首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 687 毫秒
1.
湖北大畈核电站周边地区龙卷风参数的计算与分析   总被引:1,自引:0,他引:1  
通过气象站记录、灾害大典、气候影响评价等多种途径,收集了核电站周边地区的300 km×300 km区域1956—2000年间的龙卷风资料,并根据《核安全导则汇编(上册)》规定的方法详细计算了龙卷风各个参数间的关系,最后给出核电站的龙卷风设计基准参数,即最大风速为70 m/s(对应概率为1×10-8),平移速度13.5 m/s,旋转半径206 m,最大气压降9.9 hPa,设计基准等级为F3级,这些结论已在设计部门得到应用。  相似文献   

2.
基于1959~2017年福清核电厂区龙卷风的调查资料,采用Rankine涡模型估算该区域超过某一特定风速的概率分布,通过概率值导出设计基准龙卷风和基准设计风速,按照压降模型计算出龙卷风的压降,研究结果表明:福清核电评价区域龙卷风的总压降为4.29 kPa;平移速度13.8 m/s,最大旋转风速57.6 m/s,最大压降速率为1.18 kPa/s,基准设计风速为71.4 m/s,属于F3级别的龙卷风;在125 kg下落的穿甲弹类和2.5 cm实心钢球两种不同情景下计算出的龙卷风产生的飞射物的最大水平碰撞速度均为24.99 m/s、碰撞动量依次为3123.75 kg m s?1和1.615 kg m s?1。这些计算结果,从龙卷风的角度,为政府相关部门在规划和建设福清核电厂时提供了可靠的理论依据。  相似文献   

3.
本文根据美国《建筑和其它结构最小设计荷载》中t秒平均最大风速与1h平均最大风速的比值公式,推导出EF级别和F级别风速测量标准间的转换方法,将京津冀1956—2016年122个龙卷风个例由EF等级转化为F等级,再按照《核电厂厂址选择的极端气象事件》HAD101/10中推荐的龙卷风风险评估方法,对京津冀龙卷风风险度进行了定量评价,结果表明:京津冀122个龙卷风个例的风程1/4mile平均最大风速均比3s平均最大风速低,平均偏低2.1m·s~(-1),风速越大,两者差距越小;122个龙卷风个例分布在F0到F3共4个等级中,F0等级31个,F1等级78个,F2等级12个,F3等级1个;京津冀龙卷风发生次数最多依次为天津、唐山和张家口市,分别为21、21和14次,强龙卷发生最多的是廊坊市(3个),衡水、承德、保定、北京4个市没有发生过强龙卷;京津冀发生超越EF1、EF2、EF3、EF4等级龙卷风重现期分别为5.8、10.1、20.2、49.5a,发生超越F1、F2、F3、F4等级龙卷风重现期分别为4.9、13.8、38.5、130.7a;京津冀一年中单位面上(1km~2)10~(-7)概率水平对应的龙卷风设计基准风速为73.4m·s~(-1)。  相似文献   

4.
通过气象站记录、灾害大典、气候影响评价等多种途径,收集到湖北通山核电站周边300km×300km区域范围内1956-2000年龙卷风资料,对龙卷风的时间分布和灾害特征进行了分析。结果表明:龙卷风有明显的时间分布,一年中主要集中在夏春季,以7月、4月最多;一天中,午后至傍晚最多;龙卷风平均持续时间为17min;近45年,1976~1985年这10年中龙卷风出现最频繁;龙卷风出现时,蒲福风力等级一般在10级以上,平均12~13级,最大17级,富士达风力等级平均F1级,最大F3级,风速约70m·s^-1;龙卷风从NW→SE向移动的频次最多;龙卷风影响宽度一般在0.5km内,平均带长为10.0km;龙卷风灾害呈并发性,主要是风灾,往往伴有冰雹、暴雨、雷击及飞射物,使灾害加重。  相似文献   

