首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
《Applied Geochemistry》2002,17(7):885-902
An ancient saprolite has developed on the Palaeoproterozoic granulite, granite gneiss and amphibolite bedrock of the Vuotso–Tankavaara area of central Finnish Lapland. The present day climatic regime in Finnish Lapland lies within the northern boreal zone and so the saprolite there can be regarded as fossil. Cores of saprolite were collected from 4 sections (42 samples) and analyzed chemically and mineralogically. In the study area, progressive weathering of the rocks has been marked by gradual enrichment in Al, Fe and Ti; and depletion of Na, K and Ca. The higher concentration of Fe(III) and water and reduced Na and Ca in weathered bedrock in the 4 sections are indicative of oxidation, hydration and leaching processes involved during weathering. The primary minerals in the saprolite are plagioclase feldspar, K-feldspar, quartz, garnet (almandine) and hornblende; the common secondary minerals are kaolinite, halloysite, and vermiculite in addition to minor amounts of sericite. Intense weathering is indicated by: (1) the presence of kaolinite and halloysite in 4 sections of different bedrock types, and (2) the comparatively lower SiO2/Al2O3 (wt.%) ratio (2.30) of weathered granulites (3 sections) as compared to fresh granulite (4.33) and that of weathered amphibolite (2.68) as compared to fresh amphibolite (3.56). In general, kaolinite and halloysite have formed through the weathering of feldspars, garnet, and biotite. Vermiculite is the most probable alteration product of biotite. The formation of kaolinite and halloysite in Finnish Lapland indicates wetter and warmer climatic conditions during the time of their formation than at present. The possible time for formation of the saprolite is early Cretaceous–early Tertiary into Middle Miocene.  相似文献   

2.
An investigation of vadose zone weathering processes has been undertaken on grussic saprolites developed on Californian granitoids. Preliminary results indicate strong climatic control, through infiltration, on the depth and intensity of weathering. At sites with higher infiltration, the vadose zone is comprehensively altered to grussic saprolite and saprock. Conversely, lower infiltration sites display only thin grussic saprolites, strongly influenced by rock texture. Both vadose zone and weathering depth appear to be governed by local base level, and vadose zone hydrology exerts a fundamental control on the effective operation and relative dominance of the key weathering reactions. In zones of matrix permeability, oxidation of biotite comprehensively disaggregates the rock but results in little mass loss and clay mineral formation. Conversely, the higher transient flow rates that characterize zones of fracture permeability result in plagioclase hydrolysis, significant mass losses and accompanying clay mineral formation. A variable hydrological regime may also contribute to high partial pressures of O2 in vadose zone pore waters and pore spaces, thereby enhancing the oxidative environment and further predisposing grussic saprolite formation.  相似文献   

3.
Chemical, mineralogical, and petrographic data from the Los Pijiguaos bauxite deposit, together with the water chemistry of the streams draining the area, were used to study the problem of lateritic bauxite formation at this location. The Los Pijiguaos bauxite, located at the northwestern edge of the Guayana Shield in Venezuela, is a lateritic bauxite developed on a Precambrian Rapakivi Granite Batholith, the Parguaza Granite. This deposit is situated on a planation surface at elevations between 600 and 700 m; it is believed to have originated during an erosional event that took place during Late Cretaceous-early Tertiary times.The weathering profile is composed of an upper bauxite zone, followed by a saprolite, and merging gradually to the fresh granite. The upper bauxitic zone contains gibbsite, quartz, hematite, and goethite. The saprolite contains kaolinite, quartz, and goethite and is characterized by a relict granitic texture that indicates little bulk volume change associated with the weathering process. The upper bauxitic zone has lost any textural resemblance with the parent granite, consistent with extensive volume loss.Bauxite and saprolite are separated by a transition zone where gibbsite and kaolinite coexist. Textures indicating the replacement of kaolinite by gibbsite point to the dynamic nature of the weathering profile, characterized by advancing reaction fronts.The chemical composition of the deposit defines trends that can be traced back to the composition of the parent granite and shows enrichment of Al2O3, Fe2O3, and TiO2, and depletion of SiO2, relative to the parent granite. The uppermost part of the profile is characterized by a further enrichment of Fe2O3 with respect to the other components of the bauxite. Important volume and mass losses in the bauxite have also been calculated, based on chemical composition and density measurements. The calculated losses are consistent with the textural observations in the bauxite.The chemical composition of the waters of streams draining the area shows strong seasonal patterns, consistent with the seasonal nature of the local climate (one dry and one rainy season per year, both about six months long). The balance between dissolved and suspended loads in these streams indicates that the magnitudes of chemical and physical denudation are similar, leading to approximately constant thicknesses of the weathering profiles. These observations are consistent with model calculations based on current climatic conditions and suggest that the bauxitization process is still active.  相似文献   

