首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have obtained 40 high-resolution circular spectropolarimetric measurements of 12 slowly pulsating B (SPB) stars, eight β Cephei stars and two Be stars with the Echelle Spectropolarimetric Device for the Observation of Stars at CFHT (ESPaDOnS) and Narval spectropolarimeters. The aim of these observations is to evaluate recent claims of a high incidence of magnetic field detections in stars of these types obtained using low-resolution spectropolarimetry by Hubrig et al. The precision achieved is generally comparable to or superior to that obtained by Hubrig et al., although our new observations are distinguished by their resolution of metallic and He line profiles, and their consequent sensitivity to magnetic fields of zero net longitudinal component. In the SPB stars, we confirm the detection of magnetic field in one star (16 Peg), but find no evidence of the presence of fields in the remaining 11. In the β Cep stars, we detect a field in  ξ1  CMa, but not in any of the remaining seven stars. Finally, neither of the two B-type emission-line stars shows any evidence of magnetic field. Based on our results, we conclude that fields are not common in SPB, β Cep and B-type emission-line stars, consistent with the general rarity of fields in the broader population of main sequence B-type stars. A relatively small, systematic underestimation of the error bars associated with the UV Focal Reducer and Low Dispersion Spectrograph for the Very Large Telescope (FORS1) longitudinal field measurements of Hubrig et al. could in large part explain the discrepancy between their results and those presented here.  相似文献   

2.
Our knowledge of the presence and the strength of magnetic fields in intermediate‐mass pre‐main‐sequence stars remains very poor. We present new magnetic field measurements in six Herbig Ae/Be stars observed with HARPS in spectropolarimetric mode. We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS spectra for six Herbig Ae/Be stars. Wavelength shifts between right‐ and left‐hand side circularly polarised spectra were interpreted in terms of a longitudinal magnetic field 〈Bz〉, using the moment technique introduced by Mathys. The application of the moment technique to the HARPS spectra allowed us in addition to study the presence of the crossover effect and quadratic magnetic fields. Our search for longitudinal magnetic fields resulted in first detections of weak magnetic fields in the Herbig Ae/Be stars HD 58647 and HD 98922. Further, we confirm the previous tentative detection of a weak magnetic field in HD 104237 by Donati et al. and confirm the previous detection of a magnetic field in the Herbig Ae star HD 190073. Surprisingly, the measured longitudinal magnetic field of HD 190073, 〈Bz〉 = 91 ± 18 G at a significance level of 5σ is not in agreement with the measurement results of Alecian et al. (2013), 〈Bz〉 = –10 ± 20 G, who applied the LSD method to exactly the same data. No crossover effect was detected for any star in the sample. Only for HD 98922 the crossover effect was found tobe close to 3σ with a measured value of –4228 ± 1443 km s–1 G. A quadratic magnetic field of the order of 10 kG was detected in HD 98922, and of ∼3.5 kG in HD 104237. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Recent spectropolarimetric observations of Ap and Bp stars with improved sensitivity have suggested that most Ap and Bp stars are magnetic with dipolar fields of at least a few hundred gauss. These new estimates suggest that the range of magnetic fluxes found for the majority of magnetic white dwarfs is similar to that of main-sequence Ap–Bp stars, thus strengthening the empirical evidence for an evolutionary link between magnetism on the main sequence and magnetism in white dwarfs. We draw parallels between the magnetic white dwarfs and the magnetic neutron stars and argue that the observed range of magnetic fields in isolated neutron stars  ( Bp ∼ 1011–1015 G)  could also be explained if their mainly O-type progenitors have effective dipolar fields in the range of a few gauss to a few kilogauss, assuming approximate magnetic flux conservation with the upper limit being consistent with the recent measurement of a field of   Bp ∼ 1100 G  for θ Orion C.
In the magnetic field–rotation diagram, the magnetic white dwarfs can be divided into three groups of different origin: a significant group of strongly magnetized slow rotators  ( P rot∼ 50 –100 yr)  that have originated from single-star evolution, a group of strongly magnetized fast rotators  ( P rot∼ 700 s)  , typified by EUVE J0317–853, that have originated from a merger, and a group of modest rotators ( P rot∼ hours–days) of mixed origin (single-star and CV-type binary evolution). We propose that the neutron stars may similarly divide into distinct classes at birth , and suggest that the magnetars may be the counterparts of the slowly rotating high-field magnetic white dwarfs.  相似文献   

