首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
文章采用1998—2017年间日本气象厅(Japan Meteorological Agency, JMA)台风最佳路径、热带测雨卫星(tropical rainfall measuring mission, TRMM)逐3小时降水及日本55年再分析(Japanese 55-year reanalysis, JRA-55)逐6小时数据, 针对起源于西北太平洋、移动路径位于台湾岛以南且台风最外围第一波螺旋雨带经过华南地区的台风, 将符合上述条件的台风筛选出来后, 由卫星云图和TRMM降水资料判断出台风第一波螺旋雨带到达华南地区的日期, 并分析雨带到达之前台风对该地区日降水的影响, 以此探索台风登陆前外围环境场对华南地区降水日变化的影响规律及机理。结果表明, 在台风临近华南地区期间, 一方面台风外围气流会向该地区输送水汽促进该地区降水, 另一方面华南地区在台风外围辐散场下沉气流的影响下降水受到抑制。当前者作用大于后者时, 华南地区降水增强, 此情形下华南地区大气不稳定极值时间多发生于午后, 午后降水明显, 对应的台风多发生于7、8月份, 西太平洋副热带高压偏东, 有利于台风北移, 台风第一波雨带到达华南地区时台风中心距华南沿海较近; 反之, 华南地区降水减小, 大气层结较稳定, 夜间至清晨出现因辐射冷却导致的层云降水峰值, 对应的台风多出现于9、10月份, 西太平洋副热带高压西伸, 不利于台风向北发展, 台风第一波雨带到达华南地区时台风中心距华南沿海较远。文章结果有望提高对台风登陆前的外围环流场影响沿海地区云和降水过程的规律性认知。  相似文献   

2.
大风是台风引发的三大灾害之一,考虑到现有的台风大风研究相对较少、预报经验也比较不足,因此对其预报方法进行回顾总结具有十分重要的意义.从经验预报、统计预报、数值模式预报及数值预报产品释用等4个方向梳理了台风大风预报技术的研究与应用现状:天气图、卫星云图和雷达图是经验预报中非常重要的工具;统计预报根据方法的不同可细分为回归...  相似文献   

3.
利用中央气象台台风实时业务定位资料和地面气象观测资料对2020年西北太平洋和南海的台风活动主要特征以及主要影响我国的台风路径、强度及风雨情况进行了统计分析.2020年西北太平洋和南海共有23个台风生成,较多年平均值(27.0个)偏少4.0个;有5个台风登陆我国,较多年平均值(7.0个)偏少2.0个.2020年台风活动的...  相似文献   

4.
利用中央气象台台风实时业务资料、自动气象站观测资料以及卫星云图等对2021年西北太平洋及南海台风活动的主要特征和影响我国台风的路径、强度及风雨影响进行分析和回顾。结果表明:2021年西北太平洋及南海台风生成个数偏少,生成源地整体偏西;台风强度偏弱,但有多个台风出现了快速增强,其中台风“烟花”“灿都”的24 h强度增幅达40 m·s-1,为近30 a少见;2021年先后有5个台风登陆我国,另有2个台风影响我国。在登陆台风中,4个登陆华南的台风强度均弱于历史平均值。所有登陆台风在登陆后的维持时间都明显高于历史均值,特别是台风“烟花”为历史上登陆华东后维持时间最长的台风,给我国带来了严重的灾害影响。  相似文献   

5.
统计分析2008—2017年造成福建暴雨的早台风个例,得到其基本统计特征:早台风生成及其对福建的影响主要集中于6月中旬至7月上旬;生成于南海的近海早台风导致福建暴雨的概率最高;影响福建的早台风强度不强,生命史最强强度大多为台风级至热带风暴级;造成福建暴雨的早台风以南海北上或转向登陆华南沿海最多;早台风暴雨影响程度与台风登陆地点以及登陆后路径密切相关。  相似文献   