4.
为研究长江中下游红土剖面中粘土矿物的特征及其成因意义, 对安徽宣城红土剖面中粘土矿物进行深入、系统的X射线衍射分析.结果表明, 宣城剖面各土壤层中粘土矿物成分基本一致, 主要为蛭石、伊利石、高岭石, 以及粘土矿物过渡相. 由采自剖面上部样品的X射线衍射图可知, 经乙二醇饱和后7 ?衍射峰可分解为7.15、7.60和7.92 ?三部分, 表明除了高岭石(7.15 ?)外, 还存在高岭晶层含量分别为~80%和~95%的2种高岭-蒙脱石过渡相, 并以前者为主; 剖面下部样品在乙二醇饱和后, 7 ?衍射峰可分解为7.16、7.79和8.35 ?等3个衍射峰, 其中8.35 ?峰衍射强度很小, 表明除了高岭石外, 样品中存在高岭晶层含量为~90%和~43%的高岭-蒙脱石过渡相, 后者含量甚少.甲酰胺饱和结果表明, 高岭-蒙脱石混层粘土矿物相中高岭晶层为埃洛石相.加热试验的衍射图中10 ?衍射峰强度明显增强, 证实高岭相中含有一定数量的来源于绿泥石风化的蒙脱石间层; 而10 ?衍射峰的低角度一侧没有出现拖尾现象, 则指示高岭-蒙脱石混层矿物中的蒙脱石不是简单的羟基间层蒙脱石.此外, 红土剖面中还普遍出现过渡性粘土矿物伊利石-蒙脱石混层和伊利石-蛭石混层粘土矿物.大量过渡性粘土矿物相的出现, 从成土作用的角度上说明红土沉积物经历了沉积-风化、以及多期风化作用叠加, 而且在沉积-风化成土过程中, 气候环境变化于强烈化学风化的温暖、季节性干旱和强烈风化淋滤的温暖而更加潮湿的条件.蛭石-伊利石混层粘土矿物仅发育于红土剖面上部, 表明总体上剖面上部的化学风化程度低于剖面下部.   相似文献   

5.

Weathering profiles developed on granitic rocks, exposed in the breakaways of the Barr‐Smith Range in the N of the Yilgarn Block of Western Australia, consist of kaolinitic saprolites merging upwards into silcrete, sandstone and grit. The sandstones and silcretes may also form columns or dykes, penetrating downwards into the saprolite. The silcretes are cemented by quartz and anatase, with zircon (QAZ‐cement), and‐the sandstones are cemented by aluminosilicates, either apparently amorphous (as siliceous allophane) or partly crystalline, as kaolinite and opaline silica. Transitional zones between silcretes and sandstones have all cement types. The profiles are characterized by low concentrations of alkalis and alkaline earths and most metals. The QAZ‐silcrete horizons may contain over 3% TiO2 and 1000 p.p.m. Zr. The profiles evolved through at least four stages: (i) Formation of the deep saprolite‐sand weathering profile by kaolinization of feldspar and mica at depth, and the solution of kaolinite near the top of the profile, causing settling of resistant quartz grains, (ii) Precipitation of QAZ‐cement, the TiO2 and SiO2 being derived partly by lateral migration from upslope. (iii) Precipitation of aluminosilicates, in the sandstone and the saprolite. (iv) Erosion and exposure of the profiles by pedimentation. A similar profile occurs further S, at Gabbin, but no QAZ‐silcrete is present and the only exposures are in exploration pits. The kaolinitic saprolite‐quartz sand profiles probably formed under humid conditions, as the equivalents of ferruginous laterite developed on more basic rocks nearby and of lateritic bauxite in the Darling Range. However,’ the sand was a surface horizon and there is no evidence that there was ever a ferruginous zone at these sites. The sequential precipitation of QAZ‐ and aluminosilicate‐cements was probably, a response to increasing aridity and reduced groundwater flow. Aluminosilicate‐cemented materials tend to disaggregrate on exposure but they are probably more abundant than the more prominent QAZ‐silcretes.  相似文献   

