首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Repeated explosions in the nuclei of galaxies are now accepted as observationally established phenomena. Each explosion leads to the ejection of gas from the central region of a galaxy with velocities depending on the strength of the explosive event. In the process the nucleus temporarily becomes gas-deficient. It is suggested that the mass los is replenished by the accretion of the mass which is shed by those evolved stars in the galactic bulge that possess relatively low rotational velocities. The gas to be accreted is assumed to be magnetized. In the present model, the accretion rate has been assumed to be a function of both radial distance and time. The cross-radial equation of motion has been solved to derive the expression for the rotational velocity which is found to bealmost linear with the radial distance from the centre. The radial equation has been solved to calculate the time-scale over which the nucleus accumulates sufficient mass to undergo instability and suffer explosion. The calculated time-scale range from few multiples of 107 to a few multiples of 108 yr. This range agrees very well with that as has been suggested on the basis of observation in the case of our own Galaxy.  相似文献   

2.
High-velocity ejection of gas from the central region of galaxies is now an observationally established phenomenon. Such ejections have been attributed to some kind of activities in the nuclei of galaxies. It has been suggested that conditions leading to explosive events periodically prevail in the centre of galaxies causing recurrent explosions and driving the gas thereby outward with sufficiently high velocities. The magnitude of the ejection velocity and the amount of gas driven out will actually depend on the intensity of the activity at the centre. Remnants of recurrent activity have been discovered in the inner region of our Galaxy. The ‘3-kpc’ arm, the 2.4 kpc arm, the molecular ring at 270 pc and some other features are believed to have been caused by periodic activity at the centre of our Galaxy. We have outlined a model that can explain the recurrent explosions in the centre of a galaxy. The boundary of the nucleus of the Galaxy is considered here as a stationary shock front where high velocity gas coming from the outer regions impinges and gets heated and condensed. This condensed, hot gas then flows inwards by intense gravitational pull, but in course of its passage inward it loses its velocity due to radiation pressure and frictional retardation. A layer of dense, hot gas is therefore formed some distance (typically 0.001 pc) away from the centre where short radio and microwaves are trapped. As the density of gas in this layer is enhanced by the inflowing gas, shorter-wave radiation is trapped. The pressure of radiation therefore gradually builds up in the layer which ultimately overcomes the gravitational pull and the layer is blown off violently. The whole process may be completed over and over again at intervals of 106–107 yr.  相似文献   

3.
Immediate consequences of nuclear explosions on the structure and physical state of a galactic disk are considered in this paper. Explosions in the nucleus of a Galaxy generate strong shock waves which, when propagating onward heat and condensing the gas, form thin dense ring-like gaseous features behind it. Such rings and dense gaseous complexes have been observed in the central region of the Galaxy. These features have been treated here as the remnants of galactic shocks generated by nuclear explosions. We have estimated the time elapsed since the corresponding explosion, the energy released by explosion and the initial temperature and the velocity of the shock wave thus generated. The cooling of the gas heated by strong shocks has also been considered. The time taken by shock-heated gas to cool to its original temperature has been estimated to be of the order of 105 to 106 yr, according to the initial shock temperature which is about 9×106 K or 6.4×107 K. The rate of emission of energy and the total amount of energy dissipated away in the form of radiation in the cooling process, have been calculated for different values of initial shocktemperatures and also for different field intensities. The high-energy radiation emitted in the cooling process is suggested here as a source for the heating of dust grains, which ultimately are radiated in the infrared spectrum. Thus, a part of the infrared radiation, as measured by many authors, in the central region of the Galaxy, may originate ultimately from the cooling of the shock-heated gas there.  相似文献   