5.
非汛期不同重现期最大风速是沿海(江)岸堤防设计标准、工程安全性和投资成本估算的一个重要参数。文中基于上海崇明、宝山、南汇、奉贤和金山5个沿海(江)岸气象站历史风速观测资料和横沙岛测风塔10 m高度逐日最大风速资料,采用极值I型分布估算了上海地区沿海(江)岸非汛期(1—5月和10—12月)各风向不同重现期最大风速。结果表明,上海地区沿海(江)岸非汛期的最大风速以W风最大,SW风最小。沿海(江)岸非汛期50 a一遇最大风速为23.3—28.3 m/s,小于上海地区基准风速(30.0 m/s)。各地非汛期不同风向50 a一遇最大风速的最大差值为3.4—8.1 m/s,同一重现期各地沿海(江)岸10 m高度最大风速极值也相差较大。崇明区域非汛期沿海(江)岸最大风速最大,其次是南汇区域,宝山区域最小。上海地区最大风速一般都出现在沿海地带,其分布与上海实际地理、地表状况相符。  相似文献   

6.
为进一步加深南北气候过渡带上山地丘陵地区的风场认识,利用淮南2015年3月至2016年2月ST(Stratosphere-Troposphere)风廓线雷达的探测资料,分析了该地区20 km高度内风场的变化特征及垂直结构。结果表明:淮河流域850 hPa、700 hPa、500 hPa、100 hPa等压面高度上,风场有明显的垂直变化,风速及其波动幅度随春、夏、秋、冬先减小后增大,且随高度增加,夏季最小、冬季最大的季节规律逐渐增强;风场的垂直分布存在差异,在中低层以下,以小于10 m/s的风为主,风向转换多,中低层以上10~25 m/s的偏西风居多;年平均风场结构为低层以5 m/s北风为主,到2 km左右向西偏转,风速小于10 m/s,在5 km高度处形成15 m/s的西风,且风速持续增大,10 km左右达到25 m/s后逐渐减小,到15 km左右风向顺时针向北偏转,直到20 km附近与低空风场相近。  相似文献   

7.
城市化对石家庄站近地面风速趋势的影响   总被引:1,自引:0,他引:1  
利用1972—2012年石家庄城市站和4个乡村站地面风速资料,采用城乡对比方法,对石家庄城市站地面风速序列中的城市化影响进行分析,结果表明,石家庄站年和季节平均地面风速和平均10 min最大风速的长期下降趋势,主要是由城市化因素引起。具体结论如下:(1)石家庄站年和四季平均风速、平均10 min最大风速和大风日数均呈极显著的减少趋势,年平均减少速率分别为-0.15 (m/s)/10a、-1.05 (m/s)/10a和-2.90 d/10a;乡村站年平均风速呈微弱下降趋势,年平均10 min最大风速减少较为明显,年大风日数减少趋势非常显著,减少速率分别为-0.02 (m/s)/10a、-0.21 (m/s)/10a和-2.19 d/10a。(2)石家庄站年平均风速下降趋势中的城市化影响为-0.13 (m/s)/10a,城市化影响非常显著,城市化贡献率达到86.0%。该站春、夏、秋、冬季平均风速变化的城市化影响分别为-0.16 (m/s)/10a、-0.10 (m/s)/10a、-0.13 (m/s)/10a和-0.15 (m/s)/10a,城市化贡献率分别为82.8%、87.6%、88.6%和85.4%。(3)石家庄站年平均10 min最大风速变化趋势中的城市化影响为-0.84 (m/s)/10a,城市化贡献率为79.7%;春、夏、秋、冬季平均10 min最大风速变化趋势中的城市化影响分别为-0.94 (m/s)/10a、-0.80 (m/s)/10a、-0.60 (m/s)/10a和-1.01 (m/s)/10a,城市化贡献率分别达到90.4%、78.6%、64.9%和79.1%。(4)城市化对石家庄站年大风日数减少的影响不显著,但冬季大风日数减少仍明显与城市化过程有关。  相似文献   

