首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the engineering geological properties and support design of a planned diversion tunnel at the Boztepe dam site that contains units of basalt and tuffites. Empirical, theoretical and numerical approaches were used and compared in this study focusing on tunnel design safety. Rock masses at the site were characterized using three empirical methods, namely rock mass rating (RMR), rock mass quality (Q) and geological strength index (GSI). The RMR, Q and GSI ratings were determined by using field data and the mechanical properties of intact rock samples were evaluated in the laboratory. Support requirements were proposed accordingly in terms of different rock mass classification systems. The convergence–confinement method was used as the theoretical approach. Support systems were also analyzed using a commercial software based on the finite element method (FEM). The parameters calculated by empirical methods were used as input parameters for the FEM analysis. The results from the two methods were compared with each other. This comparison suggests that a more reliable and safe design could be achieved by using a combination of empirical, analytical and numerical approaches.  相似文献   

2.
《Engineering Geology》2001,59(1-2):161-172
This paper presents the results of preliminary support design of the subway tunnel for Ankara subway project in accordance with some empirical and numerical methods, using the phase 2D finite element method (FEM). The 5 m diameter subway tunnel will advance through slightly to moderately weathered dacite and weak zones. Rock masses were characterized in terms of rock mass rating (RMR), geological strength index (GSI) and Q System. Core samples were tested in the rock mechanics laboratory to determine uniaxial compressive strength, deformability parameters, unit weight, tensile strength and triaxial compressive strength properties. Finally, rock mass strengths were determined by empirical and numerical methods. Required support system was suggested.  相似文献   

3.
This paper presents the results of engineering geological investigations and tunnel support design studies, carried out at the Sulakyurt dam site, northeast of Ankara, Turkey. The Sulakyurt dam will be used for flow control and water storage for irrigation projects. Studies were carried out both in the field and the laboratory. Field studies include engineering geological mapping, intensive discontinuity surveying, core drilling and sampling for laboratory testing. The diversion tunnel will be driven in rock mass, consisting of granite and diorite. Empirical, analytical and numerical methods were combined for safe tunnel design. Rock mass rating (RMR), Rock mass quality (Q) and Geological strength index (GSI) systems were used for empirical rock mass quality determination, site characterization and support design. The convergence–confinement method was used as analytical method and software called Phase2, a 2D finite element program, was utilized as numerical method. According to the results acquired from the empirical, analytical and numerical methods, tunnel stability problems were expected in both granite and diorite rock masses. The support system, suggested by empirical methods, was applied and the performance of suggested support system was evaluated by means of numerical modelling. It was concluded that the suggested support systems were adequate, since after applying the suggested support system to granite and diorite, tunnel deformation and the yielded elements around the tunnel decreased significantly. Thus, it is suggested that for more reliable support design empirical, numerical and analytical methods should be combined.  相似文献   

4.
Support capacity estimation of a diversion tunnel in weak rock   总被引:4,自引:0,他引:4  
This paper presents the results of the support capacity estimation for the diversion tunnel of the Uru dam site in highly weathered tuff and weak zone. Tunneling in weak rock requires some special considerations, since misjudgment in support design results in costly failures. There are several ways of estimating rock support pressure and selecting support. However, all systems suffer from their characteristic limitations in achieving objectives. Thus, it is more useful to use different methods for estimating support pressure and type of support. The support pressure pi was established by three different methods. These methods are the (1) empirical methods based on rock mass rating (RMR) and rock mass quality index (Q-classification systems), (2) ground support interaction analysis (GSIA) and (3) numerical methods, namely, Phase2 finite element (FEM) program. Rock masses were characterized in terms of RSR, RMR, Q-system and GSI. Drill-core samples were tested in the rock mechanics laboratory to determine physico-mechanical properties. Rock mass strength was estimated by empirical methods. Finally, the required support system is proposed and evaluated by different methods in the highly weathered tuff and weak zone of the diversion tunnel.  相似文献   

