首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex studies of the mineral composition and petromagnetic properties of the rocks which compose an edifice of the Minami–Khiosi submarine volcano located in the Mariana island arc are carried out for the first time. The Minami–Khiosi Volcano is a part of the Khiosi volcanic complex within the alkaline province of the Idzu–Bonin and Mariana island arcs. All of the rocks analyzed are enriched in K2O (1.34–3.30%), Ba (370–806 ppm), and Sr (204–748 ppm). The basalt has a porhyric texture and contains mosTy olivine phenocrysts as individual crystals and growths with a size up to 2 cm; the groundmass is finecrystalline. The samples studied contain at least three Fe-bearing oxide minerals. These are predominant magnetite and less abundant ilmenite and Fe hydroxides. It is established that the samples studied are magnetically isotropic and have high values of natural remanent magnetization and Königsberger ratio. Similarly to the other island-arc Late Cenozoic submarine volcanoes in the western part of the Pacific Ocean, the samples studied are strongly differentiated by the value of natural remanent magnetization and magnetic susceptibility. The low-coercivity magnetic minerals (titanomagnetite and magnetite) of the pseudo-single-domain structure, as well as high-coercivity minerals (hematite) are the main carriers of magnetization. The high values of natural remanent magnetization are explained by the pseudo-single-domain structure of the titanomagnetite grains, whereas the high values of magnetic susceptibility result from the high concentration of ferromagnetic grains.  相似文献   

2.
Petrology of the Partridge River Intrusion, Duluth   总被引:2,自引:1,他引:2  
Drill core DDH-221 was drilled for the Minnamax Project by AMAX Exploration, Inc., as part of the exploration for Cu-Ni sulfidesin the basal rocks of the northwestern margin of the DuluthComplex. The drill core intersects 525 m of the Partridge RiverIntrusion before passing into the Virginia Formation footwall.The rocks in the drill core comprise plagioclase and olivinecumulates, with troctolite and olivine gabbro as the most commonrock types. Sulfide- and oxide-bearing gabbros are present inthe lowest 100 m of the core where decreases in the crystalsizes of plagioclase and olivine, and the appearance of ophitictextures adjacent to the footwall, indicate that the chilledmargin of the intrusion has been preserved (Chalokwu & Grant,1990). The concentrations of incompatible elements in the wholerocks and the iron contents of olivine and pyroxenes all increasesharply in the lowest 100 m of the drill core (Chalokwu &Grant, 1990), and are interpreted as the downward increase inintercumulus liquid now preserved as intercumulus phases, andthe reaction of this liquid with olivine and pyroxenes. Mass, balance calculations for rocks containing widely differentvolumes of intercumulus phases show that the intercumulus liquidwas a chemically uniform ferrodiorite that can be derived fromKeweenawan high-alumina olivine tholeiite by plagioclase (An63),clinopyroxene (En50Fs10Wo40), and olivine (Fo71) fractionation. Initial 87Sr/86Sr values for plagioclase range between 0–704764and O-706335, with the highest values occurring adjacent tothe footwall Virginia Formation, and the lowest at intermediatedepths in the core. These variations are similar to 87Sr/86Srvalues reported earlier by Grant & Moiling (1981) From theadjacent core DDH-295, although the values are all greater thanpublished initial ratios for the least altered Keweenawan lavas.We attribute the isotopic variations in core DDH-221 to isotopicheterogeneities in the Partridge River Intrusion magmas, andto limited assimilation of the Virginia Formation within 50m of the footwall. Rare-earth and other trace elements in the intercumulus liquidfrom core DDH-221 have similar distributions to the same elementsin Keweenawan basic to intermediate lavas. We conclude that the rocks of the Partridge River Intrusionsampled in drill core DDH-221 comprise a mechanical mixtureof cumulus plagioclase and olivine and intercumulus liquid thatwere not in equilibrium with each other, and that the intercumulusliquid was broadly consanguineous with Keweenawan high-aluminaolivine tholeiite lavas, but was modified to a greater extentby assimilative exchange with continental crust. After emplacement,the crystal-liquid mixture was modified by flotation of thecumulus plagioclase out of the basal zone, and by limited —but not ubiquitous — assimilation of footwall VirginiaFormation.  相似文献   