4.
A model proposed by Melia & Ruffert to evaluate the spectrum and radiation flux for accretion on to a black hole makes use of the 'equipartition assumption' in which the magnetic, turbulent and gravitational energy densities are assumed to be in approximate equilibrium for distances below the accretion radius, where Bondi–Hoyle infall begins. As a consequence, the mechanism for the dissipation of the magnetic field and the resulting effect on the flow of the accreting gas have not been treated quantitatively. Here we examine alternative approaches for modelling the dissipation of magnetic fields and turbulent flow to see how these may be incorporated into the model. The results of our study should be immediately applicable to the ever-improving measurements of the spectrum and size of the massive black hole at our Galactic Centre, in particular producing a more accurate estimate of its mass. Combined with greatly refined kinematic studies of this region, our work may constrain the dark matter concentration in the nucleus of our Galaxy.  相似文献   

5.
Periodic explosions in the nucleus of a galaxy generate strong shock waves. The shock waves, in moving outwards, produce highly compressed thin layers of gas at distances much larger than the thickness of the layer. When the gas in this layer undergoes fragmentation, the Jeans mass is found to be much less than that if the fragmentation proceeded under normal gravitational pull. It is, therefore, concluded that the explosive events in the galactic centres make the process of star formation highly efficient in the central region of galaxies.  相似文献   

6.
We have made calculations of spiral arm formation due to central explosions in a nucleus surrounded by a disc containing most of the galactic mass with the purpose of obtaining estimates on lifetimes of arms and the requirements on the energy involved in the process. The ejected gas is taken to be a few percent, or less, of the central nucleus and is ejected with velocities of the order of 1000 km s–1. The gas, considered to be in forms of blods, moves under the gravitational force from the disc and the nucleus and the drag force by the gas in the disc. The orbits of the blobs evolve towards the circular orbits of the disc due to this drag force and the velocities in the arms will therefore, after some time, approach those of a normal rotation curve.A relatively open structure will last 5×108 years. Stable ring structures with longer lifetimes may be formed by some explosions. With an energy of 5×1057 erg in the initial gas-blod motion and a duration of the explosion of 107 years, the energy output in such explosions has to be >1043 erg s–1.  相似文献   

7.
We study the dynamical interactions of mass systems in equilibrium under their own gravity that mutually exert and ex‐perience gravitational forces. The method we employ is to model the dynamical evolution of two isolated bars, hosted within the same galactic system, under their mutual gravitational interaction. In this study, we present an analytical treatment of the secular evolution of two bars that oscillate with respect to one another. Two cases of interaction, with and without geometrical deformation, are discussed. In the latter case, the bars are described as modified Jacobi ellipsoids. These triaxial systems are formed by a rotating fluid mass in gravitational equilibrium with its own rotational velocity and the gravitational field of the other bar. The governing equation for the variation of their relative angular separation is then numerically integrated, which also provides the time evolution of the geometrical parameters of the bodies. The case of rigid, non‐deformable, bars produces in some cases an oscillatory motion in the bodies similar to that of a harmonic oscillator. For the other case, a deformable rotating body that can be represented by a modified Jacobi ellipsoid under the influence of an exterior massive body will change its rotational velocity to escape from the attracting body, just as if the gravitational torque exerted by the exterior body were of opposite sign. Instead, the exchange of angular momentum will cause the Jacobian body to modify its geometry by enlarging its long axis, located in the plane of rotation, thus decreasing its axial ratios. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The equations for the viscous motion of a mixture of gas and dust in a gravitational field are derived from the statistics of particle orbits and radiative processes in a general form which gives the Navier-Stokes equation as a special case. Diffusion, partially elastic collisions and — for larger bodies — the gravitational encounters are included. The results are applied to the evolution of circumstellar discs.  相似文献   

