首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Differences in the degree of confinement, redox conditions, and dissolved organic carbon (DOC) are the main factors that control the persistence of nitrate and pesticides in the Upper Floridan aquifer (UFA) and overlying surficial aquifer beneath two agricultural areas in the southeastern US. Groundwater samples were collected multiple times from 66 wells during 1993–2007 in a study area in southwestern Georgia (ACFB) and from 48 wells in 1997–98 and 2007–08 in a study area in South Carolina (SANT) as part of the US Geological Survey National Water-Quality Assessment Program. In the ACFB study area, where karst features are prevalent, elevated nitrate-N concentrations in the oxic unconfined UFA (median 2.5 mg/L) were significantly (p = 0.03) higher than those in the overlying oxic surficial aquifer (median 1.5 mg/L). Concentrations of atrazine and deethylatrazine (DEA; the most frequently detected pesticide and degradate) were higher in more recent groundwater samples from the ACFB study area than in samples collected prior to 2000. Conversely, in the SANT study area, nitrate-N concentrations in the UFA were mostly <0.06 mg/L, resulting from anoxic conditions and elevated DOC concentrations that favored denitrification. Although most parts of the partially confined UFA in the SANT study area were anoxic or had mixed redox conditions, water from 28 % of the sampled wells was oxic and had low DOC concentrations. Based on the groundwater age information, nitrate concentrations reflect historic fertilizer N usage in both the study areas, but with a lag time of about 15–20 years. Simulated responses to future management scenarios of fertilizer N inputs indicated that elevated nitrate-N concentrations would likely persist in oxic parts of the surficial aquifer and UFA for decades even with substantial decreases in fertilizer N inputs over the next 40 years.  相似文献   

2.
Groundwater in Sfax City (Tunisia) has been known since the beginning of the century for its deterioration in quality, as a result of wastewater recharge into the aquifer. An average value of 12 × 106 m3 of untreated wastewater reaches the groundwater aquifer each year. This would result not only in a chemical and biological contamination of the groundwater, but also in an increase of the aquifer piezometric level. Quantitative impacts were evaluated by examining the groundwater piezometric level at 57 surface wells and piezometers. The survey showed that, during the last two decades, the groundwater level was ever increasing in the urban area with values reaching 7 m in part; and decreasing in Sidi Abid (agricultural area) with values exceeding −3 m. Groundwater samples for chemical and microbial analysis were collected from 41 wells spread throughout the study area. Results showed significantly elevated levels of sodium, chlorides, nitrates and coliform bacteria all over the urban area. High levels (NO3: 56–254 mg/l; Na >1,500 mg/l; Coliforms >30/100 ml) can be related to more densely populated areas with a higher density of pit latrine and recharge wells. Alternatively results showed a very variable chemical composition of groundwater, e.g. electrical conductivity ranges from 4,040 to19,620 μs/cm and the dry residual varies between 1.4 and 14 g/l with concentrations increasing downstream. Furthermore a softening of groundwater in Set Ezzit (highly populated sector) was observed.  相似文献   

3.
The study was carried out in order to investigate existing hydrogeochemical relationships between groundwater environment and geological units in the Kazan trona deposit area, Ankara, Turkey. Evaluations indicate that concentrations of alkalinity, boron, chloride and sodium in the upgradient groundwater of the Eocene sedimentary units gradually increase toward downgradient by the interactions of saline minerals (searlesite, shortite, northupite and pyrite) present in the secondary structures (microfractures and irregular voids) at various levels. Inverse modeling calculations suggest that the range of dissolved mass amounts in millimoles per kilogram of water for searlesite, shortite and northupite minerals are 0.05–28.67, 2.62–24.39 and 0.01–24.19, respectively, in the aquifer between the upgradient and downgradient locations. The ranges of accompanying calcite and dolomite precipitations are 4.54–48.71 and 2.16–24.08 mmol per kg of water, respectively. Chemical composition of the groundwater in the overlying Neogene sedimentary unit includes also higher concentrations of the major ions as measured in groundwater of the underlying units. However the lack of saline mineral zones in the Neogene unit indicates that upward groundwater mixing takes place from the underlying aquifer as also suggested by the measured upward gradient. The mixing percentage of the underlying groundwater as determined from the nested wells ranges from 2.7 to 48.3%, from upgradient to downgradient, respectively. The unconfined alluvium aquifer overlying the Neogene unit includes relatively dilute groundwater except in two locations, where high-ion concentrations detected in groundwater of the underlying units are also high in these locations, suggesting upward groundwater mixing from the underlying aquifer due to upward gradient. However, groundwater input investigations from the alluvium aquifer to the nearby Ova stream indicate that the detected high concentrations in these locations are diluted or sorbed by the aquifer material toward downgradient (Ova Stream).  相似文献   

