首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海水中的痕量金属在海洋生物地球化学循环中至关重要。本研究在严格采用痕量金属洁净(trace-metalclean)采样和分析测试技术的前提下,于2016年7月采集了渤海与黄海表、底层海水水样,获得黄、渤海几种痕量金属(Cu、Ni、Co、Zn)的空间分布特征。研究结果显示,黄、渤海海水中痕量金属的空间分布具有近岸高、远岸低的特点,体现了人类活动对近岸海域的影响,而其在局部海域的分布则受到沿岸流、冷水团、沉积物再悬浮过程以及生物过程等因素的影响。Cu、Ni、Co在黄、渤海海水中的分布特征较为类似,平均浓度由高到低依次为渤海北黄海南黄海,而溶解态Zn的分布则与其他几种金属不同,在黄、渤海平均浓度类似,整体偏低,具有其特殊性。本研究测定的几种痕量金属在黄、渤海海水中的浓度较以往报道数据偏低,其中易污染的痕量金属Zn的浓度更是低近1—3个数量级,体现了痕量洁净采样和测试方法的重要性。  相似文献   

2.
The redox speciation of dissolved iron in seawater was evaluated at 121 locations in the Pacific Ocean at depths of 15-1000 m, using the method of luminol chemiluminescence. The results indicate that reduced iron, Fe(II), is ubiquitous in surface seawater with a relatively consistent pattern of occurrence. Surface maxima were present in most profiles, with median concentrations of 25-30 pM representing 12-14% of the total dissolved iron. Concentrations decreased monotonically with depth to<12 pM within the upper euphotic zone. This pattern was observed during both day and nighttime sampling events, which suggests that non-photochemical production mechanisms can produce photochemical-like signatures. Further, if theoretical rates of Fe(II) oxidation are applicable to the open ocean, then the employed sampling methods precluded assessment of photochemically-produced Fe(II), regardless of ambient light conditions. For this and other reasons, the concentrations reported here for the upper water column likely represent lower limits of labile iron concentration, and suggest that dissolved iron may be more available for uptake than previously believed. Deeper in the water column, Fe(II) was also frequently detected, though it constituted a small fraction of the total dissolved iron. Possible source mechanisms at these depths include thermal (dark) reduction of Fe(III) organic complexes or remineralization of sinking biogenic particles containing Fe(II). In the northern Philippine Sea between the Japanese coast and the Izu-Bonin volcanic arc system, Fe(II) concentrations were found to be atypically high, possibly because of high atmospheric dust deposition near the surface and transport of sediment-derived iron at depth.  相似文献   

3.
4.
The distribution, partitioning and concentrations of trace metals (Cd, Cr, Cu, Fe, Mn, Pb and Zn) in seawater, including dissolved and particulate phases, and in copepods in the ocean outfall area off the northern coast of Taiwan were investigated. Normalization of metal concentrations to the background metal concentration to yield relative enrichment factors (EF), which were used to evaluate the contamination of dissolved and particulate trace metals in seawater around the ocean outfall. The EF results indicated that the outfall area was significantly contaminated by dissolved Fe and Zn, and by particulate Fe, Cr, Cu, Pb and Zn. In addition, most trace metals were chiefly in the particulate phase. The average percentage of total metal concentrations (dissolved plus particulate phases) bound by suspended particulate matter followed the sequence Al(95%) = Mn(95%) > Pb(88%) > Cu(86%) > Fe(72%) > Zn(32%) > Cr(17.5%) > Cd(3.4%). Therefore, metal contamination is better evaluated in solid phase than in the dissolved phase. The concentration ranges of trace metals in the copepods, Temora turbinata, Oncaea venusta and Euchaeta rimana, near the outfall were: Cd, 0.23-1.81 microg g(-1); Cr, 16.5-195 microg g(-1); Cu, 14-160 microg g(-1); Fe, 256-7255 microg g(-1); Mn, 5.5-80.8 microg g(-1); Pb, 2.6-56.2 microg g(-1); Zn, 132-3891 microg g(-1); and Al, 0.21-1.13%. Aluminum, and probably Fe, seemed to be the major elements in copepods. The concentrations of trace metals in copepods, especially Temora turbinata, near the outfall were generally higher than those obtained in the background station. The mean increase in bioconcentration factor of metals in copepods ranged from 4 to 7 and followed the sequence Al(6.4) > Cu(6.2) > Fe(6.0) > Zn(5.7) > Pb(5.6) > Cr(5.5) > Cd(5.1) > Mn(4.7). Therefore, marine copepods in the waters of northern Taiwan can accumulate trace metals over background concentrations and act as contamination indicators.  相似文献   