9.
In a previous paper (hereafter referred to as Paper I) we have tried to show that superdense cores in the nuclei of disk galaxies can be formed by accretion of gas ejected by the evolved stars which populate the central bulge of these galaxies. Solving the equations for radial flow of a magnetized gas, we found that the accretion of an explodable mass at the core can be achieved over a time-scale ranging from a few times 107 and a few times 108 yr. It was shown, however, that the accretion process is seriously inhibited if the gas possesses sufficient rotational velocity but lacks any dissipative, mechanism within the system. Since rotational velocity is an observed parameter of the stars which shed the gas to be accreted, one must consider the existence of some dissipative force in it in order that the accretion process may be efficient. In the present paper, therefore, we have solved the problem of the flow of a rotating, viscous (variable), magnetized gas. With plausible assumptions regarding some of the parameters involved, the time-scale for the accretion of an explodable mass (109 M ) at the core again turns out to be ranging between a few times 107 and a few times 108yr. Such time-scale has been proposed by several authors as that for repeated explosions in nuclei of these galaxies. It has also been proposed by many authors that the spiral arms are generated and destroyed in disk galaxies over the same time-scale. Our solution also yields a nearly linear rotational velocity law which is usually observed in the central regions of these galaxies.  相似文献   

10.
A two-dimensional hydrodynamic code has been developed for numerical studies of stellar collisions. The motivation for the study has been the suggestion by Colgate that collisions among stars in a dense galactic core can lead to growth of stellar masses by coalescence and thus to an enhanced rate of supernova activity. The specific results reported here refer to head-on collisions between identical polytropes of index 3 having solar mass and radius. If the polytropes were initially at rest at infinity, then about five percent of the combined mass is lost by ejection following collision. The volatilized mass fraction rises to about 18% for an initial relative collision velocity of 1000 km s–1 at infinite separation, and to about 60% for the 2000 km s–1 case. Since the initial kinetic and gravitational energies balance for a relative velocity of 1512 km s–1 at infinity, it may be seen that net coalescence persists to velocities somewhat in excess of this figure. Mass ejection takes place in two ways simultaneously: (1) by a rapid sideward expulsion of fluid in a massive lateral sheet normal to the collision axis, and (2) as a result of two recoil shocks which lead momentum flows backwards along this axis. The lateral effect has similarities to the expansion of gas into a vacuum; that is, shocks are not involved. However, the ejection of material from the rear colliding hemisphere due to the recoil shocks predominates at low collision velocities. As the velocity increases, both effects strengthen, but the lateral expulsion intensifies more rapidly than the recoil shocks.  相似文献   

11.
We demonstrate that the diffusion coefficient for low energy particles, tied to a magnetic field which random walks, may be considerably larger than previously estimated in a strongly magnetized system — like the solar wind or the Galaxy. This is of interest with respect to propagation and lifetime considerations of low energy cosmic rays in the solar wind and the Galaxy.  相似文献   

12.
The solar atmosphere may be divided into a number of isolated active components and a quiet residue. On the largest scale the latter is dominated by a general dipole magnetic field of strength 1–2 G; its observable components are flux concentrations in supergranule boundary regions (SBRs), spicules, mottles and polar plumes. The velocity field in the SBRs is discussed. There are continuous gas streaming motions up and down between the photosphere and the corona; spicules may be mainly downward moving gas.A unifying model is developed of these various components, as well as the heating mechanism of the whole quiet atmosphere. Highly ordered velocity fields of the cell, together with a gravitational wave, cause a vertical magnetic force tube to collapse below a critical level; the result is an upward eruption of a vortex ring at the Alfvén velocity. The complex mass velocity pattern may explain spicules, mottles and plumes, as well as unobservable streaming motions.The quiet atmosphere is divided into regions above SBRs and those above the inner parts of the cells. Hydromagnetic eruptions from the former may account for the entire heat requirement of the atmosphere. The model atmosphere has a chromosphere-corona transition layer which bulges upwards above the SBRs and so conforms with EUV data. The energy and mass balances in this solar atmosphere are considered, and it is also shown to be consistent with the radio data.  相似文献   