4.
A regional-scale groundwater study was conducted over a 2-year period to assess the extent of nitrate contamination and source identification for southern Baldwin County, AL. Groundwater wells were sampled and analyzed for nitrate and a host of other geochemical parameters which revealed that extensive areas within aquifer zone A2 exhibited nitrate concentrations exceeding regulatory limits. Spatial iso-concentration maps of nitrate were constructed using ArcGIS software to determine the extent and severity of contamination for the aquifers underlying southern Baldwin County with the primary interest focused on the heavily utilized aquifer zone A2. Nitrate levels in the central and northeastern portion of the study area were most extensive with maximum concentrations of 63 mg/L likely resulting from agricultural inputs. Several other small regions throughout the study area exhibited elevated levels of nitrate and chloride as high as 112 and 51.1 mg/L, respectively, and sources likely vary (i.e., residential septic systems, animal waste to agriculture). With the exception of a few groundwater samples, there was no obvious correlative relationship between chloride and nitrate concentration for data collected during the 2-year period. Collectively, a general inverse relationship between nitrate concentrations and well depth was observed for the aquifer system under investigation. The study provides an initial current data set of areas impacted or most vulnerable to nitrate contamination and initial assessment of likely sources of nitrate in the region.  相似文献   

5.
Pesticides are a potential threat to the quality of extracted groundwater when the water-supply area is used for agricultural activities. This problem is discussed for the water-supply area of Sint-Jansteen, The Netherlands, where measured pesticide concentrations in the extracted water regularly exceed EU limits (0.1 μg/L). Groundwater samples taken from the aquifer within the water-supply area show low contamination, but samples taken from the extracted water occasionally contain pesticides, making the water inadequate for drinking-water purposes. The more intense contamination of the extracted water is caused by the change in the natural groundwater flow pattern near the extraction wells. In this area, pesticide use cannot be avoided easily, and an approach is given to differentiate pesticide use in the area according to expected travel time toward the wells and the chemical characteristics of the pesticides. A groundwater flow model for the area is developed and the effects of groundwater extraction on the natural flow pattern are evaluated. Using particle tracking, the travel-time zones are determined. Combining these results and the degradation behavior of certain pesticides led to an optimal scheme to integrate agricultural activities and groundwater extraction in the area. This is illustrated for five different types of pesticides (atrazine, simazine, bentazone, MCPA, and mecoprop). Received, October 1998/Revised, July 1999, September 1999/Accepted, November 1999  相似文献   