3.
Xixi Zhao  Masako Tominaga   《Tectonophysics》2009,474(3-4):435-448
Integrated Ocean Drilling Program (IODP) Expeditions 304/305 recovered a total of 1.4 km sequence of lower crustal gabbroic and minor ultramafic rocks from the Atlantis Massif oceanic core complex on the western flank of the Mid Atlantic Ridge (MAR) at 30°N. We conducted an integrated paleomagnetic and rock magnetic study on this sequence to help address the interplay between magmatism and detachment faulting. Detailed thermal and alternating-field demagnetization results demonstrate that stable components of magnetization of mainly reversed polarity with unblocking temperatures below the Curie temperature of magnetite are retained in gabbroic rocks at IODP Site U1309. Several samples also contain multicomponent remanences of both normal and reversed polarities that were acquired over sharply defined blocking temperature intervals, providing evidence for localized reheating of some intervals during both normal and reversed polarity periods. Results from a series of rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier rocks recovered at Site U1309D. The overall magnetic inclination of Hole U1309D is -35°, implying significant (up to ~ 50° counterclockwise, viewed to the north) rotation of the footwall around a horizontal axis parallel to the rift axis (010°) may have occurred. The tectonic rotations inferred by the paleomagnetic data suggest that the original fault orientation dipped relative steeply toward the spreading axis and subsequently rotated to a shallower angle. Coupled with the newly published U–Pb zircon ages for Hole U1309D rocks [Grimes, C.B., John, B.E., Wooden, J.L., 2008. Protracted construction of gabbroic crust at a slow-spreading ridge: Constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole 1309D, (30°N, MAR). Geochem. Geophys. Geosyst. 9, Q08012. doi:1029/2008GC002063], the new paleomagnetic data provide temporal and thermal constraints on the accretion history of the Atlantis Massif.  相似文献   

4.
We conducted rock magnetic and paleomagnetic research on two deep-sea sediment cores from the west Philippine Sea, located to the east of Benham Rise with the length of 4 m and water depth of over 5000 m. At the bottom of core 146 occurs a reversal of inclination and deflection of relative declination, which is recognized as Brunhes-Matuyama Polarity Boundary (MBPB). No reversal occurs in core 89, which implies a younger bottom age than that of core 146. Rock magnetic results reveal magnetic uniformities in mineralogy, concentration and grain size along the two cores, thus relative paleointensity variations are acquired. The three normalizers-anhysteresis remanent magnetization (ARM), magnetic susceptibility (k) and saturation isothermal remanent magnetization (SIRM) are used for normalization to obtain relative paleointensities. The three normalization results are averaged to indicate the paleoitensity of the cores and are further stacked together to get a synthetic curve for west Philippine Sea (named asWPS800 in this paper). Based on the magnetic correlation between cores and paleointensity to Sint800, we transfer the changes of rock magnetic parameters from depth to time. Furthermore, the astronomically tuned oxygen isotope from ODP site 1143 in the south China Sea is used for the glacial and interglacial indicator. Three concentration proxies (ARM, k and SIRM) and grain size indicators (k ARM/SIRM, k ARM/k) are examined according to the paleointensity-assisted chronology. The grain size changes in the two cores display a consistent pattern with the climatic changes embodied by oxygen isotope. The magnetic sizes are usually coarser in glacial periods and finer in interglacial times, which may reflect the influence of chemical erosion rather than fining from sea level rising on the source sediment. Furthermore, the sub-peaks and sub-troughs in interglaciations almost correspond with that of oxygen isotope records, which means sedimentation can reflect the subtle changes in interglaciations. This kind of revelation of climatic fluctuation by magnetic size is also found in the South China Sea, which shows a common pattern of magnetic signals to climate at least within East Asia. The concentration of ARM (representing more about fine grain) also shows similar response to glacial and interglacial cycles, that is, high in interglacial cycle and low in glacial cycle; but k and SIRM (reflecting more about coarse grain) lack the response to the climatic cycles. At the same time, S-ratio lacks the correlation with aeolian dust record and rhythmic changes, indicating the dominant source of main magnetic carrier (low coercivity magnetite) is the suspended matter instead of dust. The decreasing trend of sedimentation rate from west to east also reveals that the sediments are mainly from west Luzon and adjacent land. Grain sizes first became coarse and then stable around 400 ka B.P., and at the same time all the magnetic contents lowered and amplitude of magnetic mineral changes increased. The magnetic transition around 400 ka B.P. is simultaneous with the decreases of carbonate content, reflecting a global carbonate dissolution event, i.e. mid Brunhes event. The synchronization of magnetic content and grain size with climatic cycles of glacials and interglacials imply the validity of paleointesnityassisted chronology. Also, the response of rock magnetic signals to stable oxygen isotope changes and carbonate variation reveals that rock magnetismmethod can be an effective tool for paleoclimatic and paleoceanographic research. __________ Translated from Quaternary Sciences, 2007, 27(6): 1040–1052 [译自 : 第四纪研究]  相似文献   