5.
黄、渤海是我国重要的海洋经济渔业开发区域,海水中痕量金属的含量及其存在形态会对海洋环境、海洋渔业产生重要影响。随着近年我国痕量金属采集与分析测试技术的发展,数据的准确性有了新的提升。2016-06—07采集黄、渤海40个站位的海水样品,测定其溶解态金属Cd的总浓度,并应用电化学方法(阳极溶出伏安法)分析Cd存在形态。结果表明,渤海海水中的总溶解态Cd浓度是南黄海海水中的2~3倍,这可能与渤海海水停留时间较长,水深较浅,周边较多河流输入有关。20%~92%以上的溶解态Cd是以有机络合物形态存在,以自由离子态存在的Cd浓度不超过100 pmol/L,低于Cd对浮游生物的毒性阈值。渤海比黄海的金属配体浓度高出2倍以上,高值出现在黄河口周围海域,表明黄河水携带较多有机配体输入。推测我国近海有机配体来源可能包括陆源输入、沉积物再悬浮的解析过程以及藻类分泌。研究还表明,黄、渤海海水中溶解态Cd的有机配体络合常数较其他海域的稍高,这与我国近海废、污水排放的有机络合配体类型有关。  相似文献   

6.
Dissolved, weakly and strongly bound particulates Cu, Pb, Zn, Cd, Co, Ni and Fe have been measured in the surface water sampled from eleven stations in Xiamen Harbor by clean laboratory methods and GFAAS. The average concentrations found in dissolved fractions are Cu: 0.41±0.12; Pb: 0.014±0.008; Zn: 0.084±0.043; Cd: 0.022±0.004; Co: 0.009±0.004; Ni: 0.15±0.02; and Fe: 0.15± 0.02 μg/kg, which make up 62%, 6%, 12%, 85%, 5%, 25% and <1% of the total metals in the surface water respectively. The results are mucn lower than those reported previously in the coastal waters of China. Industrial sources of trace metal contamination are likely responsible for the distribution of trace metals.  相似文献   

7.
A total of 150 samples were collected at a 10-days' anchor station in the Bornholm basin (55° 31.1′N, 15° 32.1′E) and analyzed for dissolved (< 0.4 μm) and particulate trace metals. For dissolved Mn, large gradients have been found in the vertical distribution with minimum concentrations (< 0.2 μgl?1) in the halocline zone and considerably higher values in the deep waters (up to 50 μgl?1). Ultrafiltration studies indicate that dissolved Mn is probably present as Mn2+ in the oxygenated bottom layer. The primary production process was not evident in the particulate Mn profile; the suspended particulate material (SPM), however, shows a considerable enrichment with depth, apparently due to Mn-oxide precipitation.The distribution of dissolved Fe was rather homogeneous, with average concentrations throughout the water column between 0.86 and 1.1 μgl?1, indicating that the oxidation of Fe2+ ions released from the sediments must already be complete in the very near oxidation boundary layer. Relatively high concentrations of particulate Fe were actually measured in the bottom layer, with the maximum mean of 11.2 μgl?1 at 72 m. Similarly to Mn, the profile of particulate Fe does not reflect the SPM curve of the eutrophic layer. On average, about 70% of the total Fe in surface waters was found to be particulate.The average concentrations of dissolved Zn, Cd and Cu were found to be rather homogeneous in the water column but showed a relatively high variability with time. A simplified model on trace-metal uptake by phytoplankton indicates no significant change in dissolved metal concentrations during the period of investigation. On average, only 1.7% Zn, 3.3% Cd and 9.8% Cu of the total metal concentrations were found in particulate form. SPM analyses showed significant correlations of Zn, Cd and Cu with Fe, indicating that particulate iron is an important carrier for particulate trace metals in Baltic waters.  相似文献   

