首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we explore the possibility of accreting primordial black holes as the source of heating for the collapsing gas in the context of the direct collapse black hole scenario for the formation of super-massive black holes (SMBHs) at high redshifts, \(z\sim \) 6–7. One of the essential requirements for the direct collapse model to work is to maintain the temperature of the in-falling gas at \(\approx \)10\(^4\) K. We show that even under the existing abundance limits, the primordial black holes of masses \(\gtrsim \)10\(^{-2}M_\odot \), can heat the collapsing gas to an extent that the \(\mathrm{H}_2\) formation is inhibited. The collapsing gas can maintain its temperature at \(10^4\) K till the gas reaches a critical density \(n_{{c}} \,{\approx }\, 10^3~\hbox {cm}^{-3}\), at which the roto-vibrational states of \(\mathrm{H}_2\) approaches local thermodynamic equilibrium and \(\mathrm{H}_2\) cooling becomes inefficient. In the absence of \(\mathrm{H}_2\) cooling, the temperature of the collapsing gas stays at \(\approx \)10\(^4\) K even as it collapses further. We discuss scenarios of subsequent angular momentum removal and the route to find collapse through either a supermassive star or a supermassive disk.  相似文献   

2.
Recently we (Kahler and Ling, Solar Phys.292, 59, 2017: KL) have shown that time–intensity profiles [\(I(t)\)] of 14 large solar energetic particle (SEP) events can be fitted with a simple two-parameter fit, the modified Weibull function, which is characterized by shape and scaling parameters [\(\alpha\) and \(\beta\)]. We now look for a simple correlation between an event peak energy intensity [\(I_{\mathrm{p}}\)] and the time integral of \(I(t)\) over the event duration: the fluence [\(F\)]. We first ask how the ratio of \(F/I_{\mathrm{p}}\) varies for the fits of the 14 KL events and then examine that ratio for three separate published statistical studies of SEP events in which both \(F\) and \(I_{\mathrm{p}}\) were measured for comparisons of those parameters with various solar-flare and coronal mass ejection (CME) parameters. The three studies included SEP energies from a 4?–?13 MeV band to \(E > 100~\mbox{MeV}\). Within each group of SEP events, we find a very robust correlation (\(\mathrm{CC} > 0.90\)) in log–log plots of \(F\)versus\(I_{\mathrm{p}}\) over four decades of \(I_{\mathrm{p}}\). The ratio increases from western to eastern longitudes. From the value of \(I_{\mathrm{p}}\) for a given event, \(F\) can be estimated to within a standard deviation of a factor of \({\leq}\,2\). Log–log plots of two studies are consistent with slopes of unity, but the third study shows plot slopes of \({<}\,1\) and decreasing with increasing energy for their four energy ranges from \(E > 10~\mbox{MeV}\) to \({>}\,100~\mbox{MeV}\). This difference is not explained.  相似文献   

3.
We estimate the electron density, \(n_{\mathrm{e}}\), and its spatial variation in quiescent prominences from the observed emission ratio of the resonance lines Na?i?5890 Å (D2) and Sr?ii?4078 Å. For a bright prominence (\(\tau_{\alpha}\approx25\)) we obtain a mean \(n_{\mathrm{e}}\approx2\times10^{10}~\mbox{cm}^{-3}\); for a faint one (\(\tau _{\alpha }\approx4\)) \(n_{\mathrm{e}}\approx4\times10^{10}~\mbox{cm}^{-3}\) on two consecutive days with moderate internal fluctuation and no systematic variation with height above the solar limb. The thermal and non-thermal contributions to the line broadening, \(T_{\mathrm{kin}}\) and \(V_{\mathrm{nth}}\), required to deduce \(n_{\mathrm{e}}\) from the emission ratio Na?i/Sr?ii cannot be unambiguously determined from observed widths of lines from atoms of different mass. The reduced widths, \(\Delta\lambda_{\mathrm{D}}/\lambda_{0}\), of Sr?ii?4078 Å show an excess over those from Na?D2 and \(\mbox{H}\delta\,4101\) Å, assuming the same \(T_{\mathrm{kin}}\) and \(V_{\mathrm{nth}}\). We attribute this excess broadening to higher non-thermal broadening induced by interaction of ions with the prominence magnetic field. This is suggested by the finding of higher macro-shifts of Sr?ii?4078 Å as compared to those from Na?D2.  相似文献   