5.
《Precambrian Research》2007,152(1-2):27-47
Metasomatism above subduction zones is an important process that produces heterogeneous mantle and thus a diversity of igneous rocks. In the Panzhihua district, on the western margin of the Yangtze Block (SW China), two Neoproterozoic mafic intrusions, one olivine gabbro and one hornblende gabbro, have identical ages of 746 ± 10 and 738 ± 23 Ma. Both of the gabbros are tholeiitic in composition and have arc-like geochemical compositions. The hornblende gabbros have K2O concentrations ranging from 0.70 to 1.69 wt.% and show enrichment of Rb, Ba, U, Th and Pb and depletion of Nb,Ta and Ti. They have variable 87Sr/86Sr ratios (0.7045–0.7070) with constant ɛNd(t) values (−0.12 to −0.93). The olivine gabbros have relatively low K2O (0.19–0.43 wt.%), are depleted in Rb and Th relative to Ba and U, and have obvious negative Nb–Ta and Zr–Hf anomalies on primitive mantle-normalized trace element diagrams. Their ɛNd(t) values range from −0.64 to −1.73 and initial 87Sr/86Sr ratios from 0.7070 to 0.7075. Both types of gabbro experienced fractional crystallization of clinopyroxene, plagioclase, amphibole and minor Fe–Ti oxide. The parental magmas of the olivine and hornblende gabbros were formed by about 20% partial melting of garnet–spinel lherzolite and spinel lherzolite, respectively. According to trace elemental ratios, the hornblende gabbros were probably derived from a source strongly modified by subducted slab fluids, whereas the olivine gabbros came from a mantle source modified by subducted slab melts. The close association of the olivine gabbros and hornblende gabbros suggests that a steep subduction zone existed along the western margin of the Yangtze Block during Neoproterozoic time. Thus, the giant Neoproterozoic magmatic event in South China was subduction-related.  相似文献   

6.
New field work and petrological investigations of the largest gabbro outcrop in Iceland, the Hvalnesfjall gabbro of the 6–7 Ma Austurhorn intrusive complex, have established a stratigraphic sequence exceeding 800 m composed of at least 8 macrorhythmic units. The bases of the macrorhythmic units are composed of 2–10 m thick melanocratic layers rich in clinopyroxene and sometimes olivine, relative to the thicker overlying leucocratic oxide gabbros. While the overall compositional variation is limited (Mg# clinopyroxene 72–84; An% plagioclase 56–85), the melanocratic bases display spikes in Mg# and Cr2O3 of clinopyroxene and magnetite indicative of magma replenishment. Some macrorhythmic units show mineral trends indicative of up-section fractional crystallisation over up to 100 m, whereas others show little variation. Two populations of plagioclase crystals (large, An-rich and small, less An-rich) indicate that the recharge magma carried plagioclase xenocrysts (high An-type). The lack of evolved gabbros suggests formation in a dynamic magma chamber with frequent recharge, tapping and fractionation. Modelling of these compositional trends shows that the parent magma was similar to known transitional olivine basalts from Iceland that had undergone about 20% crystallisation of olivine, plagioclase and clinopyroxene and that the macrorhythmic units formed from thin magma layers not exceeding 200–300 m. Such a “mushy” magma chamber is akin to volcanic plumbing systems in settings of high magma supply rate including the mid-ocean ridges and present-day magma chambers over the Iceland mantle plume. The Austurhorn central volcano likely formed in an off-rift flank zone proximal to the Iceland mantle plume during a major rift relocation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
This paper is devoted to the possibility of inverse remanent magnetization that is acquired in intrusive rocks due to a magnetic field that is produced by a sum of the normal core field and an anomalous effect induced by solidified rocks. A computer program has been created to simulate the process of solidification of intrusive body rocks from its edges to the center. The computing results showed the possibility of remanent magnetization that is acquired, which can have a different direction as compared to the external magnetic field, up to the inverse one.  相似文献   

