首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
Spring blooms of phytoplankton composed of centric diatoms developed in late February, March, and April in Otsuchi Bay on Sanriku ria coast, Japan. During this period, associated with prolonged seasonal west wind (>1 day), intense exchange of waters occurred between inside and outside the bay: outflow of nearsurface brackish water over inflow of oceanic water at depth. This circulation interrupted formation of the blooms, and transported phytoplankton populations seaward. By such water movements, a significant amount of nutrients in the bay was carried out, otherwise replenished into the bay, depending on water masses located outside the bay. Owing to irregular features of wind events, a bloom lasted from several days to a week. From February to April, supply of nutrients seemed to be replete except for the latter half of the bloom period, and estimates of the critical depth exceeded the depth of the bottom consistently. Thus, net growth of phytoplankton was expected throughout the observation period, and potentially blooms could be formed. However, the blooms were only formed under calm weather. We hypothesize that the exchange of waters dilutes populations in the bay, and that formation of the bloom, that is, accumulation of biomass depends on a balance between the growth of phytoplankton and the dilution of bay water.  相似文献   

2.
A numerical simulation of Otsuchi Bay located on the northeast coast of the Honshu, the largest island of Japan, is conducted, using an ocean general circulation model (OGCM) with a nested-grid system in order to illustrate seasonal variability of the circulation in the bay. Through a year, an anticlockwise circulation is dominant in the bay, as observational studies have implied, although it is modified in the bay-mouth-half of the bay in winter. In addition, there is an intense outflow at the surface layer during spring to autumn, influenced by river water discharge. Intrusion of the Pacific water into the bay is influened by mean circulations, but it is also influenced by baroclinic tides from spring to autumn. Pacific water intrusions affected by baroclinic tides may have an impact on the environment in Otsuchi Bay.  相似文献   

3.
The Yellow Sea general circulation model coupled to a sediment transport model with and without surface waves was implemented to study sediment distribution and resuspension in the northern Jiangsu shoal-water (NJSW) in March and April 2006–2008. With surface wave, the general features of model simulated turbidity maxima agreed well with the MODIS remote sensing data. Without wave, the turbidity maxima moved offshore with much reduced suspended sediment concentration (SSC). This demonstrated that surface waves played a dominant role over the tides to form the turbidity maxima in the region. The study also found that NJSW exported sediments to the Yellow Sea and East China Sea through offshore and southern boundaries. As March and April 2008 was a wind anomalous year with a decreased wind speed over last three years, the wind generated waves in the region were also reduced, leading to lower sediment resuspension and SSC in that year.  相似文献   

4.
Occurrence of Dinophysis fortii, a causative organism of diarrhetic shellfish poisoning, in the Okkirai Bay, Sanriku was surveyed in 1995, 1996, 1998 and 1999. In each year, its major occurrence was detected from the late May or early June and continued until the late June or early July. Seawater temperature, salinity and nutrients measurements suggested that inflows of offshore water into the bay played key role on the first major occurrence of D. fortii. With an analysis of continuous temperature data in the Otsuchi Bay which locates north of the Okkirai Bay, this influent was considered to be intermittent inflow of the offshore water by internal tidal waves which propagated from north to south. First occurrence peak of D. fortii was synchronous with phycobilin containing microalgae, synechococcoid cyanobacteria and cryptomonad, in all years. In vivo fluorescence measurement of D. fortii cells in 1995 and 96 showed that the cells in these microalgal-rich water contained more phycobilin pigment than those in the microalgal-poor water. The result may support a hypothesis that D. fortii acquires phycobilin by an uptake of these microalgae. After the first major occurrence in the bay, D. fortii sometimes occurred in rather inshore waters where showed elevated ammonium level possibly due to increased heterotrophic activity. Together with another finding that D. fortii is mixotrophic, it could be assumed that the environment being suited to heterotrophic nutrition also stimulates D. fortii growth in the bay.  相似文献   