4.
By systematically searching the region of far infrared loops, we found a number of huge cavity-like dust structures at \(60\,\mu \hbox {m}\) and \(100\,\mu \hbox {m}\) IRIS maps. By checking these with AKARI maps (\(90\,\mu \hbox {m}\) and \(140\,\mu \hbox {m}\)), two new cavity-like structures (sizes \(\sim \) \( 2.7\,\hbox {pc} \times 0.8\,\hbox {pc}\) and \(\sim \) \( 1.8\,\hbox {pc} \times 1\,\hbox {pc}\)) located at R.A. (\(\hbox {J}2000)=14^{h}41^{m}23^{s}\) and Dec. \((\hbox {J}2000)=-64^{\circ }04^{\prime }17^{{\prime }{\prime }}\) and R.A. \((\hbox {J}2000)=05^{h}05^{m}35^{s}\) and Dec. \((\hbox {J}2000)=-\,69^{\circ }35^{\prime } 25^{{\prime }{\prime }}\) were selected for the study. The difference in the average dust color temperatures calculated using IRIS and AKARI maps of the cavity candidates were found to be \(3.2\pm 0.9\,\hbox {K}\) and \(4.1\pm 1.2\,\hbox {K}\), respectively. Interestingly, the longer wavelength AKARI map gives larger values of dust color temperature than that of the shorter wavelength IRIS maps. Possible explanation of the results will be presented.  相似文献   

5.
In this paper we have studied the anisotropic Kantowski-Sachs, locally rotationally symmetric (LRS) Bianchi type-I and LRS Bianchi type-III geometries filled with dark energy and one dimensional cosmic string in the Saez-Ballester theory of gravitation. To get physically valid solution we take hybrid expansion law of the average scale factor which is a product of power and exponential type of functions that results in time dependent deceleration parameter (\(q\)). The equation of state parameter of dark energy (\(\omega _{\mathit{de}}\)) has been discussed and we have observed that for the three models it crosses the phantom divide line (\(\omega _{\mathit{de}} = -1\)) and shows quintom like behavior. The density of dark energy (\(\rho _{\mathit{de}}\)) is an increasing function of redshift and remains positive throughout the evolution of the universe for the three models. Moreover in Kantowski-Sachs and LRS Bianchi type-I geometries the dark energy density dominates the string tension density (\(\lambda \)) and proper density (\(\rho \)) throughout the evolution of the universe. The physical and geometrical aspects of the statefinder parameters (\(r,s\)), squared speed of sound (\(v_{s}^{2} \)) and \(\omega _{\mathit{de}}\)\(\omega ^{\prime }_{\mathit{de}}\) plane are also discussed.  相似文献   

6.
In present paper higher harmonic electrostatic ion-cyclotron (EIC) parallel flow velocity shear instability in presence of perpendicular inhomogeneous DC electric field with the ambient magnetic field has been studied, in different regions of the magnetosphere of Saturn. Dimensionless growth rate variation of EIC waves has been observed with respect to \(k_{ \bot } \rho _{i}\) for various plasma parameters. Effect of velocity shear scale length (\(A_{i}\)), temperature anisotropy (\(T_{ \bot } /T_{\|}\)), magnetic field (\(B\)), electric field (\(E\)), inhomogeneity (\(P/a\)), angle of propagation (\(\theta \)), ratio of electron to ion temperature (\(T_{e}/T_{i}\)) and density gradient (\(\varepsilon _{n}\rho _{i}\)) on the growth of EIC waves in the inner magnetosphere of Saturn has been studied and analyzed. The mathematical formulation for dispersion relation and growth rate has been done by using the method of characteristic solution and kinetic approach. This theoretical analysis has been done taking the data from the Cassini in the inner magnetosphere of Saturn in the extended region where ion cyclotron waves have been observed. The change in the growth of these waves due to the presence of Enceladus has been analyzed.  相似文献   