8.
分别从质量控制级别、有效数据完整率、是否均一等方面考虑,选取安徽省51个气象站1981—2020年逐日10 min最大风速和2006—2020年逐日极大风速资料,基于最大风速资料应用阵风系数法构建1981—2005年极大风速,得到1981—2020年极大风速的长时间序列数据;对风速资料进行拟合适度检验,估算了安徽省不同重现期最大风速和极大风速的时间变化以及空间分布,并对极大风速序列延长前后重现期估算情况进行了对比。结果表明:(1) 利用阵风系数法构建的极大风速数据可信,可为因缺少长时间序列的极大风速观测而无法进行50年或者更长重现期估算提供参考;(2) 1981—2020年安徽省历年最大风速强度为12.38 m/s,极大风速强度为20.55 m/s,均为皖南低矮山区的风速值较低,沿江西部及江淮之间中部处于相对大值区;(3) 30年重现期最大风速为12.09~27.23 m/s,50年为12.64~29.01 m/s,均是石台站最小,桐城站最大;30年重现期的极大风速为23.51~39.56 m/s,50年为24.58~41.93 m/s,均为池州站最小,桐城站最大;(4) 短期的观测资料会降低重现期估算结果的可靠性。   相似文献   

9.
基于台站观测资料,评估了欧洲中期天气预报中心(ECMWF)最高时空分辨率的第五代大气再分析资料(ERA5)对1979~2018年间中国大陆区域10 m高度风速的气候特征及其变化趋势的再现能力,并同步对比分析了ERA5资料100 m高度风速的特征和长期趋势。结果表明,ERA5资料10 m和100 m风速在空间分布、年—季节—月尺度演变的气候特征方面与台站观测非常一致,10 m风速气候态空间相关系数达到0.66。观测和再分析资料均显示,中国近地层风速呈现出显著的区域性特征,风速大值区主要分布在内蒙古、东北地区西部、新疆北部以及青藏高原西部地区,上述区域的风速季节差异也相对明显,春季风速最大。台站观测、ERA5资料10 m和100 m全国平均风速在4月达到最大值,分别为2.6、3.0、4.5 m s–1,8月为最小值,分别为2.0、2.4、3.5 m s–1。从月平均序列来看,ERA5资料的10 m风速较台站观测偏高0.3~0.5 m s–1,而100 m的风速较10 m风速整体偏高1.2~1.4 m s–1。在风速变化方面,台站观测风速在中国陆地区域整体呈下降趋势–0.4 m s–1(39 a)–1,春季下降趋势最显著[–0.5 m s–1(39 a)–1],且1979~1992年冬季风速降幅最大[–0.7 m s–1(14 a)–1],2013年以后风速逐渐增强。ERA5资料两个高度层的风速在整个中国区域均没有明显的长期变化趋势,4个季节风速变化趋势的空间分布与观测也存在差异,100m风速的长期变化趋势与10 m一致但变化幅度大于10 m风速。总之,ERA5资料对中国大陆区域气候平均风速具有较好的再现能力,但无法呈现台站观测风速的长期变化趋势。  相似文献   

10.
根据中国气象灾害大典、年鉴、全国与河南省气候影响评价等文献,对豫东南区域1949-2011年30次龙卷风的历史记录逐个进行了时空分析和富士达分级:63 a来发生于6、7月的龙卷风占总次数的2/3;20世纪80年代集中发生在1984年和1986年,90年代仅1990、1993年没有发生,21世纪前10 a主要是2005年的3次(均为F1级)。有24个县(市)曾有龙卷风光顾过,发生最多的汝南和潢川曾遭遇过5次龙卷风袭击,其他县(市)分别出现1~4次不等。灾害特征是较低级别的F0和F1等级较多,F2等级较少,但发生的概率和强度等级均高于豫西。  相似文献   

11.
利用常规观测资料以及海南省中尺度自动站资料、海口多普勒雷达产品、FY系列卫星云图和NECP 1°×1°再分析资料,分析了2014年第9号超强台风"威马逊"(1409)在海南岛登陆前后其强度和降水特征及其近海急剧加强的原因。结果表明:"威马逊"登陆海南省文昌市翁田镇时强度维持或略有减弱,登陆前其中心附近极大风速超过74 m·s-1,最低海平面气压899.2 h Pa,为1949年建国以来登陆我国大陆最强台风;"威马逊"从7月18日10时到当日15时登陆文昌前的5 h内,其中心附近最大风速增大了5 m·s-1,最低气压下降了20 h Pa,其超强台风量级从18日11时开始维持时间达17 h;"威马逊"眼壁回波造成的海南北部地区强降水具有降水效率高、对流发展不够强盛的混合性降水特征,而其螺旋雨带"列车效应"造成的海南西部地区极值降水则具有典型的对流性降水特征;西太平洋副热带高压、低空急流、西风槽和南亚高压是"威马逊"近海持续加强的主要影响系统;低层辐合与高层辐散、弱的环境风垂直切变和适宜的海面温度、深厚的暖涡是"威马逊"近海急剧加强的原因。  相似文献   