8.
《Marine Chemistry》2001,73(2):83-95
More than half of the dissolved iron in rain collected in Wilmington, NC, USA, occurred as Fe(II)(aq). More than 80% of the dissolved iron in marine rain from several marine storms in both North Carolina and New Zealand was Fe(II)(aq). In almost all rain events Fe(II)(aq) was in excess of Fe(III)(aq). Rainwater is a significant source of iron to surface seawater and contributes approximately 1010 mol year−1 of dissolved plus particulate iron to surface seawater on a global scale, which is more than 30 times the amount of iron resident in the surface 10 m of seawater. The length of time atmospherically deposited dissolved iron remains in surface seawater is critical to its role as a phytoplankton nutrient because it is predominately the soluble form of Fe that is bioavailable. Earlier studies have demonstrated that Fe(II)(aq) oxidizes rapidly in seawater. Our experiments utilizing authentic rainwater with ambient concentrations and speciation of iron clearly demonstrate, however, that rainwater Fe(II)(aq) is stabilized against oxidation for more than 4 h in seawater and rainwater Fe(III)(aq) is protected against rapid precipitation when added to coastal or oligotrophic seawater. These results are significant because they show rainwater deposited Fe does not behave as previously thought based on earlier kinetic work on non-rainwater Fe(II) oxidation in seawater. Rainwater, therefore, is an important source of soluble, stable Fe(II)(aq) to surface seawater.  相似文献   

9.
Cultured mussels, Perna canaliculus (Gmelin), from two widely separated locations in New Zealand have been analysed for variation in heavy metal content with depth. The mussels, which are grown on vertically suspended ropes to a depth of 9 m, have been analysed for cadmium, lead, iron, and zinc at 1‐m intervals. At the first location (Kenepuru Sound), cadmium, lead, and iron increased with depth, while zinc decreased with depth. At the second location (Waiheke Island), concentrations of the four metals all remained essentially constant with depth. The differences in vertical concentration gradients between these two locations must result from differences in mixing of the water column. The differences in mixing may cause variations in the type of food organisms with depth, or variations in the ratio of particulate v. dissolved metal levels with depth. Either or both of these conditions could result in differences in the bioavailability of these metals with depth.  相似文献   

10.
“Dissolved” (< 0.4 μm filtered) and “total dissolvable” (unfiltered) trace element samples were collected using “clean” sampling techniques from four vertical profiles in the eastern Atlantic Ocean on the first IOC Trace Metals Baseline expedition. The analytical results obtained by 9 participating laboratories for Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, and Se on samples from station 4 in the northeast Atlantic have been evaluated with respect to accuracy and precision (intercomparability). The data variability among the reporting laboratories was expressed as 2 × SD for a given element and depth, and was comparable to the 95% confidence interval reported for the NASS seawater reference standards (representing analytical variability only). The discrepancies between reporting laboratories appear to be due to inaccuracies in standardization (analytical calibration), blank correction, and/or extraction efficiency corrections.Several of the sampling bottles used at this station were not adequately pre-cleaned (anomalous Pb results). The sample filtration process did not appear to have been a source of contamination for either dissolved or particulate trace elements. The trace metal profiles agree in general with previously reported profiles from the Atlantic Ocean. We conclude that the sampling and analytical methods we have employed for this effort, while still in need of improvement, are sufficient for obtaining accurate concentration data on most trace metals in the major water masses of the oceans, and to enable some evaluation of the biogeochemical cycling of the metals.  相似文献   

11.
To study biological effects on the particulate removal of chemical elements from seawater, sediment trap experiments were carried out successively ten times throughout the spring phytoplankton bloom in Funka Bay. Sediment traps were deployed every one to two weeks at 1, 40 and 80 m depths. The settling particles obtained were analyzed for trace metals, phosphate and silicate. The propagation of diatoms in spring results in larger particulate fluxes than that of dinoflagellates. The biogenic silicate concentration is higher in the earlier period, when diatoms are predominant, than in the subsequent period, when dinoflagellates are predominant. The concentrations of aluminum, iron, manganese and cobalt in the settling particles comprising largely biogenic particles are lower during phytoplankton bloom. The concentration of copper is not reduced by the addition of biogenic particles, and its vertical flux is approximately proportional to the total flux, indicating that its concentration in the biogenic particles is nearly equal to that in the non-biogenic particles. The results for nickel and lead show the same tendency as for copper. Cadmium is more concentrated in biogenic particles than in non-biogenic particles, and the concentration of cadmium in the settling particles decreases with depth, similarly to phosphate and organic matter. Thus, metals in seawater are segregated by biological affinities, and the degree of incorporation into biogenic particles is in the order Cd > Pb, Ni, Cu > Co > Mn, Fe, Al. Biogenic particles are the most important agent controlling the vertical distribution of metals in the ocean. They remove the metals from the surface water, transport them through the water column, and regenerate them in the deep.  相似文献   