13.
A statement of the problem of gravitational collapse and a computational method are described. The main feature of the collapse — its extremely high heterogeneity — is taken into account. The structure of a collapsing star is characterized by a dense and hot nucleon core which is opaque with respect to neutrino radiation and is embedded in to and extended envelope, almost transparent to neutrinos. The envelope is gradually being accreted onto the core. The enormous amount of energy, radiated in the form of neutrinos and antineutrinos, make us pay particular attention to relatively small absorption of neutrino radiation by extended envelope (so-called energy of deposition). The inclusion of the energy deposition in the calculations is of importance for the problem of transformation of an implosion into an explosion. The deposition is taken into consideration in the approximation of diluted neutrino radiation which escapes from neutrino photosphere and is partially absorbed in the envelope. Both the generation of energy due to deposition and the change of neutronto-proton ratio are taken into account. The increase of the mass of the core, which is opaque with respect to neutrino radiation, is fully taken into account in the calculations of the gravitational collapse.  相似文献   

14.
The rotation curve of the central region in some disk galaxies shows a linear rise, terminating at a peak (primary peak) which is then followed by a deep minimum. The curve then again rises to another peak at more or less half-way across the galactic radius. This latter peak is considered as the peak of the rotation curve in all large-scale analysis of galactic structure. The primary peak is usually ignored for the purpose. In this work an attempt has been made to look at the primary peak as the manifestation of the post-explosion flow pattern of gas in the deep central region of galaxies. Solving hydrodynamical equations of motion, a flow model has been derived which imitates very closely the actually observed linear rotational velocity, followed by the falling branch of the curve to minimum. The theoretical flow model has been compared with observed results for nine galaxies. The agreement obtained is extremely encouraging. The distance of the primary peak from the galactic centre has been shown to be correlated with the angular velocity in the linear part of the rotation curve. Here also, agreement is very good between theoretical and observed results. It is concluded that the distance of the primary peak from the centre not only speaks of the time that has elapsed since the explosion occurred in the nucleus, it also speaks of the potential capability of the nucleus of the galaxy for repeating explosions through some efficient process of mass replenishment at the core.  相似文献   

15.
The main points are presented of a new hypothesis of the origin of the Earth—Moon system, developed on the basis of Savi's (1961) theory of the origin of rotation of celestial bodies. The cooling off and contraction due to gravitational attraction on vast particle systems, with the pushing out of electrons from atom shells result in a continually increasing density. Depending on the amount of mass, this pushing out can lead to the expulsion of electrons and the creation of a magnetic field by which a rotational motion is brought about. These conditions are satisfied for the Earth's mass and all larger masses. If the Earth and the Moon formed a unique body, the protoplanet, then once rotational motion had begun, the primeval spherical body must have taken the shape of a large Jacobi ellipsoid. New condensation followed, however no longer solely around the centre of the protoplanet, but also along the edge of the ellipsoid, the process leading to the creation of the dual Earth—Moon system.  相似文献   

16.
Published data on gas systems of different velocities in the galaxy NGC 1275 are examined. One of the systems is associated with NGC 1275 (low-velocity system — LV); the other is approaching it at a velocity of 3000 km/sec (high-velocity system — HV). Many of the collected results obtained from spectra and from direct images in the ultraviolet, optical, red, and infrared indicate interaction of these systems. The interaction is exhibited in the same shape and spatial distribution of the gas filaments in both systems, in the elongation of some of them toward the nucleus of the galaxy, and in the increase in brightness of the HV gas near some of the clusters of young stars of the LV system. Gas of the HV system is observed at a distance of O.5 (170 pc) from the nucleus of the galaxy, while intermediate-velocity gas (IV — 600–1520 km/sec relative to the velocity of NGC 1275) is detected at distances less than 7 (2.5 kpc). We presume that the rare cases of the detection of IV gas are related to the use of Ha observations primarily: at the velocities of 600–900 km/sec, the Ha line of the IV gas blends with the [NII] 6584Å line of the LV gas.Translated fromAstrofizika, Vol. 39, No. 4, pp. 567–584, November, 1996.  相似文献   