7.
We examine the properties of the viscous dissipative accretion flow around rotating black holes in the presence of mass loss. Considering the thin disc approximation, we self-consistently calculate the inflow-outflow solutions and observe that the mass outflow rates decrease with the increase in viscosity parameter (\(\alpha \)). Further, we carry out the model calculation of quasi-periodic oscillation frequency (\(\nu _{\mathrm{QPO}}\)) that is frequently observed in black hole sources and observe that \(\nu ^\mathrm{max}_{\mathrm{QPO}}\) increases with the increase of black hole spin (\(a_k\)). Then, we employ our model in order to explain the High Frequency Quasi-Periodic Oscillations (HFQPOs) observed in black hole source GRO J1655-40. While doing this, we attempt to constrain the range of \(a_k\) based on observed HFQPOs (\(\sim \)300 Hz and \(\sim \)450 Hz) for the black hole source GRO J1655-40.  相似文献   

8.
This addendum uses an alternate fit for the electron density distribution \(N(r)\) (see Figure 1) and estimates the coronal magnetic field using the new model. We find that the estimates of the magnetic field are in close agreement using both the models.
We have fit the \(N(r)\) distribution obtained from STEREO-A/COR1 and SOHO/LASCO-C2 using a fifth-order polynomial (see Figure 1). The expression can be written as
$$\begin{aligned} N_{\text{cor}}(r) &= 1.43 \times 10^{9} r^{-5} - 1.91 \times 10^{9} r^{-4} + 1.07 \times 10^{9} r^{-3} - 2.87 \times 10^{8} r^{-2} \\ &\quad {} + 3.76 \times 10^{7} r^{-1} - 1.91 \times 10^{6} , \end{aligned}$$
(1)
where \(N_{\text{cor}}(r)\) is in units of cm?3 and \(r\) is in units of \(\mathrm{R}_{\odot}\). The background coronal electron density is enhanced by a factor of 5.5 at 2.63 \(\mathrm{R}_{\odot}\) during the coronal mass ejection (CME). The estimated coronal magnetic field strength (\(B\)) using radio data indicates that \(B(r) \approx(0.51\text{\,--\,}0.48) \pm 0.02\ \mathrm{G}\) in the range \(r \approx2.65\text{\, --\,}2.82\ \mathrm{R}_{\odot}\). The field strengths for STEREO-A/COR1 and SOHO/LASCO-C2 are ≈?0.32 G at \(r \approx 3.11\ \mathrm{R}_{\odot}\) and ≈?0.12 G at \(r \approx 4.40\ \mathrm{R}_{\odot}\), respectively.
  相似文献   

9.
This study’s objective was to exploit infrared VVV (VISTA Variables in the Via Lactea) photometry for high latitude RRab stars to establish an accurate Galactic Centre distance. RRab candidates were discovered and reaffirmed (\(n=4194\)) by matching \(K_{s}\) photometry with templates via \(\chi ^{2}\) minimization, and contaminants were reduced by ensuring targets adhered to a strict period-amplitude (\(\Delta K_{s}\)) trend and passed the Elorietta et al. classifier. The distance to the Galactic Centre was determined from a high latitude Bulge subsample (\(|b|>4^{\circ}\), \(R_{\mathit{GC}}=8.30 \pm 0.36\) kpc, random uncertainty is relatively negligible), and importantly, the comparatively low color-excess and uncrowded location mitigated uncertainties tied to the extinction law, the magnitude-limited nature of the analysis, and photometric contamination. Circumventing those problems resulted in a key uncertainty being the \(M_{K_{s}}\) relation, which was derived using LMC RRab stars (\(M_{K_{s}}=-(2.66\pm 0.06) \log {P}-(1.03\pm 0.06)\), \((J-K_{s})_{0}=(0.31\pm 0.04) \log {P} + (0.35\pm 0.02)\), assuming \(\mu _{0,\mathit{LMC}}=18.43\)). The Galactic Centre distance was not corrected for the cone-effect. Lastly, a new distance indicator emerged as brighter overdensities in the period-magnitude-amplitude diagrams analyzed, which arise from blended RRab and red clump stars. Blending may thrust faint extragalactic variables into the range of detectability.  相似文献   