5.
M. Rasouli   《Engineering Geology》2009,108(3-4):208-224
In this paper a detailed engineering geological assessment of rock masses and support design studies at Garmi Chay dam site, has been carried out. This project is located in the northwest of Iran and will be used for flow control and water storage. The diversion tunnel of the dam has a diameter of 5.5 m and a length of 420 m and will be driven in slightly to highly weathered micaschist and trachy andesite rock units. The geological studies include field and laboratory investigations that based on the results; for more exact investigation, tunnel alignment was divided into three geotechnical zones. These zones consist mainly of highly weathered gray micaschists, dark red trachy andesites and slightly weathered gray micaschists, respectively. Then, for every zone, support capacity of rock masses was evaluated by means of empirical and numerical methods. The rock mass classification systems (RMR, Q, GSI, RSR, SRC and RMi), the convergence–confinement method and a 2D finite element computer software, Phase2 were used for empirical and numerical method, respectively. According to the results acquired from these methods some stability problems were expected in the tunnel especially in highly weathered micaschist zone, so that in practice two big collapses occurred. Because of high weathering, low constants of rock masses and their soil-like behavior, the stability analysis by analytical method does not give illogical results in lightly weathered micaschist zone. The support system, suggested by empirical method, was applied and its performance was evaluated by means of numerical modeling. After installation the support suggested by Phase2 program, the thickness of plastic zone and deformations around the tunnel decreased significantly. Consequently the agreement of these methods with each other was resulted and using combination of them was recommended for more reliable support design.  相似文献   

6.
The results of geotechnical explorations, engineering geological investigation (including laboratory and in situ tests) and field observations have been used, along with borehole logging charts, to obtain the rock mass geotechnical data. Based on the data, the rock mass along the Sabzkuh water conveyance tunnel route was classified by rock mass rating (RMR), Q-system (Q), rock mass index (RMi) and geological strength index (GSI) (3 methods). A new series of correlations were established between the systems based on the data collected from the study area. These relationships were then compared with those reported in the literature, and two new relations were recommended. The classifications were utilized to calculate mechanical properties (rock mass strength and deformation modulus) of the rock mass along the tunnel according to available empirical relations, and to distinguish the upper-bound and lower-bound relations.  相似文献   

7.
There are many rock mass classification schemes which are frequently used for different purposes such as estimation of strength and deformability of rock masses, stability assessment of rock slopes, tunneling and underground mining operations etc. The rock mass classification includes some inputs obtained from intact rock and discontinuity properties which have major influence on assessment of engineering behaviour of rock mass. In the present study, detail measurements were employed on road cuts slope faces in Garhwal Himalayas to collect required data to be used for rock mass classification of Rock Mass Rating (RMR) and Geological Strength Index (GSI). The stability assessment of rock slopes were also done by using Slope Mass Rating. In addition the relation between RMR and GSI were also evaluated using 50 data pairs.  相似文献   

8.
RMR法与Q法是国内外八、九十年代岩体质量和参数估算的常用方法,然而RMR法和Q法对质量较差的岩体不太实用,而RMi法是一种既适用于软岩又适用于硬岩的岩体质量评价和参数估算方法。本文在介绍RMi法基本原理的基础上,对贵州省鱼简河水库坝基岩体变形模量进行确定。  相似文献   

9.
This paper describes the results of the engineering geological investigations and rock mechanics studies carried out at the proposed Uru Dam site. Analyses were carried out in terms of rock mass classifications for diversion tunnel, kinematic analysis of excavation slopes, permeability of the dam foundation and determination of rock mass strength parameters.Uru Dam is a rock-filled dam with upstream concrete slab. The dam will be built on the Suveri River in the central part of Turkey. The foundation rocks are volcanic rocks, which consist of andesite, basalt and tuff of Neogene Age. Studies were carried out both at the field and the laboratory. Field studies include engineering geological mapping, intensive discontinuity surveying, core drilling, pressurized water tests and sampling for laboratory testing.Uniaxial, triaxial and tensile strength tests were performed and deformation parameters, unit weight and porosity were determined on the intact rock specimens in the laboratory. Rock mass strength and modulus of elasticity of rock mass are determined using the Hoek–Brown empirical strength criterion. Rock mass classifications have been performed according to RMR and Q systems for the diversion tunnel.Engineering geological assessment of the proposed dam and reservoir area indicated that there will be no foundation stability problems. Detailed geotechnical investigations are required for the final design of the dam.  相似文献   