17.
We considered the impacts of very large cosmic bodies (with radii in the range 100–200 to 1000–2000 km) on the early Earth, whose mass, radius and density distribution are close to the current values. The impacts of such bodies were possible during the first hundreds of million years after the formation of the Earth and the Moon. We present and analyze the results of a numerical simulation of the impact of a planetesimal, the size of which is equal to that of the contemporary Moon (1700 km). In three-dimensional computations, the velocity (15 and 30 km/s) and the angle (45°, 60°, and 90°) of the impact are varied. We determined the mass losses and traced the evolution of the shape of the Earth's surface, taking into account the self-consistent gravitational forces that arise in the ejected and remaining materials in accordance with the real, time-dependent mass distribution. Shock waves reflected from the core are shown to propagate from the impact site deep into the Earth. The core undergoes strong, gradually damped oscillations. Although motions in the Earth's mantle gradually decline, they have enough time to put the Earth in a rotational motion. As a result, a wave travels over the Earth's surface, whose amplitude, in the case of an oblique impact, depends on the direction of the wave propagation. The maximum height of this wave is tremendous—it attains several hundred kilometers. Some portion of the ejected material (up to 40% of the impactor mass) falls back onto Earth under the action of gravity. This portion is equivalent to the layer of a condensed material with a thickness on the order of ten kilometers. The appearance of this hot layer should result in a global melting of near-surface layers, which can limit the age of terrestrial rocks by the time of the impact under consideration. For lesser-sized impactors, say, for impactors with radii of about 160 km, the qualitative picture resembles that described above but the amplitude of disturbances is considerably smaller. This amplitude, however, is sufficient to cause a crustal disruption (if such a crust has already formed) and intense volcanic activity.  相似文献   

18.
Theory holds that a star born with an initial mass between about 8 and 140 times the mass of the Sun will end its life through the catastrophic gravitational collapse of its iron core to a neutron star or black hole. This core collapse process is thought to usually be accompanied by the ejection of the star’s envelope as a supernova. This established theory is now being tested observationally, with over three dozen core-collapse supernovae having had the properties of their progenitor stars directly measured through the examination of high-resolution images taken prior to the explosion. Here I review what has been learned from these studies and briefly examine the potential impact on stellar evolution theory, the existence of “failed supernovae”, and our understanding of the core-collapse explosion mechanism.  相似文献   