5.
Waves propagating from deep water into shallow coastal areas produce oscillatory currents near the sea bottom. The magnitude of these currents depend upon the period and amplitude of the incoming waves, and the dissipation mechanism such as wave breaking and bottom friction. Field experiments in a gently shoaling bay, i.e. Cleveland Bay, Northern Australia, showed that there is a broad band of water at around 6 m depth, where the benthic surge velocities are maximum. Both further inshore and offshore, the bottom velocities were less than at 6 m depth, contrary to the normal expectation that the velocities should increase as the water becomes shallower. A new and computationally efficient wave model was developed and was able to reproduce experimental results for waves above 50 cm wave height, but not for small waves (wave height about 30 cm). One implication of this higher band of benthic surge velocities may be to produce high water turbidities in this region. Turbidity data from Cleveland Bay is consistent with this hypothesis.  相似文献   

6.
Mooring and hydrographic observations were conducted from September 2012 to May 2014 at the mouth of Otsuchi Bay, a ria along the Pacific coast of Japan. Our observations quantitatively demonstrated that the circulation and the water properties of Otsuchi Bay are strongly influenced by the Tsugaru Warm Current (TWC) and Oyashio Current (OY) at seasonal and subseasonal time scales. Two bottom-mounted velocity profilers and temperature and salinity measurements beneath the near-surface halocline showed a counterclockwise lateral circulation pattern related to the TWC, which was enhanced from summer to autumn. From winter to early spring, the lateral circulation patterns related to the TWC weakened and the influence of the OY occasionally increased. When the OY was weak, surface flows became an overturning structure, with outflows in the upper layer and inflows in the lower layer. When the OY was strong and passed close to the Sanriku coast, the circulation became highly variable and intermittent. Intrusions of the markedly low-salinity OY water were observed on two occasions and persisted for periods of several weeks to several months. Salinity was sometimes less than 33.7, the lower limit of the typical TWC from late summer to autumn even when the TWC dominates. We suggested that this is the seasonal fluctuations of the TWC itself, as the upstream current of the Tsushima Warm Current is freshened in summer as a result of the influence of the Changjiang River. The surface water was generally fresher in the south of the bay than in the north, suggesting the Coriolis deflection of the river plume.  相似文献   

7.
8.
Hydrographic observations were made in Otsuchi Bay on the Sanriku ria coast, Japan, to provide clear images of the baroclinic circulation extending over the bay together with the associated intrusion of lower-layer water (bottom water) from outside the bay. In summer, a prominent baroclinic circulation with flow speeds \({>} 0.1\ \text{ m }\ \text{ s }^{-1} \) extends over the greater part of the bay. A main pycnocline (thermocline), which separates the upper and lower layers, is located at a depth of 15–40 m in and around the bay. The direction of the lower-layer flow (inflow into and outflow from the bay) is opposite to that of the upper-layer flow, which are baroclinically coupled to each other. Moreover, with regard to the lower-layer flow, the inflow tends to occur mainly through the northwestern part of the bay mouth, whereas the outflow tends to occur mainly through the southeastern part. The inflow and outflow alternate on time scales of several to a few tens of hours, and the flow directions are sometimes related to the tidal ones, although the relationship is not applied persistently. In winter, the baroclinic circulation is considerably weaker than in summer, because the stratification breaks down.  相似文献   

9.
The tsunami caused by the 2011 off the Pacific coast of Tohoku Earthquake seriously damaged the Pacific coast of northeastern Japan. In addition to its direct disturbance, a tsunami can indirectly affect coastal pelagic ecosystems via topographical and environmental changes. We investigated seasonal changes in the phytoplankton community structure in Otsuchi Bay, northeastern Japan, from May 2011, which was 2 months after the tsunami, to May 2013. The phytoplankton species composition in May 2011 was similar to that observed in May 2012 and 2013. The present results are consistent with the dominant species and water-mass indicator species of phytoplankton in past records. These results suggest that there was no serious effect of the tsunami on the phytoplankton community in Otsuchi Bay. Community analysis revealed that two distinct seasonal communities appeared in each year of the study period. The spring–summer community was characterized by warm-water Chaetoceros species, and dinoflagellates appeared from May to September. The fall–winter community was characterized by cold neritic diatoms, which appeared from November to March. The succession from the spring–summer community to the fall–winter community took place within a particular water mass, and the fall–winter community appeared in both the surface water and the Oyashio water mass, suggesting that water-mass exchange is not the only factor that determines the phytoplankton community structure in Otsuchi Bay.  相似文献   