10.
A general approach to rock engineering designing aspects adopted at the Khiritharn Pumped Storage Scheme is described. The scheme involves excavation of three large caverns and tunnels in jointed sandstone within a suture zone in Southeast Thailand. Geological condition and engineering properties of the sandstone were investigated. Strength and modulus properties of the intact rock were determined from laboratory tests and properties of rock mass were empirically estimated for the design analysis in the de.nite study stage on the basis of three rock mass classi.cation systems namely the Rock Mass Rating (RMR), Geological Strength Index (GSI) and a Japanese system (EPDC). While the GSI gives strength and modulus of deformation values slightly higher than the RMR classi.cation, the EPDC gives a lower value of modulus of deformation but comparable rock mass strength value for the level of con.ning pressures at the depth of the cavern excavation. The results of stress analysis and loosening wedge analysis for the cavern excavations suggest favorable excavation condition.  相似文献   

11.
Rock mass classification systems such as rock mass rating (RMR) are very reliable means to provide information about the quality of rocks surrounding a structure as well as to propose suitable support systems for unstable regions. Many correlations have been proposed to relate measured quantities such as wave velocity to rock mass classification systems to limit the associated time and cost of conducting the sampling and mechanical tests conventionally used to calculate RMR values. However, these empirical correlations have been found to be unreliable, as they usually overestimate or underestimate the RMR value. The aim of this paper is to compare the results of RMR classification obtained from the use of empirical correlations versus machine-learning methodologies based on artificial intelligence algorithms. The proposed methods were verified based on two case studies located in northern Iran. Relevance vector regression (RVR) and support vector regression (SVR), as two robust machine-learning methodologies, were used to predict the RMR for tunnel host rocks. RMR values already obtained by sampling and site investigation at one tunnel were taken into account as the output of the artificial networks during training and testing phases. The results reveal that use of empirical correlations overestimates the predicted RMR values. RVR and SVR, however, showed more reliable results, and are therefore suggested for use in RMR classification for design purposes of rock structures.  相似文献   

12.
The procedure presented in this paper has been developed for the design of grouted rock bolts in rock tunnels during preliminary design stage. The proposed approach provides a step-by-step procedure to set up a series of practical guidelines for optimum pattern of rock bolting in a variety of rock mass qualities. For this purpose, a new formula for the estimation of the rock load (support pressure) is recommended. Due to its wide-spread acceptance in the field of rock engineering, the Geological Strength Index (GSI) is adopted in support pressure equation. For poor and very poor rock mass where the GSI < 27, the use of Modified-GSI is, instead, recommended. The supporting action is assumed to be provided by rock bolts carrying a total load defined by the rock load height. The mechanism of bolting is assumed to rely on roof arch forming and suspension principle. Integrated with support pressure function, the bolt density parameter is modified in order to provide an optimized bolt pattern for any shape of tunnel. The modified bolt density can also be used in analysis of a reinforced tunnel in terms of Ground Reaction Curve (GRC) in such a way as to evaluate the reinforced rock mass and the tunnel convergence. By doing so, the effectiveness of the bolting pattern is well evaluated. The proposed approach based on GSI is believed to overcome constrains and limitations of existing empirical bolt design methods based on RMR or Q-system, which are doubtful in poor rock mass usage. The applicability of the proposed method is illustrated by the stability analysis and bolt design of a rail-road tunnel in Turkey.  相似文献   