8.
靳野  方念乔  袁晓博  胡克 《地学前缘》2021,28(1):334-352
西南印度洋脊的ODP 735B岩心中拥有大量富含钛铁氧化物的含氧化物辉长岩,此现象在岩性单元Ⅳ中表现尤为显著.同时,岩性单元1中主要硅酸盐矿物亦具有独特的成分变化趋势.以前研究将造成岩性单元I中氧化物辉长岩成因和主要造岩矿物成分变化趋势归因于具浮力的、高度分异的富钛铁熔体的作用,这些熔体应形成于735B钻孔之下或其附近...  相似文献   

9.
A paleomagnetic survey (34 sites, 200 core samples) of an Archean greenstone belt just north of the Grenville Front is described. Sixty per cent of the samples have blocking temperatures less than 400° C and remanent coercive forces predominantly below 100 Oe, and they provide no information about the Precambrian geomagnetic field. The other samples contain many magnetizations of which two (CS and CH) can be clearly recognized. The CS magnetization occurs in basic sills, and has high blocking temperature (550 to 650°C) and remanent coercive force (often exceeding 1000 Oe) and a direction (186°,?38°) that is not significantly different from that in Matachewan diabase dikes (2690 m.y.). CS is thought to have been caused by uplift following the Kenoran orogeny and its age is probably about 2600 m.y. No older magnetization has been found. The CH magnetization occurs in several different bodies and has a direction (119°, +51°) similar to that observed in rocks from other places close to the Grenville Front. CH has more variable blocking temperatures (200 to 650°C) and remanent coercive forces (200 to > 1000 Oe) and is considered to have been acquired by heating during uplift of the highly metamorphose Grenville Province to the south. Uplift occurred about 1000 m.y. ago, and the CH magnetization is considered to be of this age. Evidence is presented to support the suggestion that there was an extensive magnetization episode both within and adjacent to the Grenville Province at that time.  相似文献   

10.
A palaeomagnetic study of the Ronda peridotites (southern Spain) has been carried out on 301 samples from 20 sites, spread along the three main outcrops of the ultrabasic complex: Ronda, Ojén and Carratraca massifs. Different lithologies and outcrops with different degrees of serpentinization have been sampled and analysed. Rock magnetic experiments have been carried out on a representative set of samples. These measurements include: Curie curves, hysteresis cycles, isothermal remanent magnetization (IRM) acquisition curves, thermal demagnetization of IRM imparted along three orthogonal axes and magnetic bulk susceptibility. Results indicate that magnetite is the main magnetic mineral present in the samples. Stepwise thermal and alternating field (AF) demagnetization of the natural remanent magnetization (NRM) reveals the presence of a characteristic remanent magnetization (ChRM) carried by magnetite, and in some sepentinized samples, a northward component with variable unblocking temperatures up to 250–575 °C. The appearance and the relative intensity of this northward component are strongly related to serpentinization degree. Taking into account the geological history of the peridotites, the ChRM has been considered as a thermo-chemical remanent magnetization acquired during the first serpentinization phase associated to the post-metamorphic cooling of this unit. On the basis of radiometric and fission track analysis, the ChRM is proposed to have been acquired between 20 and 17–18 Ma. The inclination of the mean direction of the ChRM statistically coincides with the expected inclination for stable Iberia during the Oligocene–Miocene. The declination of the ChRM differs from the expected declination, indicating clockwise block rotations of 41±12° about vertical axes since the cooling of the peridotites. When applying a compositional layering correction, the ChRM directions fail to pass this kind of fold test, thus, the compositional layering was not a palaeohorizontal during ChRM acquisition time. Normal and reversed polarities of the ChRM are reported, showing that at least one reversal of the Earth's magnetic field took place during ChRM acquisition process. A tentative polarity zonation within the peridotitic outcrops is also suggested. No evidence is found from these data for the previously proposed simultaneity between post-metamorphic cooling and rotation of the peridotites.  相似文献   