6.
Ge/Si and 87Sr/86Sr data from primary and secondary minerals, soil waters, and stream waters in a tropical granitoid catchment quantitatively reflect mineral alteration reactions that occur at different levels within the bedrock–saprolite–soil zone. Near the bedrock–saprolite interface, plagioclase to kaolinite reaction yields low Ge/Si and 87Sr/86Sr. Higher in the regolith column, biotite weathering and kaolinite dissolution drive Ge/Si and 87Sr/86Sr to high values. Data from streams at base flow sample the bedrock–saprolite interface zone, while at high discharge solutes are derived from upper saprolite–soil zone. Coupled Ge/Si and 87Sr/86Sr can be effective tools for quantifying the importance of specific weathering reactions, and for geochemical hydrograph separation.  相似文献   

7.
Rare earth element (REE) geochemistry and mineralogy have been studied in the weathered crusts derived from the Early Yanshanian (Jurassic) biotite granites of Dabu and Dingnan, as well as in the Indosinian (Permian) muscovite–biotite granite of Aigao in southern Jiangxi province, China, and the weathered crusts and clay sediments on biotite granites in the Sanyo belt, SW Japan, that is, Okayama, Tanakami, and Naegi areas. In all of the weathered crusts, biotite and plagioclase commonly tend to decrease toward the upper part of the profile, whereas kaolinite and residual quartz and K‐feldspar increase. The weathered crusts of the Dingnan granites and some Naegi granites, which are characterized by the enrichment in light REE (LREE) in C horizons, have higher total REE (ΣREE) content than the parent REE‐enriched granites. Weathering of LREE‐bearing apatite and fluorocarbonates in the Dingnan granites and allanite and apatite in some Naegi granites may account for the leaching of LREE at the B horizons. The leached LREE must result in subsequent enrichment of LREE in the C horizons. The enrichment is probably associated with mainly adsorption onto kaolinite and partly formation of possible secondary LREE‐bearing minerals. In Japan it was found that REE mineralization occurs not in the weathered granitic crusts but in reworked clay sediments, especially kaolinite‐rich layers, derived mainly from the weathering materials of REE‐enriched granitic rocks. The clay sediments are more enriched in LREE, which likely adsorbed onto kaolinite. Concentration of heavy REE within almost all the weathered crusts and clay sediments, however, may reflect mainly residual REE‐bearing minerals such as zircon, which originated in the parent granitic rocks. The findings of the present study support the three processes for fractionation of the REE during weathering: (i) selective leaching of rocks containing both stable and unstable REE‐bearing minerals; (ii) adsorption onto clay minerals; and (iii) presence of possible secondary LREE‐bearing minerals.  相似文献   