12.
To study topographic effects on the near-surface tornado flow field, the Iowa State University tornado simulator was used to simulate a translating tornado passing over three different two-dimensional topographies: a ridge, an escarpment and a valley. The effect of the translation speed on maximum horizontal wind speeds is observed for translation speeds of 0.15 and 0.50 \(\hbox {m}\,\hbox {s}^{-1}\), with the lower value resulting in a larger maximum horizontal wind speed. The tornado translation over the three topographies with respect to flat terrain is assessed for changes in: (a) the maximum horizontal wind speeds in terms of the flow-amplification factor; (b) the maximum aerodynamic drag in terms of the tornado speed-up ratio; (c) the maximum duration of exposure at any location to high wind speeds of a specific range in terms of the exposure amplification factor. Results show that both the maximum wind amplification factor of 14%, as well as the maximum speed-up ratio of 14%, occur on the ridge. For all topographies, the increase in aerodynamic drag is observed to be maximized for low-rise buildings, which illustrates the importance of the vertical profiles of the horizontal wind speed near the ground. The maximum exposure amplification factors, estimated for the range of wind speeds corresponding to the EF2 (50–60 \(\hbox {m}\,\hbox {s}^{-1}\)) and EF3 (61–75 \(\hbox {m}\,\hbox {s}^{-1})\) scales, are 86 and 110% for the ridge, 4 and 60% for the escarpment and ? 6 and 47% for the valley, respectively.  相似文献   

13.
陈英  谢万锈  徐彬 《干旱气象》2013,(3):627-632
从自动站与人工站观测方式的区别人手,对民勤国家基准气候站观测的数据进行整理与对比分析得出:(1)2种观测方式数据序列中,本站气压2a平均差值为0.1hPa,差值变幅在~0.3~0.5hPa;气温2a平均差值-0.1℃,差值变幅在-0.1~0.0℃之间;相对湿度2a平均差值为-1%,差值变幅在一4%~2%之间;2min平均风速2a平均差值为0.5m/s,差值变幅在0.3~0.7m/s之间,10min平均风速2a平均差值为0.4m/s,差值变幅在0.4~0.5m/s之间;地面温度2a平均差值为0.6℃,差值变幅在0.0~1.2℃之间。本站气压、气温、相对湿度、风向风速、地温差值虽然不固定,但对历史资料的序列连续性影响不显著;(2)各要素中差值最大的是地面最高温度,2a平均差值为1.8oC,差值变幅在-1.7~4.3℃之间;(3)自动站的观测结果比人工观测更真实、准确、科学,更接近大气中的实际情况。  相似文献   

14.
Considered are the formation conditions of the severe tornado in the South Urals (in the Republic of Bashkortostan) on August 29, 2014. It is noted that the tornado was associated with the supercell, and the synoptic conditions of its formation corresponded to the type 1 according to the classification proposed by A.I. Snitkovskii in 1987. Estimated are the tornado basic characteristics: the vortex funnel width is 150-200 m, and the maximum wind speed is 65 m/s. It is revealed that the tornado was of EF3 category following the enhanced Fujita scale. Proposed is the simple index of convective instability based on the data of ground-based observations for diagnosing the tornado genesis environments.  相似文献   

15.
中国龙卷时空分布及其环境物理量特征   总被引:6,自引:2,他引:6  
利用2004—2012年《中国气象灾害年鉴》和CFSR再分析资料,研究中国龙卷的时空分布以及三个龙卷频发区的环流背景场和环境物理量特征,并比较他们之间的区域差异。结果表明:中国龙卷多发生于春夏季,午后傍晚较多,江苏和广东等平原地区出现龙卷概率最高。龙卷临近时,“江苏及其邻近地区”位于500 hPa槽前,850 hPa上有西南急流,造成了较强的低层垂直风切变;“广东及其邻近地区”在龙卷发生前地面对流有效位能均值达997.3 J/kg,0~1 km螺旋度均值达91 m2/s2,层结不稳定,动力抬升强;“东北地区”受深厚东北冷涡控制,整层水汽含量低,中低层比湿均值小于10 g/kg。通过比较环境物理量平均场的分布特征发现:螺旋度、垂直风切变、能量螺旋度指数和强龙卷参数对分析龙卷发生有很好的指示意义。“东北地区”对流有效位能和比湿均值远低于“江苏及其邻近地区”和“广东及其邻近地区”,但高低空的温度直减率大、中低层的垂直风切变强,该地区也会产生龙卷。   相似文献   

