首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We report lightcurves for five asteroids from the inner main belt—(1703) Barry, (2590) Mourão, (4022) Nonna, (5171) Augustesen, (23031) 1999 XX7—and for two near-Earth asteroids—(100004) 1983 VA, (144922) 2005 CK38—obtained at Modra Observatory as a part of binary asteroid photometric campaign. Estimated synodic rotational periods and amplitudes of their composite lightcurves were as follows: 107.1 ± 0.5 h, 0.5 mag for (1703) Barry; 15.59 ± 0.01 h, 0.49 mag for (2590) Mourão; 2.5877 ± 0.0005 h, 0.08 mag for (4022) Nonna; 474 ± 10 h, 0.8 mag for (5171) Augustesen; 3.075 ± 0.001 h, 0.43 mag for (23031) 1999 XX7; 3.1643 ± 0.0009 h, 0.11 mag for (100004) 1983 VA; 4.7894 ± 0.0005 h, 0.27 mag for (144922) 2005 CK38. The slow rotator (5171) Augustesen and possibly also (1703) Barry appear to be tumblers, though their precession periods can not be estimated from the available data.  相似文献   

2.
Wang  Xiao-bin  Shi  Ying 《Earth, Moon, and Planets》2002,91(3):181-186
Photometric observations of the four selected asteroids, obtained at Yunnan Observatory, China during recent two years, are presented and analysed. We have determined the synodic periods of (174)\, Phaedra and (276)\, Adeldheid as 5.74h ± 0.01 and 6.29h ± 0.01,which confirmed the previous results. For (38)\, Leda and (346)\, Hermentria, we derived their period values, 10.171h ± 0.007 and 19.408h ± 0.005 for the first time. The color-indices of 38, were re-determined as 0.73 ± 0.02 for B-V and 0.41 ± 0.02for U-B, respectively, which are the same as the ones given by Tedesco (1989).  相似文献   

3.
Three selected asteroids, numbered 58, 360 and405, were observed during 2000at Yunnan Observatory, China. Thenew lightcurves are presented inthis paper. The synodic period of (58)Concordia is estimated as 9.90 ± 0.01hfor the first time. The synodic period of (405) Thia derived from ourobservation is 9.96 ± 0.01h, which is slightly different from the previousresult. For 360, we obtained the synodic period of 6.18 ± 0.02h which isconsistent with previous values. Additionally, the BV and UB-colourindexes for the three asteriods were also determined.  相似文献   

4.
We present 19 lightcurves of asteroid 1 Ceres obtained during a global campaign in 1975–1976. The synodic period is 0.37812 ± 0.00004 day. The mean absolute V magnitude is 3.61 ± 0.03 and the phase coefficient is 0.40 ± 0.001 mag/deg. The U-B and B-V phase coefficients are +0.0015 ± 0.0007 and +0.0006 ± 0.0003 mag/deg, respectively. The colors at zero phase are B-V = +0.70 ± 0.01 and U-B = +0.41 ± 0.01.  相似文献   

5.
The first photometric observations of the near-Earth asteroid 1998 ST49 and the main belt asteroids (13154) and (27529) are reported. The synodic rotation periods and amplitudes of the lightcurves are:
  • ? 2.3017 h, 0.11 mag for 1998 ST49;
  • ? 2.98502 h, 0.18 mag for (13154);
  • ? 4.1290 h, 0.51 mag for (27529).
  • The periods for the first two asteroids are unambiguous, while the period of 4.1570 h is not ruled out for the third asteroid. Despite fast rotations, none of the presented asteroids exhibited any sign of binarity. Lightcurves were obtained at Modra Observatory.  相似文献   