10.
Flow fields in Shizugawa Bay on the Sanriku ria coast, which faces the Pacific Ocean, were investigated using hydrographic observations for the purpose of understanding oceanographic conditions and the process of water exchanges in the bay after the 2011 earthquake off the Pacific coast of Tohoku. In spring to summer, density-driven surface outflow is part of estuarine circulation and is induced by a pressure gradient force under larger longitudinal gradients in density along with lower salinity water in the innermost part of the bay, regardless of wind forcing. In winter to summer, another density-driven current with a thermal structure is induced by a pressure gradient force under the smaller longitudinal density gradients in calm wind conditions. Particularly in winter, Tsugaru Warm Current water can be transported in the surface layer inside the bay. Wind-driven bay-scale circulation with downwind and upwind currents in the surface and deeper layers, respectively, is induced by strong longitudinal wind forcing under the smaller longitudinal density gradients, irrespective of season. Particularly in fall to spring, this circulation can cause the intrusions of oceanic water associated with Oyashio water and Tsugaru Warm Current water in the deeper layer. These results suggest that wind- and density-driven currents can produce the active exchange of water from inside and outside the bay throughout the year.  相似文献   

11.
《Ocean Modelling》2011,36(4):314-331
Hurricane-induced storm surge, waves, and coastal inundation in the northeastern Gulf of Mexico region during Hurricane Ivan in 2004 are simulated using a fine grid coastal surge model CH3D (Curvilinear-grid Hydrodynamics in 3D) coupled to a coastal wave model SWAN, with open boundary conditions provided by a basin-scale surge model ADCIRC (Advanced CIRCulation) and a basin-scale wave model WW3 (WaveWatch-III). The H1wind, a reanalysis 10-m wind produced by the NOAA/AOML Hurricane Research Division (HRD), and a relatively simple analytical wind model are used, incorporating the effect of land dissipation on hurricane wind. Detailed comparison shows good agreement between the simulated and measured wind, waves, surge, and high water marks. Coastal storm surge along the coast is around 2–3 m, while peak surge on the order of 3.5 m is found near Pensacola, which is slightly to the east of the landfall location on Dauphin Island. Wind waves reach 20 m at the Mobile South station (National Data Buoy Center buoy 42040) on the shelf and 2 m inside the Pensacola/Escambia Bay. Model results show that wave-induced surge (total surge subtracted by the meteorologically-induced surge due to wind and pressure) accounts for 20–30% of the peak surge, while errors of the simulated surge and waves are generally within 10% of measured data. The extent of the simulated inundation region is increased when the effects of waves are included. Surge elevations simulated by the 3D model are generally up to 15% higher than that by the 2D model, and the effects of waves are more pronounced in the 3D results. The 3D model results inside the Pensacola/Escambia Bay show significant vertical variation in the horizontal currents. While the estuary has little impact on the surge elevation along the open coastal water, surge at the head of Escambia Bay is more than 50% higher than that at the open coast with 1.5 h delay.  相似文献   

12.
利用高分辨率的大气和波浪数值模式,模拟了2016年苏北近海的风场和波浪场,并与卫星高度计资料、散射计风场、再分析资料以及实测浮标资料进行了比较,验证了模式的准确性。基于这套模式结果,系统地分析了江苏近海的风场和波浪场的多时间尺度变化:季节变化、日变化以及季节内变化(台风、寒潮)。分析结果表明:苏北近海海域的风速、有效波高和涌浪在冬季和秋季较大、春季和夏季较小;冬季盛行西北风,常浪向为西北向,夏季盛行东南风,常浪向为东南向。风场和波浪场还具有显著的日变化特征,且日变化存在季节变化规律,离岸越近海域日变化特征越明显。同时,江苏近海还会经历季节内尺度的强天气过程的影响,比如台风和寒潮。  相似文献   

