首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data from the Fermi Gamma-ray Burst Monitor satellite observatory suggested that the recently discovered gravitational wave source, a pair of two coalescing black holes, was related to a gamma-ray burst. The observed high-energy electromagnetic radiation (above 50 keV) originated from a weak transient source and lasted for about 1 s. Its localization is consistent with the direction to GW150914. We speculate about the possible scenario for the formation of a gamma-ray burst accompanied by the gravitational-wave signal. Our model invokes a tight binary system consisting of a massive star and a black hole which leads to the triggering of a collapse of the star’s nucleus, the formation of a second black hole, and finally to the binary black hole merger. For the most-likely configuration of the binary spin vectors with respect to the orbital angular momentum in the GW150914 event, the recoil speed (kick velocity) acquired by the final black hole through gravitational wave emission is of the order of a few hundred km/s and this might be sufficient to get it closer to the envelope of surrounding material and capture a small fraction of matter from the remnant of the host star. The gamma-ray burst is produced by the accretion of this remnant matter onto the final black hole. The moderate spin of the final black hole suggests that the gamma-ray burst jet is powered by weak neutrino emission rather than the Blandford–Znajek mechanism, and hence explains the low power available for the observed GRB signal.  相似文献   

2.
The possibility of identifying some of Galactic gamma-ray sources as clusters of primordial black holes is discussed. The known scenarios of supermassive black hole formation indicate the multiple formation of lower-mass black holes. Our analysis demonstrates that due to Hawking evaporation the cluster of black holes with masses about 1015 g could be observed as a gamma-ray source. The total mass of typical cluster is ∼10 M. Detailed calculations have been performed on the basis of specific model of primordial black hole formation.  相似文献   

3.
In the present paper we combine an N-body code that simulates the dynamics of young dense stellar systems with a massive star evolution handler that accounts in a realistic way for the effects of stellar wind mass loss. We discuss two topics.
  1. The formation and the evolution of very massive stars (with masses >120 M) is followed in detail. These very massive stars are formed in the cluster core as a consequence of the successive (physical) collisions of the 10–20 most massive stars in the cluster (this process is known as ‘runaway merging’). The further evolution is governed by stellar wind mass loss during core hydrogen and core helium burning (the WR phase of very massive stars). Our simulations reveal that, as a consequence of runaway merging in clusters with solar and supersolar values, massive black holes can be formed, but with a maximum mass ≈70 M. In low-metallicity clusters, however, it cannot be excluded that the runaway-merging process is responsible for pair-instability supernovae or for the formation of intermediate-mass black holes with a mass of several 100 M.
  2. Massive runaways can be formed via the supernova explosion of one of the components in a binary system (the Blaauw scenario), or via dynamical interaction of a single star and a binary or between two binaries in a star cluster. We explore the possibility that the most massive runaways (e.g. ζ Pup, λ Cep, BD+43°3654) are the product of the collision and merger of two or three massive stars.
  相似文献   

4.
In this paper we calculate the number of close binaries formed during the evolution process of a globular cluster core. The globular cluster core is assumed to contain a massive black hole at its center. We show that the central black hole can drive binaries formation in the core and the rate of binaries formation depends on the mass of the black hole at its center. When the massM of the black hole is between 102 M and 3×103 M , there will be a few binaries formed. When the mass of the black hole is 4×103 M M6×103 M , the number of binary star formation will suddenly increase with a jump to the maximum value 58. When the mass of the black hole is 7×103 M M9×103 M , the number of binary star will immediately decrease. Whether cluster X-ray is produced mainly by the central black hole or by binaries in the core depends on the mass of the central black hole. Therefore, two cases arise: namely, black hole accretion domination and binaries radiation domination. We do think that we cannot exclude the possibility of the existence of a central black hole even when binary radiation characteristics have been observed in globular cluster X-ray sources.  相似文献   