6.
The objective of this study was to test the applicability of groundwater sustainability indicators defined by UNESCO, together with the International Academy of Environmental Sciences (IAES), the International Association of Hydrogeology (IAH) Group on Groundwater Indicators and the Geological Survey of Spain (IGME), to the aquifer scale. We selected four main indicators based on their relevance in the field of groundwater sustainability and because they proved to be the most reliable, based on the data collection and methodology utilized. These indicators were applied to a small—26 km2 of permeable outcrops—carbonate aquifer situated in the province of Seville (southern Spain), which has semi-arid climate conditions (500 mm/year). The integral application of all these indicators in this particular groundwater body leads us to conclude that, at present, the aquifer is undergoing intensive use. Therefore, the exploitation of its water resources is surpassing the threshold of sustainability when both the quantity and the quality of the groundwater are taken into consideration. The continued increase in exploitation generates a descending trend in the evolution of the piezometric levels, a consequence of adaptation to the new hydrodynamic situation, and also results in exhaustion of the springs that drain the aquifer in undisturbed conditions. At the same time, there is a trend of increasing salinity in the groundwater and a risk of contamination by nitrate which, according to the EU Water Framework Directive and the Groundwater Daughter Directive (EU Official Journal of the European Communities L327, 2000; EU Official Journal of the European Communities L372/19, 2006), should be controlled and reduced. In the future, application of the methodology described here may prove useful for the evaluation of similar systems, either in southern Spain or in other countries with semi-arid climates.  相似文献   

7.
This paper is the result of a study which was carried out in order to verify if the traditional methods to evaluate the intrinsic vulnerability or vulnerability related parameters, are able to clarify the problem of nitrate pollution in groundwater. In particular, the aim was to evaluate limitations and problems connected to aquifer vulnerability methods applied to nitrate contamination prevision in groundwater. The investigation was carried out by comparing NO3 concentrations, measured in March and November 2004 in the shallow aquifer, and the vulnerability classes, obtained by using GOD and TOT methods. Moreover, it deals with a comparison between NO3 concentrations and single parameters (depth to water table, land use and nitrogen input). The study area is the plain sector of Piemonte (Northern Italy), where an unconfined aquifer nitrate contamination exists. In this area the anthropogenic presence is remarkable and the input of N-fertilizers and zootechnical effluents to the soil cause a growing amount of nitrates in groundwater. This approach, used in a large area (about 10,000 km2) and in several monitoring wells (about 500), allowed to compare the efficiency of different vulnerability methods and to verify the importance of every parameter on the nitrate concentrations in the aquifer. Furthermore it allowed to obtain interesting correlations in different hydrogeological situations. Correlations between depth to water table, land use and nitrogen input to the soil with nitrate concentrations in groundwater show unclear situations: in fact these comparisons describe the phenomenon trend and highlight the maximum nitrate concentrations for each circumstance but often show wide ranges of possible nitrate concentrations. The same situation could be observed by comparing vulnerability indexes and nitrate concentrations in groundwater. These results suggest that neither single parameters nor vulnerability methods (GOD and TOT) are able to describe individually the complex phenomena affecting nitrate concentrations in soil, subsoil and groundwater. In particular, the traditional methods for vulnerability analysis do not analyze physical processes in aquifers, such as denitrification and nitrate dilution. According to a recent study in the shallow unconfined aquifer of the Piemonte plain, dilution can be considered as the main cause for nitrate attenuation in groundwater.  相似文献   

8.
Recently, Ras Sudr (the delta of Wadi Sudr) area received a great amount of attention due to different development expansion activities directed towards this area. Although Quaternary aquifer is the most prospective aquifer in Ras Sudr area, it has not yet completely evaluated. The present work deals with the simulation of the Quaternary groundwater system using a three-dimensional groundwater flow model. MODFLOW code was applied for designing the model of the Ras Sudr area. This is to recognize the groundwater potential as well as exploitation plan of the most prospective aquifer in the area. The objectives were to determine the hydraulic parameters of the Quaternary aquifer, to estimate the recharge amount to the aquifer, and to determine the hydrochemistry of groundwater in the aquifer. During this work, available data has been collected and some field investigation has been carried out. Groundwater flow model has been simulated using pilot points’ method. SEAWAT has been also applied to simulate the variable-density flow and sea water intrusion from the west. It can be concluded that: (1) the direction of groundwater flow is from the east to the west, (2) the aquifer system attains a small range of log-transformed hydraulic conductivity. It ranges between 3.05 and 3.35 m/day, (3) groundwater would be exploited by about 6.4 × 106 m3/year, (4) the estimated recharge accounts for 3 × 106 m3/year, (5) an estimated subsurface flow from the east accounts for 2.7 × 106 m3/year, (6) the increase of total dissolved solids (TDS) most likely due to dilution of salts along the movement way of groundwater from recharge area to discharge area in addition to a contribution of sea water intrusion from the west. Moreover, it is worth to note that a part of TDS increase might be through up coning from underlying more saline Miocene sediments. It is recommended that: (1) any plan for increasing groundwater abstraction is unaffordable, (2) reliable estimates of groundwater abstraction should be done and (3) automatic well control system should be made.  相似文献   