11.
Abundant Fe–Ti oxide inclusions in cumulus olivine (Fo77–81) from the Panzhihua and Hongge intrusions, Emeishan large igneous province, SW China, document the first evidence for early crystallization of Fe–Ti oxides in ferrobasaltic systems in nature. The intrusions also contain significant stratiform Fe–Ti–V oxide ores. The oxide inclusions are sub-rounded or irregular, range from ∼5 to 50 μm in diameter, and are dominated by either titanomagnetite or ilmenite. The fact that the inclusions are either titanomagnetite- or ilmenite-dominant suggests that they are trapped crystals, instead of immiscible oxide melt, formed during growth of the host olivine. The absence of other silicate phases in the inclusion-bearing olivine is difficult to reconcile with a possible xenocrystic origin of the oxide inclusions. These oxide inclusions are thus interpreted to be cumulus minerals crystallized together and trapped in olivine from the same parental magma. In addition to Fe–Ti oxides, some inclusions contain amphibole + biotite ± fluorapatite that might have formed by reaction of trapped hydrous liquid with the host olivine. Numerical modeling of high-Ti Emeishan basalts using the MELTS program successfully simulates early crystallization of olivine (∼Fo81) and Fe–Ti spinel in the presence of a moderate amount of H2O (∼1.5 wt%) under pressure and fO2 conditions generally pertinent to the Panzhihua and Hongge intrusions. The modal mineralogy of the oxide inclusions is in good agreement with the bulk compositions of the ore, as inferred from whole-rock data, in a given intrusion. This is consistent with the interpretation that the stratiform oxide ores in the intrusions formed by accumulation of Fe–Ti oxide crystals that appeared on the liquidus with olivine and clinopyroxene.  相似文献   

12.
The northernmost Kamchatka Peninsula is located along the northwestern margin of the Bering Sea and consists of complexly deformed accreted terranes. Progressing inland from the northwestern Bering Sea, the Olyutorskiy, Ukelayat and Koryak superterranes (OLY, UKL and KOR) are crossed. These terranes were accreted to the backstop Okhotsk-Chukotsk volcanic-plutonic belt (OChVB) in northernmost Kamchatka. A sedimentary sequence of Albian to Maastrichtian age overlaps the terranes and units of the Koryak superterrane, and constrains their accretion time. A paleomagnetic study of blocks within the Kuyul (KUY) terrane of the Koryak superterrane was completed at two localities (Camp 2: λ=61.83°N, φ=165.83°E and Camp 3: λ=61.67°N, φ=164.75°E). At both localities, paleomagnetic samples were collected from Late Triassic (225–208 Ma) limestone blocks (2–10 m in outcrop height) within a melange zone. Although weak in remanent magnetization, two components of remanent magnetization were observed during stepwise thermal demagnetization at 32 sites. The A component of magnetization was observed between room temperature and approximately 250 °C. This magnetic component is always of downward directed inclination and shows the best grouping at relatively low degrees of unfolding. Using McFadden–Reid inclination-only statistics and averaging all site means, the resulting A component mean is Iopt=60.3°, I95=5.0° and n=36 (sites). The B magnetic component is observed up to 565 °C, at which temperature, most samples have no measurable remanent magnetization, or growth of magnetic minerals has disrupted the thermal demagnetization process. Combining sites with Fisher estimates of kappa (k-value)≥13 and n (sites)≥3, where bedding orientation differs within a block, most of these sites show the best grouping of B component directions at 100% unfolding, and two of the blocks display remanent magnetizations of both upward and downward directed magnetic inclination. Combining sites with Fisher estimates of kappa (k-value)≥13 and n (sites)≥3, the resulting overall B component paleolatitude and associated uncertainty are λobs=30.4°N or S, λ95=8.9° and n=19 (sites). When compared with the expected North America paleolatitude of λAPWP expected=57.9°N, our data support a model in which blocks within the Koryak superterrane are allochthonous and far travelled.  相似文献   

13.
Dolostones of the ∼1200 Ma Society Cliffs Formation within the hydrothermal zone surrounding the Nanisivik zinc deposits retain a stable characteristic remanent magnetization (ChRM) on alternating field and thermal step demagnetization. Based on the thermal data and saturation isothermal remanence analyses, the ChRM resides in pseudosingle domain magnetite and hematite. A paleomagnetic fold test favours a post-folding ChRM, and a paleomagnetic contact test, using a Franklin gabbro dike, indicates that the ChRM predates ∼720 Ma. The pole position calculated from the ChRM direction is at 168.2°E, 42.8°N (δp=4.9°, δm=6.8°), giving an age of 1095 ± 10 Ma on the well-defined “Logan Loop” portion of the North American apparent polar wander path. This age is considered to date recrystallization of the dolostone host rocks in the halo around the hydrothermal sulfide deposits. No evidence is found for a postulated Cretaceous remagnetization event in the region. Received: 9 January 1999 / Accepted: 3 March 2000  相似文献   