    6.
    We present 26 lightcurves of 16 Psyche from 1975 and 1976. The synodic period during this apparition was 4h.1958. Combining photometric data from this opposition with those from previous apparitions allowed us to derive a mean phase coefficient in V of 0.026 ± 0.002 mag/deg and to establish that Psyche's absolute V0 magnitude and rotational amplitude vary with aspect; at 90° aspect, V0(1, 0) = 6.27 ± 0.05 and the lightcurve amplitude is 0.30 mag, while at 0° or 180° aspect, V0(1, 0) = 6.02 ± 0.02 and the amplitude is ?0.03 mag. This behavior is accounted for if, to first order, Psyche's shape is that of a triaxial ellipsoid with axial ratios near 5:4:3. Colors at zero phase are U-B = 0.26 ± 0.01 and B-V = 0.71 ± 0.01. Color phase coefficients are <0.001 mag/deg in U-B and 0.0010 ± 0.0004 mag/deg in B-V.  相似文献   

    7.
    Series of photometric CCD observations of the asynchronous polar BY Cam in a low accretion state (R = 14m–16m) were made on the K-380 telescope at the Crimean Astrophysical Observatory (CrAO) over 100 hours in the course of 31 nights during 2004–2005. A period of P 1 = 0.137120±0.000002 days was found for the variations in the brightness, along with less significant periods of P 2 = 0.139759±0.000003 and P3 = 0.138428±0.000002 days, where P2 and P3 are obviously the orbital and rotation periods, while the dominant period P1 is the sideband period. A modulation in the brightness and an amplitude of 0.137 days in the oscillations at the orbital-rotational beat period (synodic cycle) of 14.568±0.003 day are found for the first time. The profile of the modulation period is four humped. This indicates that the magnetic field has a quadrupole component, which shows up well during the low brightness state. Accretion takes place simultaneously into two or three accretion zones, but at different rates. The times of the times of maxima for the main accretion zone vary with the phase of the beat period. Three types of variation of this sort are distinguished: linear, discontinuous, and chaotic, which indicate changes in the accretion regimes. At synodic phases 0.25 and 0.78 the bulk of the stream switches by 180°, and at phase 0.55, by ∼75°. At phases of 0.25–0.55 and 0.55–0.78, the O-C shift with a period of 0.1384 days, which can be explained by a retrograde shift of the main accretion zone relative to the magnetic pole and/or a change in the angle between the field lines and the surface of the white dwarf owing to the asynchronous rotation. For phases of 0.78–1.25 the motion of the accretion zone is quite chaotic. It is found that synchronization of the components occurs at a rate of less than dProt/Prot∼10−9 day/day. __________ Translated from Astrofizika, Vol. 49, No. 1, pp. 121–137 (February 2006).  相似文献   

    8.
    During the last 40 years, the Crimean Astrophysical Observatory and five other observatories around the world have carried out more than 18 500 (daily) measurements of the mean magnetic field (MMF) of the Sun as a star. The main MMF periodicity is due to the equatorial rotation of the Sun with a synodic period of 26.92 ± 0.02 day (it was stable for decades, but “bifurcated” in the 23rd cycle). It is shown that (a) the average sidereal period of the equator, 25.122 ± 0.010 day, is in close resonant relations with orbital and axial rotations of Mercury (5: 2 and 5: 3, respectively); (b) the most powerful long period, 1.036 ± 0.007 years, is suspiciously close to the orbital period of the Earth and (c) coincides with the average synodic period of revolution of giant planets 1.036 ± 0.020 years; and (d) MMF reveals a significant period of 1.58 ± 0.02 years, which agrees, within errors, with the synodic period of Venus (1.60 years), and (e) a significant periodicity of 19.8 ± 2.5 years probably related to the 22-year magnetic cycle of the Sun. The nature of all these periodicities is mysterious.The assumption is made that the resonances originated at the early stages of formation of the Solar System, and their existence in the modern epoch is due to the specific features of the structure and dynamics of the central core of our star. It is found that the MMF level averaged over 40 years is practically zero, ?0.018 ± 0.015 G. The anomalous behavior of the 23rd cycle is pointed out; this is expressed in (1) violation of the Gnevyshev-Ohl rule for the pair of cycles 22–23, (2) accelerated rotation of the solar equator by 1.2%, and (3) considerable increase in the cycle duration (not smaller than 11.5 years), as compared to the average cycle duration in the 20th century (11.5 years). The problem of the so called magnetic “monopole” of the Sun is briefly discussed.  相似文献   