9.
The Lorraine Triassic Sandstone Aquifer (LTSA), which has already been the subject of a chemical and radioisotopic study (1979), is used to investigate the impacts of 20 a of large scale pumping on baseline water quality. In parallel, new sampling of the aquifer (2001) provides new inorganic geochemical data (including trace elements) that allow improving the knowledge of baseline conditions and hydrochemical functioning of a major sandstone aquifer. The good correlation between 14C activities, temperature and depth along the main flow line indicate regular downgradient trends and possible water stratification. Unreactive tracers, mainly stable isotope ratios 18O and 2H, as well as C isotopes are used to define a timescale for the aquifer, showing two groups of groundwater, namely of modern and Holocene age, and late Pleistocene age, with a mixing zone. Baseline quality is then represented by a wide range of concentrations, mainly the result of time-dependent water–rock interaction, as already observed elsewhere in Triassic sandstone aquifers. Some trace elements such as Li, Rb, Cs, which are not limited by solubility constraints, show linear trends. During saturated flow downgradient, the chemistry is also specifically characterised by a regular increase in Na and Cl (and locally SO4) as a result of evaporite dissolution related to overlying or basement limits. The aquifer is mostly oxidising with a redox boundary marked by U decrease, some 40 km from outcrop.  相似文献   

10.
Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.  相似文献   

11.
In northeast Mexico is Linares City, which has an extensive agricultural area and many industrial activities. Near this city is the Cerro-Prieto Dam (~12 km NE direction); this drinking water reservoir captures the water of the Pablillo River catchment area and constitutes an important source of potable water for the metropolitan area of Monterrey, the largest urban center of this region. Groundwater sources in this area provide drinking water to Linares inhabitants. A hydrogeological and hydrochemical study was conducted on the shallow aquifers surrounding the urban centers (Linares and Hualahuises) to determine the evolution of the water quality between 1981 and 2009. The hydrochemistry was assessed upgradient and downgradient from the potential contamination sources in Linares city. Groundwater showed a chemical evolution from calcium-bicarbonate type to calcium–sodium-sulfate type. The water qualities in the downstream area after Linares are inferior compared to the upstream area before the city. Nitrate concentrations in groundwater increased significantly after 28 years indicating an important pollutant process in this period of time over the study area. The possible pollution sources could be the agricultural and farm activities, industrial development, landfills leachate, septic tanks and wastewater of municipal and domestic consumption. If the present scenario continues, an aquifer vulnerability assessment would be important for the sustainable water management.  相似文献   

12.
This paper expands significantly on the major-ion geochemical characterization, evolution, and differentiation of groundwater in the Presidio-Redford Bolson (PRB) Aquifer of Texas as presented in Chowdhury et al. (2008). For 19 groundwater samples from the PRB Aquifer, the author calculated major cation–anion balance errors, equilibrium carbon dioxide partial pressure values and saturation indices for selected minerals. Comparison of major-ion analyses for groundwater from basin margin wells with those for basin center wells is documented and illustrated with ion-concentration maps and Piper and Stiff diagrams and reveals significant increases in concentrations of chloride, sulfate and sodium coupled with notable decrease of calcium in bolson-center well samples. These geochemical changes suggest dissolution of aquifer minerals and cation exchange as groundwater migrates downgradient to the bolson center. The US Geological Survey (USGS) computer code, NETPATH, was used to interpret probable net geochemical mass-balance reactions that potentially have occurred within the PRB Aquifer along groundwater flowpaths from bolson margin to bolson center. For all four upgradient–downgradient well pairs studied, at least three NETPATH models contain cation exchange values; calcium is being exchanged for sodium. The Rio Grande Alluvium Aquifer and Rio Grande River are notably minor sources of recharge to the PRB Aquifer, based on Chowdhury et al. (2008) and geochemical evaluations of this study.  相似文献   