8.
Altered crystalline rocks occur at the peneplain exposed in southern Israel and in other localities across North Africa and Arabia where they underlie an extensive blanket of Cambro–Ordovician sandstones. This study focuses on the petrography, mineralogy and geochemistry of top basement rocks of the northern Arabian‐Nubian Shield. The altered rocks are shown to be weathering profiles that can be subdivided into three horizons interpreted as apparently unweathered granite, or saprock, which grades upwards to a saprolite, topped by a thin clayey plasmic zone. The plasmic zone is enriched in iron and aluminium and is depleted in silicon, calcium, magnesium and potassium relative to the underlying saprolite. The chemical index of alteration increases upward, but does not exceed 90 and, therefore, lags behind values observed in strongly leached present‐day tropical soils. Petrographic examinations reveal iron mobility under local fluctuating redox conditions, similar to modern and Proterozoic soils. A variety of birefringence fabrics induced by shrinkage and expansion of clays during wetting and drying cycles and clay illuviation strongly indicate pedogenic processes rather than a post‐depositional alteration. Illite and ordered illite‐smectite phases coexist with smectitic illite‐smectite in the lower part of the saprolite and with kaolinite in the plasmic zone, in line with increasing chemical index of alteration. Observations are in accordance with the current profile being a remnant of a thick weathering profile whose top was truncated by fluvial incision just prior to deposition of the overlying Early Cambrian sequence. A previously documented Devonian thermal event reaching temperatures of at least 200°C overprinted the studied rocks. During burial diagenesis, illitization affected original smectite rather than kaolinite. However, in spite of the elevated temperatures, illitization was incomplete implying restricted potassium addition. The sub‐Cambrian weathering reflects warm and humid conditions in a tropical or sub‐tropical climate, in line with several plate reconstructions placing Israel at low latitudes during Cambrian time.  相似文献   

9.
Germanium-silicon (Ge/Si) ratios were determined on quartz diorite bedrock, saprolite, soil, primary and secondary minerals, phytolith, soil and saprolite pore waters, and spring water and stream waters in an effort to understand Ge/Si fractionation during weathering of quartz diorite in the Rio Icacos watershed, Puerto Rico. The Ge/Si ratio of the bedrock is 2 μmol/mol, with individual primary mineral phases ranging between 0.5 and 7 μmol/mol. The ratios in the bulk saprolite are higher (∼3 μmol/mol) than values measured in the bedrock. The major saprolite secondary mineral, kaolinite, has Ge/Si ratios ranging between 4.8 and 6.1 μmol/mol. The high Ge/Si ratios in the saprolite are consistent with preferential incorporation of Ge during the precipitation of kaolinite. Bulk shallow soils have lower ratios (1.1-1.6 μmol/mol) primarily due to the residual accumulation of Ge-poor quartz.Ge/Si ratios measured on saprolite and soil pore waters reflect reactions that take place during mineral transformations at discrete depths. Spring water and baseflow stream waters have the lowest Ge/Si ratios (0.27-0.47 μmol/mol), reflecting deep initial weathering reactions resulting in the precipitation of Ge-enriched kaolinite at the saprolite-bedrock interface. Mass-balance calculations on saprolite require significant loss of Si and Al even within 1 m above the saprolite-bedrock interface. Higher pore water Ge/Si ratios (∼1.2 μmol/mol) are consistent with partial dissolution of this Ge-enriched kaolinite. Pore water Ge/Si ratios increase up through the saprolite and into the overlying soil, but never reach the high values predicted by mass balance, perhaps reflecting the influence of phytolith recycling in the shallow soil.  相似文献   

10.
《Geochimica et cosmochimica acta》1999,63(23-24):3939-3957
A simple geochemical balance of lateritization processes governing the development of several tens of meters of weathering profiles overlain by ferricretes is estimated on the basis of detailed mineralogical and geochemical data. The lateritic weathering mantle of the “Haut–Mbomou” area in Central Africa is composed of different weathering layers described from the base to the top of vertical profiles as a saprolite, a mottled clay layer, a soft nodular layer, a soft ferricrete, and a ferricrete in which kaolinite, gibbsite, goethite, and hematite occur in various quantities. Incongruent dissolution of kaolinite leads to the formation of gibbsite in the upper saprolite, whereas the hematite does not clearly replace the kaolinite according to an epigene process in the upper ferruginous layers of the profiles. Instead, that kaolinite is also transformed into gibbsite according to an incongruent dissolution under hydrated and reducing conditions induced by a relatively humid climatic pattern. The respective relations of the silica, iron, and aluminum balances and the Al substitution rate of the hematite on the one hand, and of RHG [RHG = 100 (hematite/hematite + goethite)] and the kaolinite on the other hand, to the consumption or the release of protons H+ permit differentiation of aggrading ferruginization and degradation processes operating in the different lateritic weathering profiles. The Al substitution rate of the Fe–oxyhydroxides varies according to the nature of lateritization processes, e.g., saprolitic weathering and aggrading ferruginization vs. degradation. The observations and results indicate that the ferruginization process of the weathering materials of parent rocks is not a simple ongoing process as often thought. This suggests that the actual lateritic weathering mantle of the Haut–Mbomou area may result from different stages of weathering and erosion during climatic changes.  相似文献   