6.
利用中国气象局热带气旋最佳路径等资料,对2022年西北太平洋及南海台风活动的主要特征和影响我国台风的路径、强度及风雨影响进行分析和回顾。结果表明:2022年西北太平洋及南海台风生成个数与常年持平,台风总体强度偏弱,生成源地显著偏北;登陆台风个数偏少,登陆强度偏弱;有3个台风集中在广东西部登陆,另外强台风“梅花”是1949年以来首个4次登陆不同省份的台风。全年多台风事件频发,共存的台风共计有11组,历史罕见。2022年台风灾害影响较轻,夏台风偏少,秋台风活跃。  相似文献   

7.
非常复杂的异常台风路径的卫星云图特征   总被引:1,自引:0,他引:1  
异常的台风是台风预报中的一个主要难点,而非常复杂的怪路径虽然次数很吵,但却无法预报,有些甚至在事后都难以解释,本文对9119号台风(Nat)的一次怪路径作了个例分析,指出卫星云图不仅能对9119怪路径作出很好的解释,而且在其二次热带风暴一台风强度阶段能作出较好的预报。  相似文献   

8.
-At present, it is still difficult to obtain an accurate maximum wind speed of typhoon with modern means,such as satellite survey , radar tracing and airplane reconnaissance. The performance of statistical equation established with observational maximum wind speed and the central pressure of typhoon is unstable ,and it is unreliable in operational use. Therefore a general pressure field model of typhoon is introduced in this paper based on atmospheric motion equations and formulas are derived for computing the maximum wind speed around typhoon center over sea surface . The theoretical curves derived from these formulas are in good agreement with those using the statistic empirical curves of typhoon pressure-wind relations over the western Pacific. Tests were conducted for typhoons which occurred in 1973 and in 1983 and the strongest typhoons selected each year during 1970 and 1978,the results were satisfactory. Meanwhile the analyses of computing results showed that the effect of Coriolis force could be  相似文献   

9.
东海大陆架常受台风侵扰, 强风浪在破坏水体结构的同时引起大量泥沙再悬浮。台风是影响东海表层悬沙浓度(suspended sediment concentration, SSC)的主要动力之一。本文将台风类型分为登陆和非登陆两大类共八种。基于GOCI (geostationary ocean color imager)遥感数据统计分析了2017~2020年9个不同类型台风事件对表层悬沙浓度时空分布的影响。结果表明, 近海活动型和远海活动型台风使SSC显著增高了150%~200%; 随着风速减小, SSC逐渐下降, 但需要3~4 d才能恢复至台风之前的SSC。风速变化与SSC变化率的相关性高达0.86。近海及远海活动型台风影响研究区域的风向为偏北风, 该类型台风使秋季SSC等值线向外海延伸, 出现舌状分布特点; 而登陆型台风影响研究区域的风向前期为偏北风, 后期为偏南风, 该类型台风使SSC等值线呈基本平行向外海移动较短距离, 但不出现向外海延伸的舌状分布。近海及远海活动型台风事件使SSC分布迅速向气候态平均天气下的冬季输运类型转变, 其中近海活动型台风对SSC分布的影响比远海活动型更显著。登陆型台风对研究区域SSC跨陆架方向分布的影响比远海活动型台风更小。  相似文献   

10.
吴元锋 《海洋预报》2011,28(4):6-13
从0908号台风“莫拉克”的高空环流场、卫星云图和成灾原因等方面着手,分析了“莫拉克”台风所具有的路径复杂、移速缓慢、生命史长、强度强、雨量大、灾害重和两次登陆等特点.结果表明,副热带高压、热带风暴“天鹅”、热带低压等环流系统及台湾岛特殊地形对“莫拉克”移动路径、移动速度和强度变化均起着重要影响.本文进一步分析了“莫拉...  相似文献   