10.
We investigate the parameters of global solar p-mode oscillations, namely damping width \(\Gamma\), amplitude \(A\), mean squared velocity \(\langle v^{2}\rangle\), energy \(E\), and energy supply rate \(\mathrm{d}E/\mathrm{d}t\), derived from two solar cycles’ worth (1996?–?2018) of Global Oscillation Network Group (GONG) time series for harmonic degrees \(l=0\,\mbox{--}\,150\). We correct for the effect of fill factor, apparent solar radius, and spurious jumps in the mode amplitudes. We find that the amplitude of the activity-related changes of \(\Gamma\) and \(A\) depends on both frequency and harmonic degree of the modes, with the largest variations of \(\Gamma\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le3300~\upmu\mbox{Hz}\) and \(31\le l \le60\) with a minimum-to-maximum variation of \(26.6\pm0.3\%\) and of \(A\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le 3300~\upmu\mbox{Hz}\) and \(61\le l \le100\) with a minimum-to-maximum variation of \(27.4\pm0.4\%\). The level of correlation between the solar radio flux \(F_{10.7}\) and mode parameters also depends on mode frequency and harmonic degree. As a function of mode frequency, the mode amplitudes are found to follow an asymmetric Voigt profile with \(\nu_{\text{max}}=3073.59\pm0.18~\upmu\mbox{Hz}\). From the mode parameters, we calculate physical mode quantities and average them over specific mode frequency ranges. In this way, we find that the mean squared velocities \(\langle v^{2}\rangle\) and energies \(E\) of p modes are anticorrelated with the level of activity, varying by \(14.7\pm0.3\%\) and \(18.4\pm0.3\%\), respectively, and that the mode energy supply rates show no significant correlation with activity. With this study we expand previously published results on the temporal variation of solar p-mode parameters. Our results will be helpful to future studies of the excitation and damping of p modes, i.e., the interplay between convection, magnetic field, and resonant acoustic oscillations.  相似文献   

11.
Solar photospheric magnetic field plays a dominant role in the variability of total solar irradiance (TSI). The modulation of magnetic flux at six specific ranges on TSI is characterized for the first time. The daily flux values of magnetic field at four ranges are extracted from MDI/SOHO, together with daily flux of active regions (MF\(_{\text{ar}}\)) and quiet regions (MF\(_{\text{qr}}\)); the first four ranges (MF\(_{1\mbox{--}4}\)) are: 1.5–2.9, 2.9–32.0, 32.0–42.7, and 42.7–380.1 (\(\times 10^{18}\) Mx per element), respectively. Cross-correlograms show that MF4, MF\(_{\text{qr}}\), and MF\(_{ \text{ar}}\) are positively correlated with TSI, while MF2 is negatively correlated with TSI; the correlations between MF1, MF3 and TSI are insignificant. The bootstrapping tests confirm that the impact of MF4 on TSI is more significant than that of MF\(_{\text{ar}}\) and MF\(_{\text{qr}}\), and MF\(_{\text{ar}}\) leads TSI by one rotational period. By extracting the rotational variations in the MFs and TSI, the modulations of the former on the latter at the solar rotational timescale are clearly illustrated and compared during solar maximum and minimum times, respectively. Comparison of the relative amplitudes of the long-term variation show that TSI is in good agreement with the variation of MF4 and MF\(_{\text{ar}}\); besides, MF2 is in antiphase with TSI, and it lags the latter by about 1.5 years.  相似文献   

12.
In this work we consider the Kepler problem with linear drag, and prove the existence of a continuous vector-valued first integral, obtained taking the limit as \(t\rightarrow +\infty \) of the Runge–Lenz vector. The norm of this first integral can be interpreted as an asymptotic eccentricity \(e_{\infty }\) with \(0\le e_{\infty } \le 1\). The orbits satisfying \(e_{\infty } <1\) approach the singularity by an elliptic spiral and the corresponding solutions \(x(t)=r(t)e^{i\theta (t)}\) have a norm r(t) that goes to zero like a negative exponential and an argument \(\theta (t)\) that goes to infinity like a positive exponential. In particular, the difference between consecutive times of passage through the pericenter, say \(T_{n+1} -T_n\), goes to zero as \(\frac{1}{n}\).  相似文献   