11.
Summary The Lower Lias Clay at Blockley, 20 km due south of Stratford-upon-Avon, UK, is thought to be representative of this clay formation over much of the Severn Basin. As far as the mineralogy of the clay is concerned, illite is the dominant clay mineral, kaolinite being subsidiary, with quartz, calcite, pyrite and chlorite/vermiculite present in subsidiary or accessory amounts. Weathering changes the mineralogy, with illite being degraded and calcite and pyrite being removed. Furthermore free iron oxide coatings become important as a result of weathering, with the maximum concentrations being present in the highly weathered material.The unweathered clay possesses a preferred orientation associated with turbostratic structures. At certain horizons microfolding and remoulding occurs in the unweathered clay and silty layers are displaced. Weathering has progressively destroyed the micro-structures present in the weathered clay horizons.The fissures in the Lower Lias Clay occur in five uniplanar sets. In the unweathered clay the intensity is fairly constant but it increases in a narrow zone just below the weathered horizons. The number of curved fissures also increases at this depth. This intense fissuring continues into the lowest zone of weathered clay where weathering is confined to the fissure surfaces. Fissures become less apparent in the more weathered horizons as more and more degradation has taken place. However, new smaller fissure systems are developed in the weathered clay, as are desiccation cracks.Engineering index properties and values of shear strength are given. Relationships between moisture content and strength, liquid limit and iron (Fe) content were observed, and a relationship between weathering zones and the shear strength-depth curve was established.  相似文献   

12.
The lateritic weathering crusts exposed in mainland Greece were developed on ophiolitic ultramafic lithologies during lower Cretaceous times. The lateritic profile consists of four zones: bedrock, saprolite clay (nontronite) and goethitic. The profiles show large variations in thickness, continuity, mineralogy and chemical characteristics. They are broadly similar to clay nickel laterite deposits. The uppermost gravelly ferruginous sector was eroded and the material reworked and redeposited partly on the lateritic crust. Silcrete layers, characteristic of groundwater silcretes, were formed into the clay and goethitic zones. Significant supergene nickel enrichments occur in the clay and saprolite zones, indicating that water moved downward to a very low water table. The structure and mineralogy of the weathering crusts indicates that environmental conditions were likely to have been dominated by alternating wet and dry periods.  相似文献   