    9.
    We have been systematically monitoring a large sample of bright Kuiper Beltobjects for possible light variations due to rotational and phase angle effects.Here we report on three objects, 2003 AZ84, (24835) 1995 SM55and (55636) 2002 TX300 observed to have measurable rotational lightcurveswith peak-to-peak amplitudes of 0.14 ± 0.03, 0.19 ± 0.05 and 0.08 ± 0.02magnitudes and single-peaked periods of 6.71 ± 0.05, 4.04 ± 0.03 and8.12 ± 0.08 hours, respectively. We observed a further ten objects whichshowed no rotational photometric variation within measurement uncertainties.In addition, we find that the lightcurve of 1995 SM55 may have a variableamplitude. We discuss this peculiar object as well as our observations of the reportedlyvariable Kuiper Belt object (19308) 1996 TO66. Finally, we continue to find the phase functions of the Kuiper Belt objects to be very steep and linear, to firstorder, with a median slope of 0.16 ± 0.01 magnitudes per degree in the phaseangle range 0 to 2 degrees.  相似文献   

    10.
    Abstract— We report ion microprobe U‐Th‐Pb dating of Shergotty phosphates by means of the sensitive high‐resolution ion microprobe (SHRIMP) recently installed at Hiroshima University, Japan. ten analyses of whitlockite (merrillite) and three analyses of apatite indicate a 238u/206pb isochron age of 225 ± 200 ma and a tera‐wasserburg concordia‐constrained linear three‐dimensional isochron age of 217 ± 110 ma in the 238u/206pb‐207pb/206pb204pb/206pb diagram. These ages agree well with the 232Th‐208pb age of 189 ± 83 Ma, which suggests that primary crystallization or a shock metamorphic event defined the formation age of the phosphate minerals. The average of the later two ages, 204 ± 68 Ma, is consistent with the previously published Rb‐Sr age of 165 ± 11 Ma and U‐Th‐Pb age of ~200 Ma. These show marginal agreement with the 40Ar‐39Ar age of 254 ± 10 Ma but are significantly different from the Sm‐Nd age of 360 ± 16 Ma. Taking into account the closure temperature of the U‐Pb system in apatite, we suggest the time that Shergotty last experienced a temperature of ~900 °C was 204 ± 68 Ma.  相似文献   

    11.
    Starting from 80 families of low-energy fast periodic transfer orbits in the Earth–Moon planar circular Restricted Three Body Problem (RTBP), we obtain by analytical continuation 11 periodic orbits and 25 periodic arcs with similar properties in the Sun–Earth–Moon Quasi-Bicircular Problem (QBCP). A novel and very simple procedure is introduced giving the solar phases at which to attempt continuation. Detailed numerical results for each periodic orbit and arc found are given, including their stability parameters and minimal distances to the Earth and Moon. The periods of these orbits are between 2.5 and 5 synodic months, their energies are among the lowest possible to achieve an Earth–Moon transfer, and they show a diversity of circumlunar trajectories, making them good candidates for missions requiring repeated passages around the Earth and the Moon with close approaches to the last.  相似文献   

    12.
    《Icarus》1987,71(1):148-158
    Identified as possible flyby targets for the Galileo spacecraft, Asteroids 1219 Britta and 1972 Yi Xing became the focus of a coordinated observing program. Although a subsequent change in the launch date removed these asteroids from consideration for the Galileo mission, the ground-based observing program yielded a substantial amount of information on these previously unobserved asteroids. Britta's sideral rotation period is found to be 5.57497 ± 0.00013 hr and its rotation is retrograde. The lightcurve amplitude ranged from 0.60 to 0.70 mag, depending on phase angle. Britta can be classified as an S-type asteroids based on its measured spectra and albedo. The absolute magnitude and slope parameter derived from the lightcurve maxima are H0 = 11.67 ± 0.03 and G0 = 0.03 ± 0.04. A 0.002 mag deg−1 phase reddening in B·V was also measured. 1972 Yi Xing was less well observed but a unique synodic period of 14.183 ± 0.003 hr was determined. The observed lightcurve amplitude was 0.18 mag. Five-color measurements are consistent with an S-type classification. For an assumed slope parameter G = 0.25, Yi Xing's (lightcurve maximum) absolute magnitude H0 = 13.32 ± 0.01.  相似文献   