13.
We aim to probe the dynamic structure of the extended Solar neighborhood by calculating the radial metallicity gradients from orbit properties, which are obtained for axisymmetric and non-axisymmetric potential models, of red clump (RC) stars selected from the RAdial Velocity Experiment’s Fourth Data Release. Distances are obtained by assuming a single absolute magnitude value in near-infrared, i.e. \(M_{Ks}=-1.54\pm0.04\) mag, for each RC star. Stellar orbit parameters are calculated by using the potential functions: (i) for the MWPotential2014 potential, (ii) for the same potential with perturbation functions of the Galactic bar and transient spiral arms. The stellar age is calculated with a method based on Bayesian statistics. The radial metallicity gradients are evaluated based on the maximum vertical distance (\(z_{max}\)) from the Galactic plane and the planar eccentricity (\(e_{p}\)) of RC stars for both of the potential models. The largest radial metallicity gradient in the \(0< z_{max} \leq0.5\) kpc distance interval is \(-0.065\pm0.005~\mbox{dex}\,\mbox{kpc}^{-1}\) for a subsample with \(e_{p}\leq0.1\), while the lowest value is \(-0.014\pm0.006~\mbox{dex}\,\mbox{kpc}^{-1}\) for the subsample with \(e_{p}\leq0.5\). We find that at \(z_{max}>1\) kpc, the radial metallicity gradients have zero or positive values and they do not depend on \(e_{p}\) subsamples. There is a large radial metallicity gradient for thin disc, but no radial gradient found for thick disc. Moreover, the largest radial metallicity gradients are obtained where the outer Lindblad resonance region is effective. We claim that this apparent change in radial metallicity gradients in the thin disc is a result of orbital perturbation originating from the existing resonance regions.  相似文献   

14.
Jupiter’s satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites’ surfaces on the diurnal tidal cycle. Such variations are described by the Love numbers \(k_2\) and \(h_2\) for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags \( \phi _{k_2}\) and \( \phi _{h_2}\) of these complex numbers contain information about the rheological and dissipative states of the satellites. Starting from interior structure models and assuming a Maxwell rheology to compute the tidal deformation, we calculate the phase-lags in application to Ganymede and Europa. For both satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference \(\varDelta \phi = \phi _{k_2}- \phi _{h_2}\) can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small. In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities \({<}10^{14}\) Pa s and would indicate a highly dissipative state of the deep interior. In this case \(\varDelta \phi \) is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite. For Europa \(\varDelta \phi \) could reach values exceeding \(20^\circ \) and phase-lag measurements could help distinguish between (1) a hot dissipative silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA’s Jupiter Icy Moons Explorer (JUICE) and NASA’s Europa Multiple Flyby Mission, both targeted for the Jupiter system.  相似文献   

15.
In a two-component jet model, the emissions are the sum of the core and extended emissions: \(S^{\mathrm{ob}}=S_{\mathrm{core}}^{\mathrm{ob}}+S_{\mathrm{ext}}^{\mathrm{ob}}\), with the core emissions, \(S_{\mathrm{core}}^{\mathrm{ob}}= f S_{\mathrm{ext}}^{\mathrm{ob}}\delta ^{q}\) being a function of the Doppler factor \(\delta \), the extended emission \(S_{\mathrm{ext}}^{\mathrm{ob}}\), the jet type dependent factor q, and the ratio of the core to the extended emissions in the comoving frame, f. The f is an unobservable but important parameter. Following our previous work, we collect 65 blazars with available Doppler factor \(\delta \), superluminal velocity \(\beta _{\mathrm{app}}\), and core-dominance parameter, R, and calculated the ratio, f, and performed statistical analyses. We found that the ratio, f, in BL Lacs is on average larger than that in FSRQs. We suggest that the difference of the ratio f between FSRQs and BL Lacs is one of the possible reasons that cause the difference of other observed properties between them. We also find some significant correlations between \(\log f\) and other parameters, including intrinsic (de-beamed) peak frequency, \(\log \nu _{\mathrm{p}}^{\mathrm{in}}\), intrinsic polarization, \(\log P^{\mathrm{in}}\), and core-dominance parameter, \(\log R\), for the whole sample. In addition, we show that the ratio, f, can be estimated by R.  相似文献   