13.
浙江中部三门湾波浪特征统计分析   总被引:2,自引:0,他引:2  
为了研究浙江中部三门湾海域的波浪特征,本文基于AWAC波浪观测仪在该海域进行了连续1年的观测,对观测得到的波浪参数进行了统计分析、线性回归分析,同时研究分析了三门湾海域受台风影响时,波浪参数和波浪谱的变化情况,探讨了波浪变化的原因。研究表明,三门湾海域常浪向和强浪向均为E向,地形是主导因素;显著波高绝大部分在0.8 m以下,期间的最大波高为2.71 m;该海域的波浪特征分布是一个比较典型的瑞利分布;台风“泰利”期间波能谱以双峰为主,外海涌浪和研究海域风区内的风浪形成混合浪,其中0.08 Hz左右的低频涌浪成分占比很大,而0.25 Hz左右的高频风浪成分占比较小。本文的研究工作为沿海海洋工程结构物的设计建造以及防灾减灾提供重要参考依据。  相似文献   

14.
A local-scale phase-resolving wave transformation model with CGWAVE is established in connection with a regional-scale coupled STWAVE-ADCIRC wave-current model for its application in the Half Moon Bay, Grays Harbor. Wave transformation from offshore to the harbor entrance is simulated by the STWAVE model which includes wave-current interaction. The STWAVE results provide incident wave conditions for the local-scale CGWAVE model at its outer boundary. A simple method is developed to take into ac- count the lateral variation of wave height in constructing the model's wave boundary conditions. The model was validated for three wave condition cases which yielded good agreement with field data. The validated model was applied to predicting nearshore waves in the Half Moon Bay and longshore transport parameters along the wave breaking line for the existing condition and three engi- neering alternatives. A comparative analysis indicated that storm waves that have a combination of long period and large height are the most destructive to the crenulate shoreline in the Half Moon Bay; both 152 m jetty extension (Alt. 2) and diffraction mound enlargement ( Alt. 3) would significantly reduce breaking wave height and longshore transport potential in the southwest comer of Half Moon Bay.  相似文献   

15.
This study briefly investigated sediment transport by tidal currents in Gomso Bay, on the mid-west coast of Korea during the summer season. Hydrodynamic measurements with benthic tripods (TISDOSs) show that near-bed suspended sediments are transported toward the bay mouth along the low-water line of tidal flats in the southern part of the bay, while they are directed offshore in front of the major tidal channel at the bay mouth according to tidal asymmetry. However, suspended sediments in the main body of sea water, observed from transect and anchor-site measurements, indicate a consistent incoming toward the uppermost tidal flats. A brief episode of relatively strong winds from the west and southeast displays that wind waves can yield the near-bed suspended sediment concentrations (SSC) overwhelming the SSC by tidal currents alone in the remaining duration.  相似文献   

16.
A coupled wave and hydrodynamic model was applied to the Kingston Basin of eastern Lake Ontario, a region with bathymetric variability due to channels and shoals, to assess the potential impacts on surface waves and wind-driven circulation of an offshore wind farm. The model was used to simulate a series of storm events with time-varying wind forcing and validated against wave, current and water level observations. The wind farm was simulated by adding semi-permeable structures in the surface wave model to represent the turbine monopiles, and by adding an energy loss term to the fluid momentum equations in the hydrodynamic model to represent the added drag of the monopiles on the flow. The results suggest that the wind farm would have a small influence on waves and circulation throughout the wind farm area, with spatial variability due to focussing of wave energy and re-direction of the flow. Overall, the results indicate that the wave height in coastal areas will be minimally affected with changes in significant wave height predicted to be < 3%. Larger changes to the strength of circulation occur inside the wind farm region with localized changes in current magnitude of up to 8 cm s 1. The results of this study may help to understand the impacts of future offshore wind farms and other offshore structures in the Great Lakes.  相似文献   

17.
通过在海口湾北部海域布置波浪观测站,对采集到的实测波浪资料进行统计和波谱分析,研究了琼州海峡波浪季节性变化特征。观测期间最大波高为5.6 m,发生在台风"莎莉嘉"经过期间。无台风影响的月份最大波高为3.0 m。年平均十分之一大波波高、年平均有效波高、年平均波高分别为0.5 m、0.4 m、0.3 m,该海域波高总体不大。波周期范围主要在2~7 s区间。研究结果表明:1)观测海区各月基本都受到东北风影响并存在东北向的波浪; 2)发现海区波浪类型主要是风浪为主的混合浪; 3)发现观测海区一直受到南海传入的长周期波影响; 4)海区风向与浪向的一致性在东北季风影响时段明显强于西南季风影响时段,风速与波高的相关性在东北季风影响时段明显强于西南季风影响时段,该现象在台风月份表现得尤其明显。  相似文献   