14.
El Teniente porphyry copper deposit, the world’s greatest intrusion-related Cu–Mo ore body, is hosted within basaltic–andesitic volcanic and gabbroic rocks (mafic complex). This ore body is strongly affected by multiple events of alteration/mineralization with pervasive potassic and chloritic alteration and coetaneous with associated copper mineralization. We present paleomagnetic results obtained from oriented samples at four locations within the mine and from two drill cores, 200 and 400 m long, respectively. Samples are representative of all the main hydrothermally altered rock units, with emphasis on the mafic host rock and dacitic (Teniente dacite porphyry) and dioritic porphyry intrusions. Magnetic experiments [hysteresis loop, isothermal remanent magnetization (IRM), kT curves, thermal, and alternating field demagnetization] show the presence of prevailing magnetite. Microscope and SEM observations show two families of magnetite, (a) large multidomain magnetite grains, associated with biotite and chlorite of various different hydrothermal alteration events, and (b) abundant small to medium grain-size magnetite (<10 μm) contained within plagioclase, either related to an early Na–Ca–Fe alteration or included within plagioclase during magmatic crystal growth. While the Teniente dacite porphyry and the quartz diorite–tonalite have low magnetic susceptibility (<0.0005 SI) and low natural remanent magnetization (NRM, 10−4–10−3 Am−1), the mineralized mafic host rocks have usually high susceptibility (>0.01 and up to 0.2 SI) with NRM in the range 0.1–2 Am−1. Most mafic complex rock samples have univectorial magnetizations during alternating field or thermal demagnetization. Within the mine, the magnetic polarity is spatially distributed. In the northern part of the deposit, the Teniente dacite porphyry, the associated hydrothermal breccias, and the hosting mafic complex record a reverse polarity magnetization, also observed in the El Teniente sub-6 mine sector immediately to the east and southeast. In the eastern part of the deposit, a normal polarity is observed for samples of the mafic complex from the two long drill cores. There is no evidence for superimposed magnetizations of opposite polarities in samples of the mafic complex. Anhysteretic remanent magnetization (ARM) in a DC field of 40 μT and NRM have similar magnitude and comparable behavior upon alternating field demagnetization. The well-defined strong remanent magnetizations associated with high unblocking temperatures (>500°C) indicate an acquisition of remanent magnetization during mineralization by circulating high temperature fluids related with ore deposition. Paleomagnetic results and the recorded polarity zonation suggest multiple mineralization events occurred at El Teniente, each one with its own evolution stages, superimposed within the district. These results indicate that a simplified broad four-stage model for El Teniente, as presented and overly employed by many authors, divided in (1) late magmatic, (2) main hydrothermal, (3) late hydrothermal, and (4) posthumous stage, does not recognize various short-lived single mineralization events, some superimposed and some distinctly separated in time and space. There is no paleomagnetic evidence for post-mineralization deformation  相似文献   

15.
A detailed rock magnetic and paleomagnetic study was performed on samples from the Neoproterozoic Itajaí Basin in the state of Santa Catarina, Brazil, in order to better constrain the paleogeographic evolution of the Rio de la Plata craton between 600 and 550 Ma. However, rock magnetic properties typical of remagnetized rocks and negative response in the fold test indicated that these rocks carried a secondary chemical remanent magnetization. After detailed AF and thermal cleaning, almost all samples showed a normal polarity characteristic remanent magnetization component close to the present geomagnetic field. The main magnetic carriers are magnetite and hematite, probably of authigenic origin. The mean paleomagnetic pole of the Itajaí Basin is located at Plat = − 84°, Plong = 97.5° (A95 = 2°) and overlaps the lower Cretaceous segment of the apparent polar wander path of South America, suggesting a cause and effect with the opening of the South Atlantic Ocean. A compilation of remagnetized paleomagnetic poles from South America is presented that highlights the superposition of several large-scale remagnetization events between the Cambrian and the Cretaceous. It is suggested that some paleomagnetic poles used to calibrate the APWP of Gondwana at Precambrian times need to be revised; the indication of remagnetized areas in southern South America may offer some help in the selection of sites for future paleomagnetic investigations in Precambrian rocks.  相似文献   