13.
In this paper, preliminary support design of Kaletepe tunnel, located on Bilecik-Istanbul highway, Turkey, was analyzed by empirical and numerical methods. The rock mass rating (RMR) and rock mass quality (Q) systems were employed for empirical rock mass quality determination. Numerical analysis for the stress–strain distribution of the tunnel excavation and support systems was also carried out. The applied support performance was investigated at different sections of the tunnel route. It was seen that empirical and numerical approaches showed similar results. This indicates that when the empirical method is supported by numerical method, the preliminary support design will be more reliable.  相似文献   

14.
吉小明 《岩土力学》2006,27(Z1):305-310
基于混合物理论孔隙-裂隙岩体的双重孔隙介质水力耦合计算的微分方程,利用伽辽金有限元法提出了相应的有限元公式,并基于岩体分类指标(RQD,RMR)提出了与岩体应变状态相关的渗透系数计算公式。编制了裂隙岩体双重介质流固耦合的2-D有限元程序,给出的验证算例表明,该程序是合理和实用的。同时将该程序用于隧道开挖的模拟计算,探讨渗流效应对开挖隧道围岩变形与渗流场的影响。计算结果表明,在隧道设计中不考虑渗流的影响是偏于不安全的。  相似文献   

15.
Rock slopes require geo-engineering evaluation to assess the instability of critical slopes leading to landslides particularly in Himalayan terrain where rocks are highly jointed, fractured and weathering prone. Interplay of discontinuities in the rocks coupled with other parameters is one of the prime causes of failure of slopes. Engineering rock mass classification, such as, rock mass rating (RMR) and slope mass rating (SMR) along with geological strength index (GSI) have widely been used for stability assessment of rock slopes above tunnel portals, and these classifications are employed here for assessment of stability of slopes of critical nature along Rampur-Powari highway in Himachal Pradesh. In the present study, out of 154 numbers of slopes, a total of 29 have been selected for assessment of their criticality by employing RMR, SMR and GSI.  相似文献   

16.
Rock mass characterization of Utari dam in Lalitpur district of Uttar Pradesh was done to identify different stability classes of rock mass. For better stability of Utari dam, foundation conditions were carefully studied by detailed field investigations of the site supplemented by laboratory tests. During feasibility and preliminary stages, rock mass characterization of slopes was conducted to identify the vulnerable zones of failure. Rock mass characterization was done by compilation of information obtained from intact rock as well as from rock mass to determine its grade and long term slope stability of the site. On the basis of Rock Mass Rating (RMR) and Geological Strength Index (GSI) slope stability is identified which lies under good quality rock mass. Kinematic analysis was conducted to find out the probability for different types of structurally controlled slope failure. Microscopic analyses were conducted to identify the degree of chemical alteration of feldspar. Clay formation by sericitization along joint planes is harmful for the stability of dam structure. Remedial measures must be taken to reduce the extent of chemical alteration. Granitoids at dam site forms a compact and stable foundation consisting of four sets of joints in which two sets were prominent which are dipping on the upstream side of the dam which reveals good condition on the dam site as leakage from reservoir will be minimum and least up-thrust on the dam structure.  相似文献   

17.
This research work deals with the problem of karst sinkhole collapse occurring in the last few years in Cheria area (NE Algeria). This newly revealed phenomenon is of a major constrain in land use planning and urbanization, it has become necessary to locate and assess the stability of these underground features before any planning operation. Several exploration methods for the localization of underground cavities have been considered. Geological survey, discontinuity analysis, resistivity survey [ground penetrating radar has not been used as most of the Mio-Plio-Quaternary filling deposit covering Eocene limestone contains clay layers which limits the applicability of the method (Roth et al. in Eng Geol 65:225–232, 2002)] and borehole drilling were undertaken in order to locate underground cavities and assess their depth, geometry, dimensions, etc. Laboratory testing and field work were also undertaken in order to determine both intact rock and rock mass properties. All the rock mechanics testing and measurement were undertaken according to the ISRM recommendations. It has been found that under imposed loading, the stability of the karst cavities depends on the geo-mechanical parameters (RMR, Rock Mass Rating; GSI, Geological Strength Index; E, Young modulus) of the host rock as well as the depth and dimensions of the gallery. It increases with RMR, GSI, E and depth and decreases as the cavity becomes wider. Furthermore, the calculation results show that a ratio (roof thickness to gallery width) of 0.3 and more indicate, a stable conditions. The results obtained in this work allow identifying and assessing the stability of underground karst cavities. The methodology followed in this paper can be taken as a road map in the establishment of a hazard map related to the studied phenomenon. This map will be a useful tool for the future urban extension planning in Cheria area.  相似文献   