    13.
    Abstract— Phosphates in martian meteorites are important carriers of trace elements, although, they are volumetrically minor minerals. PO4 also has potential as a biomarker for life on Mars. Here, we report measurements of the U‐Th‐Pb systematics of phosphates in the martian meteorite ALH 84001 using the Sensitive High Resolution Ion MicroProbe (SHRIMP) installed at Hiroshima University, Japan. Eleven analyses of whitlockites and 1 analysis of apatite resulted in a total Pb/U isochron age of 4018 ± 81 Ma in the 238U/206Pb‐207Pb/206Pb‐204Pb/206 Pb 3‐D space, and a 232Th‐208Pb age of 3971 ± 860 Ma. These ages are consistent within a 95% confidence limit. This result is in agreement with the previously published Ar‐Ar shock age of 4.0 ± 0.1 Ga from maskelynite and other results of 3.8–4.3 Ga but are significantly different from the Sm‐Nd age of 4.50 ± 0.13 Ga based on the whole rock and pyroxene. Taking into account recent studies on textural and chemical evidence of phosphate, our result suggests that the shock metamorphic event defines the phosphate formation age of 4018 ± 81 Ma, and that since then, ALH 84001 has not experienced a long duration thermal metamorphism, which would reset the U‐Pb system in phosphates.  相似文献   

    14.
    We present a further investigation of the periodogram resulting from the photometric data by Rodríguez et al. (1997) for comet C/1995 O1 Hale–Bopp and interpret that the main period in the data is 11.23 ± 0.01 h, but not 7.19 days. The latter is now attributed to an alias of the 11.23-h period. Assuming that the periodicity observed in the photometry is the solar day, the 11.23-h period is consistent with estimates of the sidereal rotation period by Farnham et al. (1998), and Jorda et al. (1997–1999) provided that the obliquity of the comet‘s equatorial plane to its orbital plane is larger than 75° and 80°, respectively. This result is in agreement with estimates of the obliquity by Sekanina (1997–1999) and Jorda et al. (1998). A weaker periodic signal in the light curve could be 5.48 ± 0.01 h, but we suggest that this is an alias of a 3.25 ± 0.01 h period of unknown origin. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

    15.
    研究了Blazar天体3C 66A光学波段的准周期光变行为.收集了3C 66A光学V波段将近18 yr (2003—2021年)的测光数据,观测数据主要来源是:上海天文台(ShAO)、 AAVSO (The American Association of Variable Star Observers)数据库、Steward天文台.使用了Jurkevich和Lomb-Scargle两种方法分析了光变数据.Jurkevich方法得到了(850±90) d (~2.3 yr)和(1150±140) d (~3.2 yr)的光变周期,而Lomb-Scargle方法在充分考虑了“红噪声”效应之后同样得到了(869±70) d和(1111±90) d的光变周期,它们的置信水平分别为>99%和> 95%.通过与之前的研究结果比较,发现~2.3 yr的光变周期在3C 66A的历史光变数据中是一个稳定的周期,而~3.2 yr的周期则是不稳定的.  相似文献   

    16.
    Lovina, classified as an ungrouped ataxite, is controversial and its identity as a meteorite has been questioned. In this work, we use Pb isotopes on targeted troilite nodules in Lovina as a test of its antiquity and provenance. Although precise ages cannot be obtained, LA‐ICP‐MS offers a rapid, straightforward procedure to establish the source of lead, whether ancient (meteoritic) or modern (terrestrial). For nine pristine, unweathered nodules in Lovina, we find a lead isotopic composition of: 206Pb/208Pb = 0.492 ± 0.003 (2σ, MSWD 0.79; 95%) and 207Pb/206Pb = 0.852 ± 0.003 (2σ, MSWD 1.09; 95%) with no detectable uranium. All lead compositions of the troilite fall in the range expected for modern environmental and mantle lead and are distinctly different from the primordial Canyon Diablo Troilite (CDT) composition of ancient meteoritic troilite. Although the origin of Lovina remains unknown, we conclude that lead in the Lovina troilite is unsupported by U decay and originated from a terrestrial source.  相似文献   