11.
本文对1982年以来我国东部海域登陆再发展台风进行统计分析,选取其中15个个例进行对比分析,根据其移动路径和增强幅度分为3类,研究表明:台风如果移向东北方向则再发展较弱,而向北移动则发展较深,且向北越深发展越强,这与副热带高压(副高)的位置和强度以及上游高空槽存在一定的关系(整体偏向于正相关),在北上的过程中,如果与高空正位涡发生耦合,则增强越大,但非绝热加热所占的比重越小。同时动能收支分布显示,台风加强越深,动能转换越强,两者成正比,但在能量转化的方向和位置上,三者又存在差异。  相似文献   

12.
陈煌 《台湾海峡》1998,17(1):21-24
本文从涡度和高度的垂直分布及卫星云图的分析揭示了副热带高层冷涡的结构和生消。高层冷涡存在时与之相距10个纬距的台风将受其牵引,并做穿越低层副热带高压的运动;这类登陆台风,中低层为副高控制,其影响范围仅限于台风中心附近较小的范围内。  相似文献   

13.
We investigated the movement of the Kuroshio axis on the northeast shelf of Taiwan associated with the passage of typhoons, using sea surface current data observed by the ocean radar system on Yonaguni and Ishigaki islands. First, we examined daily Kuroshio axis variation on the northeast shelf of Taiwan during typhoon events. The ocean radar data showed that the Kuroshio axis moved onto the shelf after passages of typhoons. The Kuroshio moved onto the shelf and stayed there after the passage of Typhoon Hai-Tang; while the Kuroshio maintained this pattern, southerly wind blew continuously for 4 days. The mean current speed northeast of Taiwan after the typhoon's passage increased by 18 cm s−1. In addition, the sea level difference between two satellite altimetry tracks east of Taiwan increased by 14.4 cm. These results suggest that coastal upwelling east of Taiwan caused by the southerly wind generated an east–west sea level difference that, in turn, generated a northward geostrophic current. This current could have enhanced the Kuroshio east of Taiwan, and pushed it onto the shelf.  相似文献   

14.
In general, the westward typhoons are associated with zonal flow patterns. But if there was a high level cold vortex in the southern region of the subtropical high, the typhoon would pass through the subtropical high towards the North.In the paper, this kind of knotty typhoons track was discussed. The temperature, wind, divergence and vorticity fields in the subtropical high regions, and the structure of cold vortex were analysed. The cold vortex not only weakens the subtropical high, but also forces the typhoon to move northward.  相似文献   

15.
长江口受台风影响严重,台风风暴潮、上游洪峰及天文大潮相遇将致使长江下游至长江口水位暴涨,对沿岸至河口的防汛安全构成严重威胁。基于ADCIRC模型构建东中国海至长江口风暴潮数学模型,模拟9711号台风和0012号台风两场典型台风水位过程。以典型台风为基础构成多种台风路径,分析不同登陆位置和走向对长江沿线风暴增水影响。研究大洪水、不同路径台风、天文大潮共同影响下长江下游沿线风暴增水分布规律。结果表明:登陆位置处于长江口南侧情况下长江河道沿线增水大于正面登陆长江口和北侧登陆型台风;平行于长江河道方向移动的台风造成沿线增水大于斜向穿越长江口的台风,不同台风走向对于风暴增水影响程度小于登陆位置;台风风暴潮、上游洪峰及天文大潮“三碰头”情形下长江沿线增水分布呈单峰型,从大通至江阴不断增大,江阴至中浚维持高位,中浚至口外迅速减小。  相似文献   

16.
王风范  耿敏 《海洋预报》1995,12(2):61-66
本文以9414、9415号两个连续北上台风为例,证明能量场的分布与台风移向有着明显的对应关系。  相似文献   