16.
The kinetic Alfven waves in the presence of homogeneous magnetic field plasma with multi-ions effect are investigated. The dispersion relation and normalised damping rate are derived for low-\(\beta\) plasma using kinetic theory. The effect of density variation of \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions is observed on frequency and damping rate of the wave. The variation of frequency (\(\omega\)) and normalised damping rate (\(\gamma / \varOmega_{H^{ +}} \)) of the wave are studied with respect to \(k_{ \bot} \rho_{j}\), where \(k_{ \bot} \) is the perpendicular wave number, \(\rho_{j}\) is the ion gyroradius and \(j \) denotes \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions. The variation with \(k_{ \bot} \rho_{j}\) is considered over wide range. The parameters appropriate to cusp region are used for the explanation of results. It is found that with hydrogen and helium ions gyration, the frequency of wave is influenced by the density variation of \(\text{H}^{+}\) and \(\text{He}^{+}\) ions but remains insensitive to the change in density of \(\text{O}^{+}\) ions. For oxygen ion gyration, the frequency of wave varies over a short range only for \(\text{O}^{+}\) ion density variation. The wave shows damping at lower altitude due to variation in density of lighter \(\text{H}^{+}\) and \(\text{He}^{+}\) ions whereas at higher altitude only heavy \(\text{O}^{+}\) ions contribute in wave damping. The damping of wave may be due to landau damping or energy transfer from wave to particles. The present study signifies that the both lighter and heavier ions dominate differently to change the characteristics of kinetic Alfven wave and density variation is also an important parameter to understand wave phenomena in cusp region.  相似文献   

17.
To investigate the \(M_\bullet -\sigma \) relation, we consider realistic elliptical galaxy profiles that are taken to follow a single power-law density profile given by \(\rho (r) = \rho _{0}(r/ r_{0})^{-\gamma }\) or the Nuker intensity profile. We calculate the density using Abel’s formula in the latter case by employing the derived stellar potential; in both cases. We derive the distribution function f(E) of the stars in the presence of the supermassive black hole (SMBH) at the center and hence compute the line-of-sight (LoS) velocity dispersion as a function of radius. For the typical range of values for masses of SMBH, we obtain \(M_{\bullet } \propto \sigma ^{p}\) for different profiles. An analytical relation \(p = (2\gamma + 6)/(2 + \gamma )\) is found which is in reasonable agreement with observations (for \(\gamma = 0.75{-}1.4\), \(p = 3.6{-}5.3\)). Assuming that a proportionality relation holds between the black hole mass and bulge mass, \(M_{\bullet } =f M_\mathrm{b}\), and applying this to several galaxies, we find the individual best fit values of p as a function of f; also by minimizing \(\chi ^{2}\), we find the best fit global p and f. For Nuker profiles, we find that \(p = 3.81 \pm 0.004\) and \(f = (1.23 \pm 0.09)\times 10^{-3}\) which are consistent with the observed ranges.  相似文献   

18.
We have applied the close binary system analysis program WinFitter, with its physically detailed fitting function, to an intensive study of the complex multiple system Kepler-13 using photometry data from all 13 short cadence quarters downloaded from the NASA Exoplanet Archive (NEA) (http://exoplanetarchive.ipac.caltech.edu). The data-point error of our normalized, phase-sequenced and binned (380 points per bin: 0.00025 phase interval) flux values, at 14 ppm, allows the model’s specification for the mean reference flux level of the system to a precision better than 1 ppm. Our photometrically derived values for the mass and radius of KOI13.01 are \(6.8\pm0.6~\mbox{M}_{\mathrm{J}}\) and \(1.44\pm0.04~\mbox{R}_{\mathrm{J}}\). The star has a radius of \(1.67\pm0.05~\mbox{R}_{\odot}\). Our modelling sets the mean of the orbital inclination \(i\) at \(94.35\pm0.14^{\circ}\), with the star’s mean precession angle \(\phi_{p}\)\(49.1\pm5.0^{\circ}\) and obliquity \(\theta_{o}\)\(67.9 \pm 3.0^{\circ}\), though there are known ambiguities about the sense in which such angles are measured.Our findings did not confirm secular variation in the transit modelling parameters greater than their full correlated errors, as argued by previous authors, when each quarter’s data was best-fitted with a determinable parameter set without prejudice. However, if we accept that most of the parameters remain the same for each transit, then we could confirm a small but steady diminution in the cosine of the orbital inclination over the 17 quarter timespan. This is accompanied by a slight increase of the star’s precession angle (less negative), but with no significant change in the obliquity of its spin axis. There are suggestions of a history of strong dynamical interaction with a highly distorted planet rotating in a 3:2 resonance with its revolution, together with a tidal lag of \(\sim30~\mbox{deg}\). The mean precessional period is derived to be about 1000 y, but at the present time the motion of the star’s rotation axis appears to be supporting the gravitational torque, rather than providing the balance against it that would be expected over long periods of time.The planet has a small but detectable backwarming effect on the star, which helps to explain the difference in brightness just after transit and just before occultation eclipses. In assessing these findings it is recognized that sources of uncertainty remain, notably with possible inherent micropulsational effects, variations from other components of the multiple star, stellar activity, differential rotation and the neglect of higher order terms (than \(r_{1}^{5}\)) in the fitting function, where \(r_{1}\) is the ratio of the radius of the star to the mean orbital separation of planet and host star.  相似文献   