5.
On the formation and evolution of black hole binaries   总被引:1,自引:0,他引:1  
We present the results of a systematic study of the formation and evolution of binaries containing black holes and normal-star companions with a wide range of masses. We first reexamine the standard formation scenario for close black hole binaries, where the progenitor system, a binary with at least one massive component, experienced a common-envelope phase and where the spiral-in of the companion in the envelope of the massive star caused the ejection of the envelope. We estimate the formation rates for different companion masses and different assumptions about the common-envelope structure and other model parameters. We find that black hole binaries with intermediate- and high-mass secondaries can form for a wide range of assumptions, while black hole binaries with low-mass secondaries can only form with apparently unrealistic assumptions (in agreement with previous studies).
We then present detailed binary evolution sequences for black hole binaries with secondaries of 2 to 17 M and demonstrate that in these systems the black hole can accrete appreciably even if accretion is Eddington-limited (up to 7 M for an initial black hole mass of 10 M) and that the black holes can be spun up significantly in the process. We discuss the implications of these calculations for well-studied black hole binaries (in particular GRS 1915+105) and ultraluminous X-ray sources of which GRS 1915+105 appears to represent a typical Galactic counterpart. We also present a detailed evolutionary model for Cygnus X-1, a massive black hole binary, which suggests that at present the system is most likely in a wind mass-transfer phase following an earlier Roche-lobe overflow phase. Finally, we discuss how some of the assumptions in the standard model could be relaxed to allow the formation of low-mass, short-period black hole binaries, which appear to be very abundant in nature.  相似文献   

6.
Globular cluster systems evolve, in galaxies, due to internal and external dynamics and tidal phenomena. One of the causes of evolution, dynamical friction, is responsible for the orbital decay of massive clusters into the innermost galactic regions. It is found that these clusters are effective source of matter to feed a central galactic black hole such to make it grow and shine as an AGN.  相似文献   

7.
We compute the effect of an orbiting gas disc in promoting the coalescence of a central supermassive black hole binary. Unlike earlier studies, we consider a finite mass of gas with explicit time dependence: we do not assume that the gas necessarily adopts a steady state or a spatially constant accretion rate, i.e. that the merging black hole was somehow inserted into a pre-existing accretion disc. We consider the tidal torque of the binary on the disc, and the binary's gravitational radiation. We study the effects of star formation in the gas disc in a simple energy feedback framework.
The disc spectrum differs in detail from that found before. In particular, tidal torques from the secondary black hole heat the edges of the gap, creating bright rims around the secondary. These rims do not in practice have uniform brightness either in azimuth or time, but can on average account for as much as 50 per cent of the integrated light from the disc. This may lead to detectable high-photon-energy variability on the relatively long orbital time-scale of the secondary black hole, and thus offer a prospective signature of a coalescing black hole binary.
We also find that the disc can drive the binary to merger on a reasonable time-scale only if its mass is at least comparable with that of the secondary black hole, and if the initial binary separation is relatively small, i.e.   a 0≲ 0.05  pc. Star formation complicates the merger further by removing mass from the disc. In the feedback model we consider, this sets an effective limit to the disc mass. As a result, binary merging is unlikely unless the black hole mass ratio is ≲0.001. Gas discs thus appear not to be an effective solution to the 'last parsec' problem for a significant class of mergers.  相似文献   

8.
双黑洞组成的近密双星系统并合是激光干涉仪引力波天文台等地基引力波探测器的主要探测对象。随着探测器灵敏度的提高,大量该类信号的探测将成为进一步研究黑洞物理的有效工具。但是目前对双黑洞系统的起源机制和内禀参数分布等物理问题的研究还不够深入,例如由引力波探测得到的黑洞质量分布与X射线双星观测的结果存在较大差异,还未有很好的理论模型可解释该结果。目前普遍认为双黑洞系统主要有两种起源:大质量双星演化机制和动力学起源机制。基于这两类起源的双黑洞系统在质量、自旋分布等方面存在差异。因此可在贝叶斯理论框架下,利用引力波信号携带的波源质量和自旋等信息,推断波源起源,计算不同起源的双黑洞系统所占比例,以及检验质量自旋等参数分布的差异。  相似文献   

9.
Recent observations indicate that many if not all galaxies host massive central black holes. In this paper we explore the influence of black holes on the lensing properties. We model the lens as an isothermal ellipsoid with a finite core radius plus a central black hole. We show that the presence of the black hole substantially changes the critical curves and caustics. If the black hole mass is above a critical value, then it will completely suppress the central images for all source positions. Realistic central black holes are likely to have masses below this critical value. Even in such subcritical cases, the black hole can suppress the central image when the source is inside a zone of influence, which depends on the core radius and black hole mass. In the subcritical cases, an additional image may be created by the black hole in some regions, which for some radio lenses may be detectable with high-resolution and large dynamic range VLBI maps. The presence of central black holes should also be taken into account when one constrains the core radius from the lack of central images in gravitational lenses.  相似文献   