13.
High concentrations of fluoride (up to 7.6 mg/L) are a recognized feature of the Wailapally granitic aquifer of Nalgonda District, Andhra Pradesh, India. The basement rocks provide abundant sources of F in the form of amphibole, biotite, fluorite and apatite. The whole-rock concentrations of F in the aquifer are in the range 240–990 mg/kg. Calcretes from the shallow weathered horizons also contain comparably high concentrations of F (635–950 mg/kg). The concentrations of water-soluble F in the granitic rocks and the calcretes are usually low (1% of the total or less) but broadly correlate with the concentrations observed in groundwaters in the local vicinity. The water-soluble fraction of fluoride is relatively high in weathered calcretes compared to fresh calcretes.Groundwater major-ion composition shows a well-defined trend with flow downgradient in the Wailapally aquifer, from Na–Ca–HCO3-dominated waters in the recharge area at the upper part of the catchment, through to Na–Mg–HCO3 and ultimately to Na–HCO3 and Na–HCO3–Cl types in the discharge area in the lowest part. The evolution occurs over a reach spanning some 17 km. Groundwater chemistry evolves by silicate weathering reactions, although groundwaters rapidly reach equilibrium with carbonate minerals, favouring precipitation of calcite, and ultimately dolomite in the lower parts of the watershed. This precipitation is also aided by evapotranspiration. Decreasing Ca activity downgradient leads to a dominance of fluorite-undersaturated conditions and consequently to mobilisation of F. Despite the clear downgradient evolution of major-ion chemistry, concentrations of F remain relatively uniform in the fluorite-undersaturated groundwaters, most being in the range 3.0–7.6 mg/L. The rather narrow range is attributed to a mechanism of co-precipitation with and/or adsorption to calcrete in the lower sections of the aquifer. The model may find application in other high-F groundwaters from granitic aquifers of semi-arid regions.  相似文献   

14.
In order to assess the extent of groundwater contamination by nitrate (NO3 –N) and to provide information about the deterioration of the groundwater quality in Zhangye Oasis, Northwest China, a study was conducted in this area. The mean value of NO3 –N concentrations in groundwater samples was 10.66 ± 0.19 mg l−1. NO3 –N concentrations exceeding 10 mg l−1 (the threshold for drinking water set by the World Health Organization) were found in 32.4% of 71 wells, and were 13, 33.3, 52.4 and 50.0% in the groundwater samples from drinking wells, irrigation wells, hand-pumping wells and groundwater table observation wells, respectively. The result showed that the groundwater samples that had NO3 –N concentrations exceeding the threshold for drinking water were mostly collected from a depth of less than 20 m. Groundwater NO3 –N concentrations in areas used for the cultivation of vegetables, seed maize and intercropped maize were significantly higher than those in urban or paddy areas. NO3 –N contamination of groundwater in areas with sandy soil was more severe than in those with loam soil.  相似文献   

15.
Groundwater pumped from the semi-confined Complex Terminal (CT) aquifer is an important production factor in irrigated oases agriculture in southern Tunisia. A rise in the groundwater salinity has been observed as a consequence of increasing abstraction from the aquifer during the last few decades. All sources of contamination were investigated using hydrochemical data available from the 1990s. Water samples were taken from wells tapping both the CT and the shallow aquifers and analyzed with regard to chemistry tracers. Hydrochemical and water quality data obtained through a sampling period (December 2010) and analysis program indicate that nitrate pollution can be a serious problem affecting groundwater due to the use of nitrogen (N) fertilizers–pesticides in agriculture. The concentration of nitrate in an groundwater-irrigated area in Gafsa oases basin was studied, where abstraction from an unconfined CT aquifer has increased threefold over 25 years to 34 million m3/year; groundwater levels are falling at up to 0.7 m/year; and groundwater is increasingly mineralised (TDS increase from 500 to 4,000 mg/L), with nitrate concentrations ranging from 16 to 320 mg/L.  相似文献   