12.
《Marine Chemistry》2001,73(3-4):215-231
In-situ benthic flux studies were conducted at three stations in Upper Galveston Bay twice during March 1996 to directly measure release rates of dissolved Mn, Fe, Ni and Zn from the sediments. Results showed reproducible increases with time in both replicate light and light–dark benthic chambers, resulting in average fluxes of −1200±780, −17±12, −1.6±0.6 and −2.4±0.79 μmol m−2 day−1 for Mn, Fe, Ni and Zn, respectively. Sediment cores collected during 1994–1996 showed that surficial pore water concentrations were elevated compared to overlying water column concentrations, suggesting diffusive release from the sediments. Diffusive flux estimates of Mn and Zn agreed in direction with chamber fluxes measured on the same date, but only accounted for 5–38% of the measured flux. Diffusive fluxes of Fe agreed with measured fluxes at the near Trinity River station but overestimated actual release in the mid and outer Trinity Bay regions, possibly due to inaccurate determination of the Fe pore water gradients or rapid oxidation processes in the overlying water at these stations.In general, measured fluxes of Mn and Ni were higher in the mid Trinity Bay region and suggested a mechanism for the elevated trace metal concentrations previously reported for this region of Galveston Bay. However, the fluxes of Fe were highest in close proximity to the Trinity River, supporting the elevated Fe concentrations measured in this region during this and other studies, and decreased towards middle and outer Trinity Bay. Trace metal turnover times were between 0.1 and 1.2 days for Mn, between 1.3 and 4.6 days for Fe, and between 27 and 100 days for Ni and 12–20 days Zn, and were considerably shorter than the average Trinity Bay water residence time (1.5 years) for this period. Comparing area averaged benthic inputs to Trinity River inputs shows the sediments to be a significant source of trace metals to Galveston Bay. However, while benthic inputs of trace metals were measured, water column concentrations remained low despite rapid turnover times for Mn and Fe, suggesting removal of these metals from the water column after release from the sediments.  相似文献   

13.
A series of high resolution (10 cm) vertical profiles of iron were determined across the oxic/anoxic boundary in the Lower Pond of the Pettaquamscutt Estuary. Selective chemical treatments and multiple analytical methods were used to detemine the oxidation state and lability of iron across the oxic/anoxic boundary. The vertical distributions of dissolved and total iron were determined by atomic absorption spectroscopy, and dissolved Fe(II) and reducible iron were determined using a modified Ferrozine spectrophotometric method. Well-developed maxima of total dissolved iron ≈7·5 μM occurred within the oxic/anoxic transition zone. Analysis of Fe(II) by the FZ method indicates that more than 95% of the dissolved iron determined by atomic absorption spectroscopy within the maximum is in the form of Fe(II). The concentration of dissolved Fe(II) ranged from <4 nM in oxygenated surface waters to between 7 and 8 μM at the total dissolved iron maximum.Both dissolved and total iron samples were treated with ascorbic acid to quantify the fraction of iron that was reducible in this system. Dissolved iron is quantitatively reduced to Fe(II) by 3·5 m depth, and particulate iron was almost completely dissolved by 6 m. Thermodynamic speciation calculations indicate that the dominant species of Fe(II) in the anoxic waters is the Fe(HS)+complex. In addition, the concentration of Fe(II) in the anoxic zone appears to be controlled by precipitation of a sulfide phase, the ion activity product for waters below 7 m is in good agreement with the solubility product of mackinawite.The vertical distribution of oxidation states of the metals indicates non-equilibrium conditions due to microbiological and chemical processes occurring in the redox transition zone. A one-dimensional vertical, eddy diffusion model is presented that incorporates redox reactions of iron, sulfide and oxygen. The modeling suggests the maximum in Fe(II) can be achieved through inorganic oxidation and reduction reactions, however the depth at which the maximum occurs is sensitive to sulfide oxidation, which appears to be dominated by biological oxidation. The magnitude of the Fe(II) maximum depends on the flux of iron into the basin, and reductive dissolution of particulate iron.  相似文献   

14.
Particulate trace metals (PTM), organic carbon (POC), and organic nitrogen (PON) were measured in a series of surface bucket samples collected between the New England coast of the United States and Bermuda. PTM concentrations were lower or equivalent to the lowest PTM concentrations reported in the literature. Examination of the relative variations in PTM with respect to particulate aluminum and carbon led to the conclusion that organic matter was the probable regulator of PTM abundance in open-ocean surface waters and was important in this respect for continental shelf and slope waters as well.Enrichment factors of trace metals relative to their crustal abundances were found to be similar in the atmosphere sampled in Bermuda and in Sargasso Sea surface water particulate matter. A simplistic vertical flux model was constructed which showed atmospheric input of trace metals to the Sargasso Sea to be of the same approximate magnitude as the rate of removal of PTM from the mixed layer by sinking in association with POC. Essentially all of the particulate Al, Fe, and Mn in the Sargasso Sea mixed layer was attributed to aeolian sources. The fate of other atmospherically derived trace metals in the Sargasso Sea mixed layer was suggested to be a function of their solubility in seawater.  相似文献   