16.
Remanent magnetization (RM) of rocks with hematite–ilmenite solid solution (HISS) minerals, at all crustal levels, may be an important contribution to magnetic anomalies measured by ground and satellite altitude surveys. The possibility that lower thermal gradient relatively deep in the crust can result in exsolution of HISS compositions with strong remanent magnetizations (RM) was studied for two bulk compositions within the HISS system. Samples from granulite-terrane around Wilson Lake, Labrador, Canada contains titanohematite with exsolved ferrian ilmenite lamellae. Other samples from the anorthosite-terrane of Allard Lake, Quebec, Canada contain ferrian ilmenite with exsolved titanohematite lamellae. In both cases, the final exsolved titanohematite has similar Ti content and carries dominant magnetic remanence with REM (=NRM/SIRM, where NRM is the natural remanent magnetization and SIRM is the saturation isothermal remanent magnetization) that is comparable to the Ti-free end member. The RM was acquired prior to exsolution and the ilmeno-hematite-rich rock possesses thermal remanent magnetization (TRM), whereas rocks with hemo-ilmenite possess chemical remanent magnetization (CRM). In both cases, we found fairly large homogeneous grains with low demagnetizing energy that acquired intense RM. The magnetism of the ilmeno-hematite solid solution phases is not significantly perturbed by the continuous reaction: ilmeno-hematitetitanohematite solid solution. Hence, the occurrence of HISS in rocks that cooled slowly in a low intensity magnetic field will have an intense magnetic signature characterized by a large REM.  相似文献   

17.
Summary Mineral compositions in leucite-bearing and leucite-free rocks from Vico volcano are reported. FeO/MgO partitioning (Kdol/liq) between olivine and latite (0.14–0.22), and between olivine and trachyte (0.06–0.10) indicates a lack of equilibrium between mineral and host rock. This suggests that mingling and/or mixing between magmas was a leading process during magmatic differentiation. In addition, a phono-tephrite olivine population with high (0.84) and equilibrium (0.23–0.29) Kdol/liq values has been produced by the interaction of differently evolved magmas. Zoning in clinopyroxene and plagioclase from these rocks recorded the same processes. In addition, resorbed quartz xenocrysts with coronas of clinopyroxene microlites indicate that digestion of crustal rocks occurred during the residence of magma in a shallow level reservoir. Increasing Fe coupled with decreasing Ca in diopside crystals from some phonolites, together with the petrographic and trace element data, indicate that polybaric fractional crystallisation also may be involved in the genesis of magmas of the second period of Vico activity. Leucite-free trachybasalts erupted in a late stage contain highly forsteritic olivine phenocrysts (forsterite 84–88 mol.%) in-equilibrium (Kdol/liq = 0.24–0.35) with the host rock, which indicate that they did not suffer chemical modification at low pressure. Received November 28, 2000; revised version accepted September 27, 2001  相似文献   

18.
Copper–nickel sulfide mineralization in the Partridge River Intrusion of the 1.1 Ga Duluth Complex is restricted primarily to a 100 m thick zone near the base of the intrusion, which is heterogeneous at meter scales in terms of both sulfide contents and rock types, which include dunite, melatroctolite, troctolite, leucotroctolite, gabbro, olivine gabbro, gabbronorite, and rare norite. Olivine-rich troctolites and melatroctolites appear to have required mineral accumulation on a substrate, whereas augite troctolite and gabbros are thought to have formed via in situ crystallization of magmas ranging in composition from high-Al olivine tholeiite to high-Ti tholeiite. δ18O values of orthopyroxene-poor rocks in the Partridge River Intrusion range from 5.2 to 6.7‰. δ18O values of 6.7‰ are consistent with less than 20% contamination by high-18O metasedimentary country rock, either via devolatilization or local partial melting. Rocks with greater than ∼15% orthopyroxene, gabbronorites, and norites, are characterized by δ18O values in excess of 6.9‰, and required the assimilation of larger amounts of siliceous country rocks. Sulfur isotopic values in leucotroctolitic rocks that contain less than ∼400 ppm S and that overlie the basal zone range between −1.5 and 2‰, values that are consistent with those of mantle-derived sulfur. In contrast, δ34S values in the basal zone range from −1.4 to 10.5‰, where the 34S-enriched samples require an input of sulfur from metasedimentary country rocks. δ34S values of the rocks in the basal zone correlate with variations in olivine Fo content but not with S abundance. The wide range in δ34S values of rocks in the basal zone strongly suggests that magmas interacted with layers in the sedimentary country rocks that were themselves characterized by variable sulfide contents and δ34S values. The S isotopic data suggest that the heterogeneity observed in the basal zone results from the emplacement of relatively thin sheets of compositionally distinct magma. All rock types present in the basal zone can be produced as a result of variable degrees of fractionation of a parental high-Al olivine tholeiite, followed by varying degrees of contamination of derivative liquids by country rocks. The S-contamination process was essential for the development of Cu–Ni mineralization, and was restricted to the earliest stages in the development of the Duluth Complex at a time when volatile species such as S and H2O, and low-T partial melts of country rocks, were available to magmas. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