10.
O. Zanotti 《New Astronomy》2012,17(3):331-335
We show the results of two dimensional general relativistic inviscid and isothermal hydrodynamical simulations comparing the behavior of co-rotating (with respect to the black hole rotation) and counter-rotating circumbinary quasi-Keplerian discs in the post merger phase of a supermassive binary black hole system. While confirming the spiral shock generation within the disc due to the combined effects of mass loss and recoil velocity of the black hole, we find that the maximum luminosity of counter-rotating discs is a factor ∼(2-12) higher than in the co-rotating case, depending on the spin of the black hole. On the other hand, the luminosity peak happens ∼10 days later with respect to the co-rotating case. Although the global dynamics of counter-rotating discs in the post merger phase of a merging event is very similar to that for co-rotating discs, an important difference has been found. In fact, increasing the spin of the central black hole produces more luminous co-rotating discs while less luminous counter-rotating ones.  相似文献   

11.
Variability of active galactic nuclei is not well understood. One possible explanation is existence of supermassive binary black holes (SMBBH) in their centres. It is expected that major mergers are common in the Universe. It is expected that each supermassive black hole of every galaxy eventually finish as a SMBBH system in the core of newly formed galaxy. Here we model the emission line profiles of active galactic nuclei (AGN) assuming that the flux and emission line shape variations are induced by supermassive binary black hole systems (SMBBH). We assume that the accreting gas inside the circumbinary (CB) disk is photo ionized by mini accretion disk emission around each SMBBH. We calculate variations of emission line flux, shifts and shapes for different parameters of SMBBH orbits. We consider cases with different masses and inclinations for circular orbits and measure the effect to the shape of emission line profiles and flux variability.  相似文献   

12.
Gravitational wave signal characteristics from a binary black hole system in which the companion moves through the accretion disc of the primary are studied. We chose the primary to be a super-massive  ( M = 108 M)  Kerr black hole and the companion to be a massive black hole  ( M = 105 M)  to clearly demonstrate the effects. We show that the drag exerted on the companion by the disc is sufficient to reduce the coalescence time of the binary. The drag is primarily due to the fact that the accretion disc on a black hole deviates from a Keplerian disc and becomes sub-Keplerian due to inner boundary condition on the black hole horizon. We consider two types of accretion rates on to the companion. The companion is deeply immersed inside the disc and it can accrete at the Bondi rate which depends on the instantaneous density of the disc. However, an accretion disc can also form around the smaller black hole and it can accrete at its Eddington rate. Thus, this case is also studied and the results are compared. We find that the effect of the disc will be significant in reducing the coalescence time and one needs to incorporate this while interpreting gravitational wave signals emitted from such a binary system.  相似文献   

13.
The further evolution of a massive X-ray binary consisting of a compact object and an OB supergiant is outlined. The supergiant exceeds its critical Roche lobe and a second stage of mass transfer starts. The remnant of the mass losing star — a pure helium star — develops a collapsing iron core and finally undergoes a supernova explosion. If the compact companion is a black hole the system remains bound; if the compact companion is a neutron star the system is disrupted unless an extra kick allowing an asymmetric explosion is given. Computations were performed for the massive binary 22.5M +2M . The possible final evolutionary products are: (1) a black hole and a compact object, in a binary system, (2) two run-away pulsars, (3) a binary pulsar. As final parameters for the described system the eccentricity and period for the recently discovered binary pulsar 1913+16 may be found. An orbital inclination ofi=40° may be derived. The probability for the generation of binary pulsars is very low; in most cases the system is disrupted during the supernova explosion.  相似文献   

14.
The dynamics of galactic systems with central binary black holes is studied. The model is a modification from the restricted three body problem, in which a galactic potential is added as an external potential. Considering the case with an equal mass binary black holes, the conditions of existence of equilibrium points, including Lagrange Points and additional new equilibrium points, i.e. Jiang-Yeh Points, are investigated. A critical mass is discovered to be fundamentally important. That is, Jiang-Yeh Points exist if and only if the galactic mass is larger than the critical mass. The stability analysis is performed for all equilibrium points. The results that Jiang-Yeh Points are unstable could lead to the core formation in the centers of galaxies.  相似文献   