16.
2015年10月4日佛山龙卷过程的观测分析   总被引:4,自引:0,他引:4  
受1522号台风彩虹外围螺旋云带影响,2015年10月4日15时28分—16时(北京时)广东佛山出现了EF3级强龙卷并造成严重灾害。为了综合分析龙卷发生的多尺度环境背景场和龙卷的结构及强度变化等特点,进行了灾情调研,航拍龙卷灾情路径,走访龙卷目击者,确认龙卷路径及灾情级别,再结合多渠道获取的龙卷视频照片等资料以及观测资料进行分析研究,结果表明:(1)产生此次龙卷的超级单体存在于台风彩虹外围螺旋云带内;龙卷向西北偏北方向移动,触地时长为32 min,受灾路径长度为31.7 km,最大受灾直径为577 m,平均速度约为60 km/h,具有“移动速度快,影响范围广,破坏力强”的特点,其移动速度快慢似与超级单体强度和地面的粗糙度有关。(2)佛山地区中高层受偏南气流控制,水汽充足,地面有弱冷空气;珠三角喇叭口地形有利于气流的辐合与局地涡旋的产生;抬升凝结高度低,风垂直切变大,有利于龙卷的生成。(3)地面自动气象站气象要素表现出受龙卷环流影响的特征。3 s极大风速的大值带和3 s最低气压的低值带以及1 h累计降水大值中心呈现出与龙卷走向一致的东南—西北向带状分布;龙卷到来时其周围自动气象站气温和气压明显降低,风速明显增大,风向明显改变;降水在龙卷靠近前5—10分钟就开始明显增大,其大值中心位于龙卷路径的西侧。龙卷离开后气压比龙卷来临前有所升高,但气温较前降低。(4)龙卷出现在钩状回波前进方向的右后侧;降水大值区与雷达组合反射率大值区基本一致。地面风场的辐合中心与龙卷触地的位置基本一致,并且钩状回波的入流区与地面偏东风区相对应。龙卷风暴单体发展高度在4 km左右,具有低重心对流的特点。其前部存在回波悬垂,一条很窄的向西北倾斜的回波大值带可能与龙卷漏斗云墙有关。对应径向速度剖面图上为一条向西北倾斜的正、负速度交界区,构成一个逆时针旋转的涡旋带,切向剖面图上存在较强的辐合。(5)龙卷发展过程中伴随着龙卷风暴顶和风暴底的逐渐下降以及单体质心的下降,中气旋与龙卷涡旋特征的顶和底也随之逐渐下降。龙卷风涡旋特征的顶高和底高都略低于中气旋,并在龙卷触地时降至最低。龙卷涡旋的切变值远大于中气旋的切变值,且在龙卷强度最强时最大。   相似文献   

17.
利用气象站、探空及NASA再分析资料,对江西省4县山地风场的12座测风塔风速进行订正研究。研究结果表明:测风塔与气象站风速数据相关性较低,相关系数一般远小于0.45;测风塔与探空资料的风速相关系数可达到0.6以上,最高可达到0.8;NASA再分析资料可以作为江西山地风场风速订正参证数据,其与测风塔风速数据相关性较高,相关系数可达到0.54~0.77,大多数测风塔相关系数可达0.7左右。海拔高度小于1000 m的测风塔与NASA 50 m风速的相关系数明显高于其与NASA 850 hPa风速的相关系数,高度为1000—1200 m的测风塔与NASA 50 m风速和与NASA 850 hPa风速的相关系数相差不明显,高度大于1200 m的测风塔与NASA 850 hPa风速的相关系数明显大于其与NASA 50 m风速的相关系数。比值法订正效果略好于线性回归法的,订正后的风功率密度总体偏大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号