oxidation in the profiles A, B and E did not extend more than 1.2, 1.2 and 1.5 m beneath the tailings surface. Zn, Pb, Rb, U, Hf, Nd, Zr and Ga show almost a constant trend with depth. Cd, Sr, Th, La and Ce increased with increasing depth of the tailings materials while, Co, V, Ti, Cr, Cu, As, Mn, Ag, Mo and Ni exhibit initially a decreasing trend from tailings surface to the depths that vary between 0.9 and 1.2. They then remained constant with the depth. The results show pyrite and chalcopyrite oxidation at surface layers of the tailings and subsequent leaching of the oxidation products and trace elements by infiltrated atmospheric precipitation.  相似文献   

17.
Lacustrine sediments, submerged tailings, and their pore waters have been collected at several sites in Yellowknife Bay, Great Slave Lake, Canada, in order to investigate the biogeochemical controls on the remobilization of As from mining-impacted materials under different depositional conditions. Radiometric dating confirms that a mid-core enrichment of Pb, Zn, Cu and Sb corresponds to the opening of a large Au mine 60 a ago. This was evident even in a relatively remote site. Arsenic was enriched at mid-core, coincident with mining activity, but clearly exhibited post-depositional mobility, migrating upwards towards the sediment water interface (SWI) as well as down-core. Deep-water (15 m) Yellowknife Bay sediments that contain buried mine waste are suboxic, relatively organic-rich and abundant in microbes with As in pore waters and sediments reaching 585 μg/L and 1310 mg/kg, respectively. Late summer pore waters show equal proportions of As(III) and As(V) (16–415 μg/L) whereas late winter pore waters are dominated by As(III) (284–947 μg/L). This can be explained by As(III) desorption mechanisms associated with the conversion of FeS to FeS2 and the reduction of As(V) to As(III) through the oxidation of dissolved sulfide, both microbially-mediated processes. Processes affecting As cycling involve the attenuating efficiency of the oxic zone at the SWI, sediment redox heterogeneity and the reductive dissolution of Fe(hydr)oxides by labile organic matter, temporarily and spatially variable.  相似文献   

18.
Arsenic and antimony contamination is found at the Pezinok mining site in the southwest of the Slovak Republic. Investigation of this site included sampling and analysis of water, mineralogical analyses, sequential extraction, in addition to flow and geochemical modeling. The highest dissolved arsenic concentrations correspond to mine tailings (up to 90,000 μg/L) and the arsenic is present predominately as As(V). The primary source of the arsenic is the dissolution of arsenopyrite. Concentration of antimony reaches 7,500 μg/L and its primary source is the dissolution of stibnite. Pore water in mine tailings is well-buffered by the dissolution of carbonates (pH values between 6.6 and 7.0) and arsenopyrite grains are surrounded by reaction rims composed of ferric iron minerals. Based on sequential extraction results, most solid phase arsenic is in the reducible fraction (i.e. ferric oxyhydroxides), sulfidic fraction, and residual fraction. Distribution of antimony in the solid phase is similar, but contents are lower. The principal attenuation mechanism for As(V) is adsorption to ferric oxide and hydroxides, but the adsorption seems to be limited by the competition with Sb(V) produced by the oxidation of stibnite for adsorption sites. Water in mine tailings is at equilibrium with gypsum and calcite, but far from equilibrium with any arsenic and antimony minerals. The concentrations of arsenic and antimony in the surrounding aquifer are much lower, with maximum values of 215 and 426 μg/L, respectively. Arsenic and antimony are transported by ground water flow towards the Blatina Creek, but their loading from ground water to the creek is much lower compared with the input from the mine adits. In the Blatina Creek, arsenic and antimony are attenuated by dilution and by adsorption on ferric iron minerals in stream sediments with resulting respective concentrations of 93 and 45 μg/L at the site boundary south of mine tailing ponds.  相似文献   

19.
This study focuses on the characterization of leachate generated from Gohagoda dumpsite in Kandy, Sri Lanka, assessment of its spatial and temporal variations, and identification of subsurface canals and perched water bodies in the wetland system affected by the leachate flow. Leachate samples were collected monthly throughout dry and rainy seasons from different points of the leachate drainage channel over a period of 1 year and they were tested for quality parameters: pH, temperature, electrical conductivity, total dissolved soils, alkalinity, hardness, total solids, volatile solids, total suspended solids, volatile suspended solids, biochemical oxygen demand (BOD5), chemical oxygen demand, nitrate-nitrogen, nitrite-nitrogen, phosphates, ammonium-nitrogen, chloride, dissolved organic carbon, total organic carbon and heavy metals. Sequential soil extraction procedures were performed for the characterization of leachate-affected local soil. A geophysical survey using direct current resistivity technique was conducted at locations downstream of the dumpsite. Leachate characteristics indicated that the leachate is in the methanogenic phase and the results strongly suggest that the leachate may be polluting the river where the leachate is discharged directly. Leachate exceeds the allowable limits of Sri Lankan wastewater discharge standards for many of the parameters. Significant difference (P < 0.05) was observed for most of organic and inorganic parameters among all sampling locations. Many parameters showed a negative correlation with pH. The affected soils showed high heavy metal concentrations. Resistivity study confirmed a confined leachate flow at the near surface with few subsurface canals. However, no separate subsurface plume movement was observed. The results of this research can effectively be used for the establishment of an efficient and effective treatment method for the Gohagoda landfill leachate.  相似文献   

20.
In this study we investigated the sulphidic mine tailings from Frongoch and Grogwynion, two abandoned lead zinc mines in mid-Wales, UK. Despite falling within the same ore field the mine waste characterisation has identified differences in the tailings from the two sites. Bulk concentrations range from 10 to 52 g kg− 1 for Pb, 1.1 to 2.9 g kg− 1 for Zn in Grogwynion and from 1.0 to 130 g kg− 1 for Pb, 11 to 110 g kg− 1 for Zn in Frongoch. An experimental (European standard leaching tests TS 14429 and TS 14405) and geochemical modelling approach was used to study the leaching composition as a function of pH and liquid/solid ratio. There was little correlation between the tailings bulk metal concentrations and the leachate composition, but variations in Pb and Zn concentrations were found to be consistent with control of dissolved Pb and Zn by secondary minerals and the mechanisms of dissolution/precipitation/sorption involving them. Specifically, the Grogwynion mine tailings with near-neutral pH have predominantly lead and zinc carbonates controlling Pb and Zn solubility in the leachates, whereas the Pb and Zn concentrations in Frongoch leachates are best modelled with a surface complexation model for metal sorption to oxyhydroxides. The different speciation results in a greater sensitivity of Grogwynion tailings to acidification with a potential release of Pb in solution up to 10 times higher than in Frongoch, despite similar bulk Pb concentrations. At acid pH, Zn is similarly dissolved to a greater extent in Grogwynion than in Frongoch tailings. There was no evidence of sulphide oxidation during the batch and column leaching tests and the suitability of using these European leaching standards for the characterisation of sulphidic mine waste materials for waste management purposes has been considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号