13.
Three genetically unrelated magma suites are found in the extrusivesequences of the Troodos ophiolite, Cyprus. A stratigraphicallylower pillow lava suite contains andesite and dacite glassesand shows the crystallization order plagioclase; augite, orthopyroxene;titanomagnetite (with the pyroxenes appearing almost simultaneously).These lavas can in part be correlated chemically and mineralogicallywith the sheeted dikes and the upper part of the gabbro complexof the ophiolite. The second magma suite is represented in astratigraphically upper extrusive suite and contains basalticandesite and andesite glasses with the crystallizaton orderchromite; olivine; Ca-rich pyroxene; plagioclase. This magmasuite can be correlated chemically and mineralogically withparts of the ophiolitic ultramafic and mafic cumulate sequence,which has the crystallization order olivine; Ca-rich pyroxene;orthopyroxene; plagioclase. The third magma suite is representedby basaltic andesite lavas along the Arakapas fault zone andshows a boninitic crystallization order olivine; orthopyroxene;Ca-rich pyroxene; plagioclase. One-atmosphere, anhydrous phaseequilibria experiments on a lava from the second suite indicateplagioclase crystallization from 1225?C, pigeonite from 1200?C,and augite from 1165?C. These experimental data contrast withthe crystallization order suggested by the lavas and the associatedcumulates. The observed crystallization orders and the presenceof magmatic water in the fresh glasses of all suites are consistentwith evolution under relatively high partial water pressures.In particular, high PH2O (1–3 kb) can explain the lateappearances of plagioclase and Ca-poor pyroxene in the majorityof the basaltic andesite lavas as the effects of suppressedcrystallization temperatures and shifting of cotectic relations.The detailed crystallization orders are probably controlledby relatively minor differences in the normative compositionsof the parental magmas. The basaltic andesite lavas are likelyto reach augite saturation before Ca-poor pyroxene saturation,whereas the Arakapas fault zone lavas, which have relativelyless normative diopside and more quartz, reached the Ca-poorpyroxene-olivine reaction surface and crystallized Ca-poor pyroxeneafter olivine.  相似文献   

14.
<正>Red clay type gold deposits,located in the south of China,are situated not only in orogenic belts,but also in inner cratons,where climate is tropical-subtropical with clear arid and humid.The lateritic weathering crust often can be divided into five zones,including topsoil,siliceous duricrust zone,multi-color zone(or red clay zone in some deposits),pallid zone and saprolite zone from surface to the base rock,several of which are absent in some deposits.The base rocks are composed mainly of carbonate rocks with minor clastic rocks,intermediate-basic volcanic rocks and intermediate-acid and alkalic intrusions.The orebodies are mainly located in the multi-color zone with part of them in the pallid and saprolite zones.The ore sources include orebodies of Carlin-type gold deposits and porphyry gold deposits,as well as gold-rich base rocks.The red clay type gold deposits experienced early-stage endogenic gold mineralization and laterization during the Tertiary and Quaternary.The areas with endogenic gold deposits,especially Carlin-type gold deposits and porphyry gold deposits in karst depressions on the plateau,structual erosional platforms in the middle-lower mountains,and intermountain basins in southern China are well worth studying to trace red clay type gold deposits.  相似文献   

15.
In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (∼2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ΔV of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction.Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 Å, forming “altered biotite”. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 × 10−14 mol biotite m−2 s−1. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 μm resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone.Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 × 10−13 mol hornblende m−2 s−1: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O2 at the bedrock-saprolite interface.  相似文献   

16.
自生矿物特征和成因机理对深层碎屑岩储层物性具有重要影响。以渤海海域歧南断阶带侏罗系为例,通过岩心、薄片、扫描电镜、电子探针、同位素、包裹体、X衍射分析等技术手段,对研究区侏罗系深层碎屑岩储层自生矿物的类型、特征、成因机理及对优质储层发育的控制作用进行研究。结果表明:研究区侏罗系碎屑岩属于中孔-低渗储层,非均质性强;主要自生矿物类型为硅质矿物、碳酸盐矿物、黏土矿物3类;早期形成的硅质石英衬垫和碳酸盐胶结物控制了孔隙的发育和演化,沿颗粒表面分布的早期硅质石英衬垫有效抑制了后期石英加大生长,并增强了岩石的抗压能力,有利于原生孔隙保存;早期碳酸盐胶结物增强了储层抗压实能力,并为后期储层遭受溶蚀形成溶蚀孔提供了物质基础,有利于高孔隙储层形成;黏土矿物控制了储层渗透率差异,储层渗透率与自生高岭石体积分数呈正相关性,较高渗透率储层分布于侏罗系中段高岭石富集带内。研究区侏罗系碎屑岩发育原生孔隙体积分数高、微晶石英衬垫发育的Ⅰ类有利储层和粒间溶蚀孔隙较发育、具显著表生成岩作用特点的Ⅱ类有利储层,二者孔隙演化存在明显差异。Ⅰ类有利储层主要受早—中成岩期微晶石英衬垫抗压实作用控制,浅层和深层均可发育高孔隙储层;Ⅱ类有利储层主要受表生期风化淋滤作用控制,可在风化壳附近形成优质储层,整体上Ⅰ类储层物性优于Ⅱ类。  相似文献   

17.
Chemical mass balance of calcrete genesis on the Toledo granite (Spain)   总被引:2,自引:0,他引:2  
The chemical mass balance of calcrete genesis is studied on a typical sequence developed in granite, in the Toledo mountains, Central Spain.