19.
In this paper, we study an interacting holographic dark energy model in the framework of fractal cosmology. The features of fractal cosmology could pass ultraviolet divergencies and also make a better understanding of the universe in different dimensions. We discuss a fractal FRW universe filled with the dark energy and cold dark matter interacting with each other. It is observed that the Hubble parameter embraces the recent observational range while the deceleration parameter demonstrates an accelerating universe and a behavior similar to \(\Lambda \mbox{CDM}\). Plotting the equation of state shows that it lies in phantom region for interaction mode. We use \(\mathit{Om}\)-diagnostic tool and it shows a phantom behavior of dark energy which is a condition of avoiding the formation of black holes. Finally we execute the StateFinder diagnostic pair and all the trajectories for interacting and non-interacting state of the model meet the fixed point \(\Lambda \mbox{CDM}\) at the start of the evolution. A behavior similar to Chaplygin gas also can be observed in statefinder plane. We find that new holographic dark energy model (NHDE) in fractal cosmology expressed the consistent behavior with recent observational data and can be considered as a model to avoid the formation of black holes in comparison with the main model of NHDE in the simple FRW universe. It has also been observed that for the interaction term varying with matter density, the model generates asymptotic de-Sitter solution. However, if the interaction term varies with energy density, then the model shows Big-Rip singularity. Using our modified CAMB code, we observed that the interacting model suppresses the CMB spectrum at low multipoles \(l<50\) and enhances the acoustic peaks. Based on the observational data sets used in this paper and using Metropolis-Hastings method of MCMC numerical calculation, it seems that the best value with \(1\sigma \) and \(2\sigma \) confidence interval are \(\Omega _{m0}=0.278^{+0.008~+0.010} _{-0.007~-0.009}\), \(H_{0}=69.9^{+0.95~+1.57}_{-0.95~-1.57}\), \(r_{c}=0.08^{+0.02~+0.027}_{-0.002~-0.0027}\), \(\beta =0.496^{+0.005~+0.009} _{-0.005~-0.009}\), \(c= 0.691^{+0.024~+0.039}_{-0.025~-0.037}\) and \(b^{2}=0.035\) according to which we find that the proposed model in the presence of interaction is compatible with the recent observational data.  相似文献   

20.
In this note a study of the convergence properties of some starters \( E_0 = E_0(e,M)\) in the eccentricity–mean anomaly variables for solving the elliptic Kepler’s equation (KE) by Newton’s method is presented. By using a Wang Xinghua’s theorem (Xinghua in Math Comput 68(225):169–186, 1999) on best possible error bounds in the solution of nonlinear equations by Newton’s method, we obtain for each starter \( E_0(e,M)\) a set of values \( (e,M) \in [0, 1) \times [0, \pi ]\) that lead to the q-convergence in the sense that Newton’s sequence \( (E_n)_{n \ge 0}\) generated from \( E_0 = E_0(e,M)\) is well defined, converges to the exact solution \(E^* = E^*(e,M)\) of KE and further \( \vert E_n - E^* \vert \le q^{2^n -1}\; \vert E_0 - E^* \vert \) holds for all \( n \ge 0\). This study completes in some sense the results derived by Avendaño et al. (Celest Mech Dyn Astron 119:27–44, 2014) by using Smale’s \(\alpha \)-test with \(q=1/2\). Also since in KE the convergence rate of Newton’s method tends to zero as \( e \rightarrow 0\), we show that the error estimates given in the Wang Xinghua’s theorem for KE can also be used to determine sets of q-convergence with \( q = e^k \; \widetilde{q} \) for all \( e \in [0,1)\) and a fixed \( \widetilde{q} \le 1\). Some remarks on the use of this theorem to derive a priori estimates of the error \( \vert E_n - E^* \vert \) after n Kepler’s iterations are given. Finally, a posteriori bounds of this error that can be used to a dynamical estimation of the error are also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号