18.
Along the southern Brazilian coast, Tijucas Bay is known for its unique muddy tidal flats associated with chenier plains. Previous field observations pointed to very high suspended sediment concentrations (SSCs) in the inner parts of the bay, and in the estuary of the Tijucas River, suggesting the presence of fluid mud. In this study, the occurrences of suspended sediments and fluid mud were examined during a larger-scale, high-resolution 2-day field campaign on 1–2 May 2007, encompassing survey lines spanning nearly 80 km, 75 water sampling stations for near-bottom density estimates, and ten sediment sampling stations. Wave refraction modeling provided qualitative wave energy estimates as a function of different incidence directions. The results show that SSC increases toward the inner bay near the water surface, but seaward near the bottom. This suggests that suspended sediment is supplied by the local rivers, in particular the Tijucas. Near-surface SSCs were of the order of 50 mg l−1 close to the shore, but exceeded 100 mg l−1 near the bottom in the deeper parts of the bay. Fluid mud thickness and location given by densimetry and echo-sounding agreed in some places, although being mostly discordant. The best agreement was observed where wave energy was high during the campaign. The discrepancy between the two methods may be an indication for the existence of fluid mud, which is recorded by one method but not the other. Agreement is considered to be an indication of fluidization, whereas disagreement indicates more consolidation. Wave modeling suggests that waves from the ENE and SE are the most effective in supplying energy to the inner bay, which may induce the liquefaction of mud deposits to form fluid mud. Nearshore mud resuspension and weak horizontal currents result in sediment-laden offshore flow, which explains the higher SSCs measured in the deeper parts of the bay, besides providing a mechanism for fine-sediment export to the inner shelf.  相似文献   

19.
The three-dimensional numerical model SUNTANS is applied to investigate river plume mixing in Otsuchi Bay, an estuary located along the Sanriku Coast of Iwate, Japan. Results from numerical simulations with different idealized forcing scenarios (barotropic tide, baroclinic tide, and diurnal wind) are compared with field observations to diagnose dominant mixing mechanisms. Under the influence of combined barotropic, baroclinic and wind forcing, the model reproduces observed salinity profiles well and achieves a skill score of 0.94. In addition, the model forced by baroclinic internal tides reproduces observed cold-water intrusions in the bay, and barotropic tidal forcing reproduces observed salt wedge dynamics near the river mouths. Near these river mouths, vertically sheared flows are generated due to the interaction of river discharge and tidal elevations. River plume mixing is quantified using vertical salt flux and reveals that mixing near the vicinity of the river mouth, is primarily generated by the barotropic tidal forcing. A 10 ms?1 strong diurnal breeze compared to a 5 ms?1 weak breeze generates higher mixing in the bay. In contrast to the barotropic forcing, internal tidal (baroclinic) effects are the dominant mixing mechanisms away from the river mouths, particularly in the middle of the bay, where a narrow channel strengthens the flow speed. The mixing structure is horizontally asymmetric, with the middle and northern parts exhibiting stronger mixing than the southern part of the bay. This study identifies several mixing hot-spots within the bay and is of great importance for the coastal aquaculture system.  相似文献   

20.
Phytoplankton distribution in a frontal region of Tokyo Bay was investigated in relation to hydrography in November 1985. The frontal region was observed from the central to the mouth area of the bay and consisted of a series of fine scale discontinuities of salinity and temperature. Among them the Kenzaki offshore front (KOF) and the Yokosuka inshore front (YIF) were most prominent in terms of the duration and the magnitudes of the hydrographic gaps. Three major phytoplankton assemblages were observed: (A) neritic and offshore diatoms in the mouth area of Tokyo Bay, (B) a diatomLeptocylindrus danicus and dinoflagellates in the central area, and (C) bloom forming cryptophyceans, dinoflagellates andL. danicus from the inner Tokyo Bay. The KOF was an approximate boundary of the outside assemblage (A) and the intermediate population (B), and the YIF was that of (B) and the inner bay population (C). Species changes across the fronts were rather gradual in the KOF making a strong contrast to distinct jumps in temperature, salinity,in vivo chlorophyll fluorescence and nitrate plus nitrite. An outward surface flow of the inside population along the western coast off Yokosuka was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号