16.
This paper describes the implementation of process-based models reflecting relative groundwater nitrate vulnerability of the shallow alluvial Lower Savinja Valley (LSV) aquifer in Slovenia. A spatially explicit identification of the potentially vulnerable priority areas within groundwater bodies at risk from a chemical point of view is being required for cost-effective measures and monitoring planning. The shallow LSV unconfined aquifer system consists of high-permeable Holocene and middle- to low-permeable Pleistocene gravel and sand, with a maximum thickness of about 30 m, mainly covered by shallow eutric fluvisoils or variously deep eutric cambisoil. The hydrogeological parameters, e.g. the depth to the groundwater, hydrological role of the topographic slope, etc. usually used in different point count schemes are, in the case of the lowland aquifer and shallow groundwater, spatially very uniform with low variability. Furthermore, the parametric point count methods are generally not able to illustrate and analyze important physical processes, and validation of the results is difficult and expensive. Instead of a parametric point count scheme, we experimentally used the Arc-WofE extension for weights-of-evidence (WofE) modelling. All measurement locations with a concentration higher than the value of 20 mg NO3 per litre of groundwater have been considered as training points (173), and the three process-based models generalized output layers of groundwater recharge (GROWA), nitrate leached from the soil profile (SWAT) and groundwater flow velocity (FEFLOW), served as evidential themes. The technique is based on the Bayesian idea of phenomena occurrences probability before (prior probability) and after consideration of any evidential themes (posterior probability), which were measured by positive and negative weights as an indication of the association between a phenomena and a prediction pattern. The response theme values describe the relative probability that a 100 × 100 m spatial unit will have a groundwater nitrate concentration higher than the training points’ limit values with regard to prior probability value. The lowest probability of groundwater nitrate occurrence is in the parts of the LSV aquifer, which are known as anoxic condition areas with very likely denitrification processes. The cross-validation of the dissolved oxygen and dissolved nitrate response theme confirmed the accuracy of the groundwater nitrate prediction. The WofE model results very clearly indicate regional groundwater nitrate distribution and enable spatial prediction of the probability for increased groundwater nitrate concentration in order to plan the groundwater nitrate reduction measures and optimize the programme for monitoring the effects of these measures.  相似文献   

17.
The groundwater system in northern Perry Township in Lake County, Ohio, is a shallow, unconfined aquifer consisting of periglacial lake beach deposits and less permeable lacustrine plain deposits. Groundwater flow is generally toward Lake Erie from south to north and is controlled by the top of the Ashtabula Till, but strong, local variations are caused by northward flowing streams During the study period, water levels in most wells exhibited a seasonal fluctuation of less than 0 3 m from their mean values. The areal distributions of chloride and nitrate concentrations indicate that road salt runoff easily infiltrates the aquifer and that nitrate may be sourced from fertilizer application. Ground-water flow and solute transport models indicate that in excess of 27 years are required to obtain chemical steady-state under hydrologic steady-state conditions. The simulations also demonstrate that nitrate loading must occur in more than one cultivated field in order to obtain the observed wide-spread nitrate distribution.  相似文献   