18.
大型地下洞室岩体质量受诸多因素影响,围岩分类相对复杂,综合运用几种围岩分类方法有利于准确确定围岩的综合类别。在试验资料和长期现场地质工作的基础上,利用RMR、Q、HC、BQ及RMi分类方法,对大岗山水电站代表性洞室主厂房围岩进行分类,并通过对分类结果的回归分析,得出Q值与RMR值、HC值,RMi值与HC值、RMi值与RMR值呈指数关系,相关系数依次为0.91、0.82、0.87、0.94; Q值与RMi值呈乘幂关系,RMR值与HC值呈线性关系,相关系数分别为0.90、0.85;[BQ]值与HC值、RMR值呈线性关系,而与Q值、RMi值分别呈指数、对数关系,相关系数依次为0.49、0.38、0.38、0.40。研究结果表明,RMR、Q、HC及RMi分类方法相关性好,可互相补充、验证,有效应用于工程实践中; BQ分类与另4种分类相关性较差,在该水电站及类似工程中适用性相对较小。  相似文献   

19.
Twin tunnels can be used for many applications. Interaction between two tunnels is an important problem in tunnel engineering that should be studied specially. Numerical investigations are well adapted to field data and numerical methods can be used in design of rock pillar of twin circular tunnels. So far, no relationship has been provided to estimate the minimum stable rock pillar width. In this paper, the interaction between twin circular tunnels has been studied using 2D finite element analysis. To do this, a great number of twin tunnels were modeled in Phase2 software with different conditions of rock mass (RMR value) and depth of tunnel. Models were analyzed and minimum stable rock pillar width was determined. This process was repeated for three different ratios of K (ratio of horizontal stress to vertical stress, 0.5, 1, and 1.5). Finally, according to the linear and nonlinear regression methods, the best merit function was fitted to result of numerical analysis. Then, new approximate formula was proposed to estimate the minimum rock pillar width according to RMR value and depth of twin circular tunnels with different K values. The formulae are very accurate (coefficient of correlation equals to minimum 0.96) that can be used for estimating the minimum rock pillar width of twin circular tunnels.  相似文献   

20.
The basic quality (BQ) system is regarded as the national rock mass classification system that can be appropriate for use in most types of rock engineering in China. Two underlying parameters that the uniaxial compressive strength (UCS) and the rock intactness index (KV) are taken into account to access the basic BQ value. However, The KV was usually measured by an indirect acoustic wave approach which often cannot reflected the actual conditions. In this study, a direct measured parameter KGSI is recommended to obtain by means of the GSI system to replace the original KV, and a new method [BQ]GSI expressed by the new parameter KGSI is proposed. In particular, a graphic method is also presented to determine rapidly and rationally the rock mass classification by the X, Y coordinates of the UCS and the KGSI. In order to further compare the evaluation results and application effects between the [BQ]GSI and the international rock mass classification systems, a comprehensive solution is carried out. First, the evaluation factors of rock mass qualities from all these system are classified according to three groups: the rock mass inherent parameters, external parameters, and construction parameters. Second, the correlations among these evaluation factors in the new [BQ]GSI system and the common international systems (i.e. RMR, Q, and RMi) were compared. And the formulas or charts among the three groups are presented. Finally, five hydropower underground excavations are chosen to analysis the comparison results of the [BQ]GSI system and the international common RMR, Q, or RMi systems. The applicability scope of these international RMR, Q, or RMi systems is also discussed in the context of China’s rock characteristics and geological stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号