15.
A black hole transiting a companion star in a binary system will produce a time-varying intensity profile as observed at the Earth because of the Einstein photometric effect (gravitational lens phenomenon). If the transited star is an early-type supergiant with electron scattering as its dominant atmospheric opacity source, then variable linear polarization will also result from the destruction of the circular symmetry of the observed stellar disk. The simultaneous variation of the three Stokes parametersI, Q, andU may be thought of as the signature of a black hole transit. Monte-Carlo calculations show that the effect has the properties expected from qualitative considerations. The amplitude of the photometric and polarimetric light curves in a typical X-ray binary is too small to be observed with present instrumentation. A black hole transit might be detectable in a binary having a large separation of the components. The signature is also masked in close binaries by the much larger variability caused by the changing aspect of the tidally distorted OB star. The polarization induced by tidal distortion always produces a derived inclination of 90° when the standard method of analyzing the data is used. This effect may contribute to the unrealistically large values of inclination derived from polarimetric observations for the Cyg XR-1/HDE226868 system.  相似文献   

16.
The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediatemass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly,in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently,the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.  相似文献   

17.
We explore the relation between the linear length of radio core and the central black hole mass for a sample of radio-loud active galactic nuclei (AGNs). An empirical relation between the size of the broad line region (BLR) and optical luminosity is used to estimate the size of the BLR. The black hole mass is derived from H β linewidth and the radius of the BLR on the assumption that the clouds in BLRs are orbiting with Keplerian velocities. A significant intrinsic correlation is found between the linear length of the core and the black hole mass, which implies that the jet formation is closely related with the central black hole. We also find a strong correlation between the black hole mass and the core luminosity.  相似文献   

18.
In this paper we consider effects of the general relativity and an accreting black hole in a globular cluster by studying the evolution of a globular cluster core as a whole, i.e., without the partition of the core into the so-called cusp and isothermal core regions. The globular cluster core is assumed to contain a massive black hole at its center. We show that the final fate of the evolution of a globular cluster core depends on the mass of the black hole at its center. When the massM of the black hole is greater than 3×103 M , there will be a contraction of the core. On the other hand, if the mass of the black hole is smaller (102 M M3×103 M ) in the center, the core will expand until complete dissolution.  相似文献   

19.
The problem of few black holes becomes important in multiple mergers of galaxies. If supermassive black holes in centres of galaxies are common, then interaction of three or four supermassive black holes should also be common. The merger of two galaxies with one black hole each produces a semi-stable black hole binary system. Subsequent mergers of galaxies with their own central black holes produces dynamical few-body evolution in which mergers of black holes occur. According to our numerical simulations this evolution typically ends when only one or two black holes remain and, in the latter case, they are ejected in opposite directions from the center of the galaxy. Even when we pick the initial black hole masses at random from a wide distribution, the two black hole ejections happen rather symmetrically. Sometimes the final masses differ considerably in which case only the lighter black hole is ejected. This is caused by the potential barrier of the galaxy itself which prevents the heavy slowly moving black hole flying out of the galaxy. We discuss OJ287 as a possible example of a multiple black hole system.  相似文献   

20.
We study the inspiral of double black holes, with masses in the Laser Interferometer Space Antenna ( LISA ) window of detectability, orbiting inside a massive circumnuclear, rotationally supported gaseous disc. Using high-resolution smoothed particle hydrodynamics simulations, we follow the black hole dynamics in the early phase when gas-dynamical friction acts on the black holes individually, and continue our simulation until they form a close binary. We find that in the early sinking the black holes lose memory of their initial orbital eccentricity if they corotate with the gaseous disc. As a consequence, the massive black holes bind forming a binary with a low eccentricity, consistent with zero within our numerical resolution limit. The cause of circularization resides in the rotation present in the gaseous background where dynamical friction operates. Circularization may hinder gravitational waves from taking over and leading the binary to coalescence. In the case of counter-rotating orbits, the initial eccentricity (if present) does not decrease, and the black holes may bind forming an eccentric binary. When dynamical friction has subsided, for equal mass black holes and regardless their initial eccentricity, angular momentum loss, driven by the gravitational torque exerted on the binary by surrounding gas, is nevertheless observable down to the smallest scale probed (≃1 pc). In the case of unequal masses, dynamical friction remains efficient down to our resolution limit, and there is no sign of formation of any ellipsoidal gas distribution that may further harden the binary. During inspiral, gravitational capture of gas by the black holes occurs mainly along circular orbits; eccentric orbits imply high relative velocities and weak gravitational focusing. Thus, the active galactic nucleus activity may be excited during the black hole pairing process and double active nuclei may form when circularization is completed, on distance scales of tens of parsecs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号