18.
《Applied Geochemistry》1997,12(4):507-516
Concentrations of electron acceptors, electron donors, and H2 in groundwater were measured to determine the distribution of terminal electron-accepting processes (TEAPs) in an alluvial aquifer having multiple contaminant sources. Upgradient contaminant sources included two separate hydrocarbon point sources, one of which contained the fuel oxygenate methyl tertbutyl ether (MTBE). Infiltrating river water was a source of dissolved NO3, SO4 and organic carbon (DOC) to the downgradient part of the aquifer. Groundwater downgradient from the MTBE source had larger concentrations of electron acceptors (dissolved O2 and SO4) and smaller concentrations of TEAP end products (dissolved inorganic C, Fe2+ and CH4) than groundwater downgradient from the other hydrocarbon source, suggesting that MTBE was not as suitable for supporting TEAPs as the other hydrocarbons. Measurements of dissolved H2 indicated that SO4 reduction predominated in the aquifer during a period of high water levels in the aquifer and river. The predominant TEAP shifted to Fe3+ reduction in upgradient areas after water levels receded but remained SO4 reducing downgradient near the river. This distribution of TEAPs is the opposite of what is commonly observed in aquifers having a single contaminant point source and probably reflects the input of DOC and SO4 to the aquifer from the river. Results of this study indicate that the distribution of TEAPs in aquifers having multiple contaminant sources depends on the composition and location of the contaminants and on the availability of electron acceptors.  相似文献   

19.
The Kingston Basin in Jamaica is an important hydrologic basin in terms of both domestic and industrial sector. The Kingston hydrologic basin covers an area of approximately 258 km2 of which 111 km2 underlain by an alluvium aquifer, 34 km2 by a limestone aquifer and the remainder underlain by low permeability rocks with insignificant groundwater resources. Rapid development in recent years has led to an increased demand for water, which is increasingly being fulfilled by groundwater abstraction. A detailed knowledge of the water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To achieve this, a hydrochemical investigation was carried out in the Kingston Basin. Results showed that the water is Na–Ca–Cl–HCO3 and Na–Ca–HCO3 type with higher concentrations of nitrate, sodium and chloride as the leading causes of contamination in most of the wells. High concentrations of nitrate correlate with wells from areas of high population density and could be attributed to anthropogenic causes, mainly involving improper sewage treatment methodologies or leaking sewer lines. Jamaica, owing to its island nature, has the continuous problem of saline water intrusion, and this is reflected in the higher levels of chloride, sodium and conductivity in the water samples collected from the wells. The wells studied show higher concentrations of chloride ranging from around 10.2 mg/l in wells located approximately (4931.45 m) from the coast to around 234 mg/l in the well located near to the coast. The conductivity values also closely correlate with the chloride levels found in the wells.  相似文献   

20.
Alluvial groundwater from springs and bore wells, used as the major source of water for drinking and other domestic purposes in the semi-urban informal settlements of Douala, Cameroon, has been studied. Six representative springs, four bore wells and two hand dug wells, situated in the Phanerozoic basin were selected, from which a total of 72 water samples were analyzed for chemical characteristics and indicators of bacterial contamination. The results showed anthropogenic pollution, evident from high concentrations of organic (up to 94.3 mg NO3/l nitrate) fecal coliform and fecal streptococcus detected in the springs and bore wells (with values of 2,311 and 1,500 cfu/100 ml, respectively). The pH ranged from 3.4–6.5, which is lower than the guidelines for drinking water. Groundwater samples from background upstream inland natural areas W1 and W2 had low electrical conductivity (54.2 and 74.8 μs/cm, respectively) and major ions, which increased downstream in the valleys, peaking in the more densely settled areas. An acceptable concentration of solutes was observed for the bore wells except for a single sample from B4. The bore-well sample B4 registered the highest microbial content (2,130 cfu/100 ml) and nitrate level(26 mg/l), which could be due to the bottom of this well lying just at or close to the zone of mixing between sewage and groundwater. The absence of a direct correlation between nitrate and fecal matter suggests multiple sources of contamination. The shallow alluvial aquifer consists of unconsolidated deposits of gravel, sand, silt and clay. The springs, therefore, receive direct recharge from the ground surface with limited contaminant attenuation, which leads to water quality deterioration, especially during the rainy season. This shows the urgent need to put basic service infrastructures in place. The local population should be sensitized to the importance of chlorinating and boiling drinking water to prevent health hazards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号