19.
Multivariate statistical analysis has been used for detailed examination of the relationship between the magnetic properties of Xuzhou urban topsoil, for example concentration-dependent properties (mass magnetic susceptibility (χ), susceptibility of anhysteretic remanent magnetization (χ ARM), saturation isothermal remanent magnetization (SIRM), soft remanent magnetization (SOFT), and frequency-dependent magnetic susceptibility (χ FD)) and feature-dependent properties (S −100 mT ratio, SIRM/χ ratio and F 300 mT ratio), and the concentrations of metals (Ti, Fe, Cr, Al, Ga, Pb, Sc, Ba, Li, Cd, Be, Co, Cu, Mn, Ni, V, Zn, Mo, Pt, Pd, Au, As, Sb, Se, Hg, Bi, Ag, and Sn), S, and Br in the soil. The results show that SIRM/χ ratios correlate best with the heavy metals (Hg, Cr, Sb, As, and Bi) which are mainly derived from coal-combustion emissions whereas χ FD correlates best with the metals (Al, Ti, V, Be, Co, Ga, Mn, and Li) which principally originate from soil parents. Concentration-dependent magnetic properties (χ ARM, χ, SIRM, and SOFT) correlate well with elements (Se, Pb, Cu, Zn, Fe, Ag, Sc, Ba, Mo, Br, S, Cd, Ni, etc.) which are mainly derived from road-traffic emissions. For the same chemical element, χ ARM, SIRM, and SOFT values are frequently better correlated than χ values, and χ ARM values are the best indicators of the concentrations of these elements associated with traffic emissions in this study area. In addition, S −100 mT ratios significantly correlate positively with Se, Sc, Pb, Cu, Zn, Mo, and S whereas F 300 mT ratios only correlate positively with Pt and negatively with Fe. These results confirm the suitability of different magnetic properties for characterizing the concentrations of heavy metals, S, and Br in Xuzhou urban topsoil.  相似文献   

20.
The Panzhihua gabbroic layered intrusion is associated withthe 260 Ma Emeishan Large Igneous Province in SW China. Thissill-like body hosts a giant Fe–Ti–V oxide depositwith 1333 million ton ore reserves, which makes China a majorproducer of these metals. The intrusion has a Marginal zoneof fine-grained hornblende-bearing gabbro and olivine gabbro,followed upward by Lower, Middle, and Upper zones. The Lowerand Middle zones consist of layered melanogabbro and gabbrocomposed of cumulate clinopyroxene, plagioclase, and olivine.These zones also contain magnetite layers. The Upper zone consistschiefly of leucogabbro composed of plagioclase and clinopyroxenewith minor olivine. Most rocks in the body show variable-scalerhythmic modal layering in which dark minerals, primarily clinopyroxene,dominate in the lower parts of each layer, and lighter minerals,primarily plagioclase, dominate in the upper parts. The oxideores occur as layers and lenses within the gabbros and are concentratedin the lower parts of the intrusion. Ore textures and associatedmineral assemblages indicate that the ore bodies formed by verylate-stage crystallization of V-rich titanomagnetite from animmiscible oxide liquid in a fluid-rich environment. The rocksof the Panzhihua intrusion become more evolved in chemistryupward and follow a tholeiitic differentiation trend with enrichmentin Fe, Ti, and V. They are enriched in light rare earth elementsrelative to heavy rare earth elements, and exhibit positiveNb, Ta, and Ti anomalies and negative Zr and Hf anomalies. Thesilicate rocks and oxide ores of the Panzhihua intrusion formedfrom highly evolved Fe–Ti–V-rich ferrobasaltic orferropicritic magmas. The textures of the ores and the abundanceof minor hydrous phases indicate that addition of fluids fromupper crustal wall-rocks induced the separation of the immiscibleoxide melts from which the Fe–Ti–V oxide ore bodiesin the lower part of the intrusion crystallized. KEY WORDS: magnetite; Fe–Ti-rich gabbro; layered intrusion; Panzhihua; SW China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号