    17.
    A.W. Harris  J.W. Young 《Icarus》1980,43(1):20-32
    Photoelectric observations of 32 asteroids observed from Table Mountain Observatory during the second half of 1978 are reported. Rotation periods were obtained for most objects. Absolute magnitudes and phase functions were not determined for any of these asteroids. The geometric mean rotation period of the 32 asteroids observed is 14.2 ± 1.6 hr, as compared to 9.38 ± 0.35 hr for 182 asteroids analyzed in Paper I (A. W. Harris and J. A. Burns, 1979, Icarus 40, 115–144). We attribute this difference to an observational selection effect which favors detection of fast rotation, as discussed in Paper I. If this is true, then the present sample contains the reverse bias, since it is complete in that a period (in some cases very approximate) was obtained for each object observed, but fast rotators are underrepresented due to prior discovery of their rotation properties.  相似文献   

    18.
    Adding the angular velocity of sidereal solar rotation and the apparent rotational effect of the Earth's revolution vectorially, a new synodic solar rotation vector has been obtained. The sidereal and synodic solar rotation axes (and equators) are separated. Using the known parameters of the Earth's orbital motion, the synodic rotation angular velocity and the inclination of the synodic equator, the corresponding sidereal rotation parameters have been calculated (ω1 = 2.915 × 10#X2212;6 rad s#X2212;1 and i 1 = 6.076). Various linear rotational velocities at the solar globe are briefly described.  相似文献   

    19.
    We present optical observations of the recently discovered ROSAT source RX J1238 − 38, which is a new member of the intermediate polar class of asynchronous magnetic cataclysmic variables (CVs). Optical photometry reveals two coherent periodicities at 1860 and 2147 s respectively, with similar amplitudes of ∼ 8 per cent. Infrared ( J -band) intensity variations are detected only at the 1860-s period, at an amplitude of ∼ 15 per cent. The initial hypothesis, that these two periods were the spin and synodic (i.e., beat) period respectively, appears not to be supported by the spectroscopic data. The emission lines vary on the longer photometric period, and radial velocity variations are detected at this period and at a longer period of ∼ 5300 s, which we identify as the spin and orbital periods respectively. The most likely explanation for the 1860-s period is that it is the first harmonic of the ω − Ω sideband, leading to an improved determination of the orbital period as 5077 s (= 84 min). If this interpretation is correct, RX J1238 − 38 joins EX Hya as the only other intermediate polar below the 2–3 h period gap, and with an orbital period close to the minimum for CVs with non-degenerate secondaries. The spin-modulated emission-line radial velocities and widths appear to be anticorrelated, with maximum width occurring at maximum blueshift. Such an anticorrelation is expected for aspect changes of accretion curtains. Polarimetric observations of RX J1238 − 38 were inconclusive, although we can put a limit of 0.4 per cent on any variability on the circular polarization, and certainly there is no indication of variations at the photometric or spectroscopic periods.  相似文献   

    20.
    The Kuiper-Belt Object (29981) 1999 TD10, classified as a Scattered-Disk Object, has been observed at three different phase angles with the ESO 8.2-m VLT and FORS 1 instrument in polarimetric mode in November and December 2003. These observations have been used to compute the Stokes parameter q, which represents the linear polarization degree. We have also used the previously published photometric observations to improve the R-band phase function. The main conclusions are as follows: (i) a negative linear polarization degree decreasing with phase angle α up to, at least, α=3°, (ii) for α=3°, (iii) a possible color effect between the R and V band, the polarization degree being more negative in R. The R-band polarimetric observations can be explained by the coherent-backscattering mechanism and fitted by a two-component Rayleigh-scatterer model for a spherical small body. The rotation period of 15.382±0.001 h published by Mueller et al. (2004, Icarus 171, 506–515) and Choi et al. (2003, Icarus 165, 101–111) is confirmed. The R-band phase curve provides H=8.35±0.02 and G=−0.25±0.022 parameters with the IAU HG formalism.Based on observations obtained at the Cerro Paranal observatory of the European Southern Observatory (ESO) in Chile.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号