15.
Dissolved trace element (copper, nickel, cadmium, zinc, cobalt, and iron) concentrations were measured in surface water samples collected from 27 stations in the San Francisco Bay and Sacramento—San Joaquin Delta during April, August and December of 1989. The trace element distributions were relatively similar for all three sampling periods, and evidenced two distinct biogeochemical regimes within the estuarine system. The two regimes were comprised of relatively typical trace element gradients in the northern reach and anthropogenically perturbed gradients in the southern reach of the estuary. These dichotomous trace element distributions were consistent with previous reports on the distributions of nutrients and some other constituents within the estuary.In the northern reach, trace element and dissolved phosphate concentrations were non-conservative. Simple estuarine mixing models indicated substantial internal sources of dissolved copper (46–150%), nickel (250–500%) and cadmium (630–780%) relative to riverine inputs in April and August, and sizable internal sinks for dissolved cobalt (> 99%) and iron (> 70%) during the same periods. Dissolved zinc fluxes varied temporally, with a relatively large (135%) internal source in April and a relatively small (29%) internal sink in August.Concentrations of many trace elements (copper, nickel, cadmium, zinc, and cobalt) in the southern reach were anomalously high relative to concentrations at comparable salinities in the northern reach. Mass balance calculations indicated that those excesses were primarily due to anthropogenic inputs (waste-water discharges and urban runoff) and diagenetic remobilization from benthic sediments. The magnitude of these excesses was amplified by the long hydraulic residence time of dissolved constituents within the South Bay.The influence of other factors was evident throughout the system. Notably, upwelling appeared to elevate substantially dissolved cadmium concentrations at the mouth of the estuary and authigenic flocculation appeared to dominate the cycling of dissolved iron in both the northern and southern reaches of the system. Biological scavenging, geochemical scavenging and diagenic remobilization were also found to be important in different parts of the estuary. Additional complementary information is required to quantify accurately these processes.  相似文献   

16.
采集胶州湾表层和底层海水样品,分析了Cu、Cr、Cd、Pb、Ni、Co等痕量金属在海水中的空间分布特征及其在不同分子量溶解有机质中的分配特征,并探讨了痕量金属?溶解有机质分配机理及浮游生物活动与盐度等环境因素对该分配过程的影响。结果表明,胶州湾海水中痕量金属呈近岸浓度较高的分布特征,在湾东北部出现高值区,Cd和Pb还分别在湾口与湾中部出现高值区。胶州湾海水中痕量金属平均有70.1%分配于低分子量(<1 kDa)组分中,其中Cu和Cd低分子量组分所占平均比例分别达79.0%与77.6%,Cr、Ni和Co稍低,分别为71.5%、67.3%及66.9%,Pb则仅为58.2%。海水中的溶解有机碳也以低分子量组分为主,所占比例平均达73.1%,且光谱特征显示低分子量溶解有机质中类腐殖质含量更高,含有丰富的羧基和羟基,金属配合能力较高,导致痕量金属多分配于低分子量溶解有机质中。高分子量溶解有机质(>1 kDa)所占比例与叶绿素a浓度呈显著正相关,表明浮游植物初级生产通过释放高分子量溶解有机质影响海水痕量金属?溶解有机质的分配过程。胶州湾湾顶盐度较低海域痕量金属高分子量组分略高,可能是生物活动及陆源输入(产生更多高分子量溶解有机质)与盐度(低盐有利于高分子量有机质的稳定性)共同作用的结果。  相似文献   