17.
宁德地区是我国受风暴潮影响较为严重的区域之一,同时也是宁德核电站等众多沿海大型工程所在地.鉴于该区域特殊的地理位置和海洋灾害的严重性,以宁德核电站为中心,对该区域所面临风暴潮风险的特征参数进行全面、综合的定量评估,包括潮汐特征、平均海平面变化、台风和风暴潮基本特征,特别是可能最大风暴潮的计算.研究结果表明,该区域10%超越频率的天文潮高、低潮位分别为355、-341 cm;平均海平面变化速率为0.162 cm/a;千年一遇的台风中心气压约为895h Pa,该气压时的最大台风风速半径为40 km.在进行大量敏感性实验的基础上,对台风移速、移向和风暴增水/减水的关系,以及增水和减水的差异就行了详细的研究,得出:台风增水主要是由移向在305°左右(295°~315°)、路过核电站下方(核电站以南)的台风引起,且增水随台风移速增大而增大;可能最大台风风暴增水由路径经过核电厂址南40 km的台风(移向295°、移速28 km/h)引起,最大台风增水值为526.8 cm;对于可能最大台风减水而言,最有利于台风风暴减水的移向在355°~360°和0°~15°之间,其中可能最大台风减水为-301.9 cm,由移向5°、移速30 km/h、路径经过核电厂址南30 km(0.75台风最大风速半径)的台风引起.  相似文献   

18.
In this paper we develop further the satellite radiothermovision methods for analyzing the evolution of tropical cyclones. The complicated case of Goni and Atsani interacting typhoons is considered. It has been shown that, although their interaction does not explicitly influence the features of the typhoon trajectories, indications of the formation of complex advective fluxes in the lower troposphere can be revealed from both a qualitative analysis of miscellaneous satellite data and a quantitative estimation of latent heat advection. At the same time, in contrast to the previous works, we had to introduce the integration contours of a complex form (differing from a circular one) into the analysis, so that the energy balance of the typhoon system is correctly described. In a general way, defining such contours is a separate problem whose solution is probably related to the invocation of a large volume of additional satellite information. Due to the peculiarity of the considered case of Goni and Atsani twin typhoons, we demonstrated the effectiveness of a simplified approach that uses a composite contour formed by overlapping two circular ones. Generally, as in the cases previously considered, we found the interrelation between the intensification and dissipation of typhoons (tropical cyclones) and the modes of convergent and divergent advection of latent heat with amplitudes sufficient to support the total power of the system.  相似文献   

19.
利用逐时雨量分布图,对登陆珠江三角洲的热带气旋暴雨中尺度特征进行分类、对比和合成分析。实际资料证实了大范围的热带气旋暴雨是由若干中尺度雨团、雨带造成的,纯热带气旋环流形成的中尺度雨团、雨带具有与热带气旋云带大体一致的分布特征;有冷空气与之配合时,热带气旋环流北缘形成东西向的中尺度雨带;热带气旋登陆后的3h可能出现最大中尺度雨团;随热带气旋环流的填塞减弱,中尺度而团也逐渐减弱消失;山地对中尺度雨团的移动起阻滞加强作用,有利的地形与暖湿气流配合,将激发生成新的中尺度雨带。  相似文献   

20.
More than 50% of the typhoons landing in China have landed on the southeast coast, where they have caused great pressure on the coastal environment. Seagrass, one of the most important constituents of coastal ecosystems, is also greatly affected by typhoons. In order to clarify how seagrass distribution variation is affected by typhoons in coastal areas in southeast China, data of Typhoons Dawei and Tianying (category 4 and category 2 respectively, which just ran through the southern part of Hainan province) have been studied. In situ observation and satellite remote sensing data (CBERS-China Brazil Earth Resources Satellite) in 2004 and 2006 were used to retrieve seagrass distribution in Xincun Bay, Hainan province. In situ observations showed that leaf length, stem biomass and above ground biomass on average showed evidence of reduction after Typhoons Tianying and Dawei. However, seagrass density showed no evidence of reduction after typhoon Tianying and Dawei passed by and increased rapidly in January 2006. From results of satellite remote sensing data, seagrass distribution can be detected with high accuracy, and the area of seagrass distribution on the south coast of Xincun Bay in 2006 after the typhoon passed by was smaller than that in 2004 in region A and B. However, in region C, area of seagrass coverage under 20% increased. These results demonstrated that typhoons Tianying and Dawei damaged seagrass bed and helped seagrass to get rid of aged and dead leaves, and this correspondingly facilitated seagrass growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号