19.
Summary. This paper reviews the physical state of stars and Interstellar Matter in the Galactic Bulge (radius kpc from the dynamical center of the Galaxy), in the Nuclear Bulge (kpc) and in the Sgr A Radio and GMC Complex, i.e. the central \,pc of our Galaxy. The Galactic Bulge is devoid of cold Interstellar Matter and consists mainly of old stars, while the Nuclear Bulge accounts for of the mass of all of the Interstellar Matter in the Galaxy. A similar ratio holds for the formation rate of medium and high mass stars in Bulge and Disk. The metal abundance of the Interstellar Matter in the Galactic Bulge is found to be . The H-to-CO conversion factors to be applied to molecular gas in the Central Region are by factors 3 (Arimoto et al. 1996) to 10 (Sodroski et al. 1995) lower than in the solar vicinity. Hence, most H masses derived for the Central Region appear to be considerably overestimated. The Nuclear Bulge is pervaded by a thermal plasma (K) which is responsible for the diffuse free-free emission. Lyman continuum photon and dust IR luminosity of the Nuclear Bulge again account for of the respective total luminosities of the Galaxy. Magnetic fields in the Nuclear Bulge are strong (up to mG) as compared with the Galactic Disk (a few tens of G). The field lines are oriented parallel to the galactic plane inside giant molecular clouds and perpendicular to the plane in the intercloud medium. The compact source Sgr A* is close to or at the dynamical center of the Galaxy. Its radio spectrum with a high frequency cut-off at GHz, a low frequency turnover at GHz and a flux density dependence in between can be explained by synchrotron emission from quasi-monoenergetic relativistic electrons. Due to an extinction between Sun and Galactic Center corresponding to , an intrinsic weakness of this source in the near infrared, and a strong background emission from warm dust there are only upper limits available for the flux density of Sgr A* in the far, mid and near infrared and X-ray regime. The size of Sgr A* in the radio regime is cm, its dereddened K-band flux density is mJy, its luminosity has upper limits of (if radiation comes from an Accretion Disk) and (if black-body radiation from an object with a single temperature of K is assumed). If anyone of the soft X-ray sources detected by ROSAT actually coincides with Sgr A*, its X-ray luminosity would be less than a few . With a dark mass of Sgr A* is the best candidate for a starving black hole, although there are no observational indications for the presence of a (Standard) Accretion Disk. While the radio/IR spectrum of Sgr A* is purely nonthermal, the spectrum integrated over the central parsec resembles that of a Seyfert galaxy. Sgr A* is embedded in the Hii region Sgr A West with part of the ionized gas forming a minispiral. Sgr A West is surrounded by the Circum Nuclear Disk, an irregular shaped assembly of molecular gas which extends from pc and rotates around the Galactic Center with an estimated dynamical time scale of \,yr. The total luminosity of of the central parsec is due to the radiation of early-type stars of which have now been directly identified as luminous blue supergiants. It is still debated, however, if these stars can also account for all of the ionization of Sgr A West. In addition, the central parsec contains red giants, AGB stars, and a few super giants of which the brightest are now identified by direct imaging. These stars – together with a few million low mass main sequence stars – account for the bulk of the 2.2\,m emission. The spatial distributions of the three stellar populations in the central pc are remarkably different. Sgr A* is – along the line-of-sight – presumably located close to the center of the Hii region Sgr A West, which in turn is located in front of the extended (pc) synchrotron source Sgr A East, which appears to be the remnant of a gigantic explosion (of the order of the energy of a single supernova explosion) which took place yr ago inside the GMC Sgr A East Core. X-ray observations show within pc a pervasive hot (keV) plasma of expansion age of yr. Both phenomena – as well as the formation of the Circum Nuclear Disk – may have the same origin. Influx of material is observed within the Nuclear Bulge on all distance scales. In the Nuclear Bulge (pc) as well as in the Circum Nuclear Disk (pc) inflow towards the Galactic Center occurs primarily in the galactic plane and amounts to a few . The accretion rate into the central Black Hole, deduced from the luminosity of Sgr A*, however, appears to be lower by at least five orders of magnitude (assuming standard disk accretion). But in an equilibrium state only part of the infalling mass which is not accreted by the Black Hole can be consumed by star formation. A mass inflow rate varying with time is a more natural explanation. Comparing the physical state of the Center of our Galaxy with that of Active Galactic Nuclei derived from observations and modelling, we find that most of the basic characteristics of an AGN are also present in the Galactic Center. Lacking are, however, both the evidence for a standard Accretion Disk and a hard UV spectrum with accompanying high excitation emission lines in the Galactic Center which are characteristic for AGN. The luminosity of the central parsec, , amounts to only of the total luminosity of the Galaxy of . Seen from a distance of M31 (kpc) with an angular resolution of (corresponding to a linear size of pc) the Center of our Galaxy would appear as a mildly active nucleus with some starburst activity and would probably be classified as a weak Seyfert galaxy. The synchrotron spectrum of Sgr A*, however, would be completely masked by reprocessed stellar light (i.e. free-free and dust emission). Received: October 21, 1996  相似文献   

20.
The photometry and kinematics of the interacting galaxy system Arp 118 are presented. Its eastern component, NGC 1144, has a Seyfert 2 nucleus and is dominated by a ring-like structure of giantHii regions, the radial velocities of which vary by more than 1000 km s–1. Kinematical models including a close encounter with the elliptical companion NGC 1143 lead to extremely high values for the rotational velocity, the mass of NGC 1144 and itsM/L ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号