17.
2015年12月在马里亚纳海沟"挑战者深渊"进行了定点样品采集,对温度、盐度、溶解氧、pH等环境参数进行了分析,讨论了营养盐的垂直分布特征、各形态营养盐结构特征及影响因素。研究发现,溶解氧在表层具有最大值,在1000 m左右出现极小值,而在8700 m深度具有较高溶解氧值(5.79 mg·L^-1),这可能与富氧水团的存在有关。硝酸盐表层含量较低,在1000和5367 m处出现双峰值。在表层水体中,溶解有机氮、磷是溶解总氮、溶解总磷的主要存在形式,表层以深,溶解无机氮、磷逐渐占据主导地位。磷酸盐表层含量最低,在1000 m处达到最大值,之后随着深度的增加浓度逐渐降低;硅酸盐在表层含量较低,在约4000 m处有最大值161.65μmol·L^-1,在4000 m以深,硅酸盐仍维持较高浓度。结果表明马里亚纳海沟"挑战者深渊"的溶解氧、pH及营养盐的垂直分布特征与大洋环流、海沟形态以及生物活动密切相关。  相似文献   

18.
We investigated the concentrations of cadmium, chromium, copper, iron, nickel, lead and zinc among feather tissues in sexes of Black-browed Albatross Thalassarche melanophrys killed in longliners off Argentina in 2005. We found no different metal concentration with sex for cadmium, copper, iron, lead and zinc in feathers of adult birds, though there were significant body-size differences between sexes. However, the concentrations of trace metals differed significantly among the type of feather within individual bird. The mean concentrations of copper, iron, and zinc in breast feathers of T.?melanophrys were lower than those reported for the species from Georgias del Sur/South Georgia, the southern Indian Ocean and for other seabirds' worldwide. While cadmium fall within the known range of concentrations for bird feathers lead were not. Our results may be indicating that level of pollution in Patagonia may not be as negligible as previously thought at least for some trace metals.  相似文献   

19.
腐殖质(humic substances,简称HS)是地表普遍存在的天然有机物,对海洋中重要的微量营养元素-铁(Fe)的分布及生物地球化学循环具有重要的影响作用。本文对腐殖质的来源、分布及对海水中溶解态铁的迁移转化的影响做了总结,特别论述了其在河口及沿岸水域的行为。大量研究表明河口、沿岸及开放海水中溶解态铁分布的变化可以用腐殖质的浓度及其铁结合能力的变化来解释。腐殖质的络合作用不仅能够阻止溶解态铁(DFe)在河口、沿岸等水域被去除,而且能够通过洋流将DFe迁移至外海及大洋区域,此外还能增加铁的溶解度及对海水中浮游植物的生物可利用性,并且促进铁的氧化还原循环。研究还发现两者之间的络合强度受到盐度、pH等理化因素的影响。盐度是影响HS与DFe配合能力的重要影响因素,盐度增加,导致HS中可以与Fe配合的位点数量降低,配合总量呈现指数降低,而pH的增加可以增加HS与DFe的配合量。另外HS还能影响海水中DFe的氧化还原,并以此影响浮游植物对DFe的吸收利用。因此腐殖质对溶解态铁的有机络合作用是影响其海洋生物地球化学循环的一个重要参数,对进一步研究海水中腐殖质的浓度和分布具有重要的意义。  相似文献   

20.
An investigation of trace metal distributions in the Western Mediterranean Sea was carried out during the RRS Discovery cruise (July 1993) in which a transect from the Strait of Gibraltar to the Strait of Sicily was conducted. Organically complexed dissolved trace metals and their total concentrations were measured to investigate the end-members and to predict the environmental capacity of the Mediterranean for potential toxic metals. The distribution of trace metals can be accounted for by the mixing of several end-members and by some atmospheric inputs to the surface water. For Pb and Fe, the effects of the atmospheric inputs are more pronounced than for the other metals. Due to the rapid exchange of water masses, the Western Mediterranean may have the ability to assimilate the increased external inputs for some trace metals such as Cu, Cd, Ni and Zn. But the external inputs for Pb and Fe exceed the removal capacity of the Western Mediterranean and these elements may accumulate in the water column of the western basin. The C18 Sep-Pak technique and direct determination by DPASV were used to determine the amount of trace metal–organic complexes. The C18 Sep-Pak column isolates only a small fraction of trace metals except for Cu. The maximum hydrophobic fractions for the studied trace metals, except for Cd and Pb, which are not detectable, were found in the subsurface layer at all stations. This maximum may well be linked to picoplankton activity and the picoplankton, prochlorophytes may have an important role in the speciation of dissolved Cu as well as Synechococcus. These organic ligands for Cu were produced at the maximum of biological activity in the Western Mediterranean basin and seem to be accumulated at halocline level by Mediterranean hydrodynamic characteristics. However, direct determination by DPASV showed that the major part of Cu, Cd and Pb, complexed by organic materials, was not isolated by C18 Sep-Pak technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号