Field evidence and petrographic observations indicate that the texture and the bulk volume of the parent rock are strictly preserved all along the studied calcrete profile.

Microscopic observations indicate that the calcitization process starts within the saprolite, superimposed on the usual mechanisms of granite weathering: the fresh rock is first weathered to secondary clays, mainly smectites, which are then pseudomorphically replaced by calcite. Based on this evidence, chemical mass transfers are calculated, assuming iso-volume transformation from the parent rock to the calcrete.

The mass balance results show the increasing loss of matter due to weathering of the primary phases, from the saprolite towards the calcrete layers higher in the sequence. Zr, Ti or Th, which are classically considered as immobile during weathering, are also depleted along the profile, especially in the calcrete layer. This results from the prevailing highly alkaline conditions, which could account for the simultaneous precipitation of CaCO3 and silicate dissolution.

The calculated budget suggests that the elements exported from the weathering profile are provided dominantly by the weathering of plagioclase and biotite. We calculate that 8–42% of the original Ca remains in granitic relics, while only 15% of the authigenic Ca released by weathering is reincorporated in the calcite. This suggests that 373 kg/m2 of calcium (i.e., three times the original amount) is imported into the calcrete from allochtonous sources, probably due to aeolian transport from distant limestone formations.  相似文献   


18.
江西龙南花岗岩稀土风化壳中粘土矿物的研究   总被引:8,自引:0,他引:8       下载免费PDF全文
本区燕山早期花岗岩发育的风化壳中的粘土矿物以高岭石和埃洛石(7Å)为主;蒙脱石、三水铝石及其它为新查明矿物。据粘土矿物组合特征,自风化剖面深部到地表分为三个带:含蒙脱石带,高岭石和埃洛石(7Å)带,含三水铝石带。本文探讨了矿物在风化过程中的生成演化顺序,并进行了热力学的解释。据各带粘土物质的阳离子交换量与稀土含量变化的不一致关系认为,稀土在C带中的富集是化学风化的结果,与粘土矿物组合无关。  相似文献   

19.
陈德杰 《西北地质》2012,(3):103-108
菲律宾保和岛达瑙镍矿床位于西比克尔-东莱特岛(Western Bicol-Eastern Leyte)蛇绿岩带附近,矿体分布在超基性岩体顶部的褐铁矿层、腐泥土层中,与地表红棕色土壤的分布范围基本一致。层中硅镁镍矿较为发育,主要含镍矿物为镍绿泥石、暗镍蛇纹石。化学分析结果显示成矿物质来源于超基性岩;对矿区超基性岩、气候、地理位置、岩石破碎程度等特征进一步分析研究,认为该矿床的成因类型为风化壳淋积矿床。地壳抬升超基性岩接受风化,释放出Ni~2+。Ni~2+随地表水下渗至褐铁矿层下部的腐泥土层(风化岩石)中被蛇纹石矿物捕获,富集成矿。类质同象中的Mg~2+释放出来,由于本区地层渗透性好,Mg~2+至基岩处富集。一般而言,红土层下面的风化岩石含Ni最富。  相似文献   

20.
Lateritic soils near Calicut, Kerala, contain halloysite of intermediate hydration, kaolinite, goethite, gibbsite and quartz. The presence of halloysite is responsible for relatively high plasticity and cation-exchange capacity. Fe-hydroxide colloids along with halloysite contribute to significant phosphate uptake by this soil. Composition of local groundwater is consistent with weathering of sodic plagioclase to gibbsite, kaolinite and metastable halloysite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号