4.
We examine the proposal that the subset of neutron-star and black-hole X-ray binaries that form with Ap or Bp star companions will experience systemic angular-momentum losses due to magnetic braking, not otherwise operative with intermediate-mass companion stars. We suggest that for donor stars possessing the anomalously high magnetic fields associated with Ap and Bp stars, a magnetically coupled, irradiation-driven stellar wind can lead to substantial systemic loss of angular momentum. Hence, these systems, which would otherwise not be expected to experience 'magnetic braking', evolve to shorter orbital periods during mass transfer. In this paper, we detail how such a magnetic braking scenario operates. We apply it to a specific astrophysics problem involving the formation of compact black-hole binaries with low-mass donor stars. At present, it is not understood how these systems form, given that low-mass companion stars are not likely to provide sufficient gravitational potential to unbind the envelope of the massive progenitor of the black hole during a prior 'common-envelope' phase. On the other hand, intermediate-mass companions, such as Ap and Bp stars, could more readily eject the common envelope. However, in the absence of magnetic braking, such systems tend to evolve to long orbital periods. We show that, with the proposed magnetic braking properties afforded by Ap and Bp companions, such a scenario can lead to the formation of compact black-hole binaries with orbital periods, donor masses, lifetimes and production rates that are in accord with the observations. In spite of these successes, our models reveal a significant discrepancy between the calculated effective temperatures and the observed spectral types of the donor stars. Finally, we show that this temperature discrepancy would still exist for other scenarios invoking initially intermediate-mass donor stars, and this presents a substantial unresolved mystery.  相似文献   

5.
It is essential for the understanding of stellar structure models of high mass stars to explain why constant stars, nonpulsating chemically peculiar hot Bp stars and pulsating stars co‐exist in the slowly pulsating B stars and β Cephei instability strips. We have conducted a search for magnetic fields in the four Bp stars HD55522, HD105382, HD131120, and HD138769 which previously have been wrongly identified as slowly pulsating B stars. A recent study of these stars using the Doppler Imaging technique revealed that the elements He and Si are inhomogeneously distributed on the stellar surface, causing the periodic variability. Using FORS 1 in spectropolarimetric mode at the VLT, we have acquired circular polarisation spectra to test the presence of a magnetic field in these stars. A variable magnetic field is clearly detected in HD55522 and HD105382, but no evidence for the existence of a magnetic field was found in HD131120. The presence of a magnetic field in HD138769 is suggested by one measurement at 3σ level. We discuss the occurrence of magnetic B stars among the confirmed pulsating B stars and find strong magnetic fields of order kG and oscillations to be mutually exclusive. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We reveal sufficient evidence that the physical characteristics of Ap stars are related to binarity. The Ap star peculiarity [represented by the  Δ( V 1- G )  value and magnetic field strength] diminishes with eccentricity, and it may also increase with orbital period ( P orb). This pattern, however, does not hold for large orbital periods. A striking gap that occurs in the orbital period distribution of Ap binaries at 160–600 d might well mark a discontinuity in the above-mentioned behaviour. There is also an interesting indication that the Ap star eccentricities are relatively lower than those of corresponding B9–A2 normal binaries for   P orb>10 d  . All this gives serious support to the pioneering idea of Abt & Snowden concerning a possible interplay between the magnetism of Ap stars and their binarity. Nevertheless, we argue instead in favour of another mechanism, namely that it is binarity that affects magnetism and not the opposite, and suggest the presence of a new magnetohydrodynamical mechanism induced by the stellar companion and stretching to surprisingly large P orb.  相似文献   

7.
We re‐discuss the evolutionary state of upper main sequence magnetic stars using a sample of Ap and Bp stars with accurate Hipparcos parallaxes and definitely determined longitudinal magnetic fields. We confirm our previous results obtained from the study of Ap and Bp stars with accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields that magnetic stars of mass M < 3 M are concentrated towards the centre of the main‐sequence band. In contrast, stars with masses M > 3 M seem to be concentrated closer to the ZAMS. The study of a few known members of nearby open clusters with accurate Hipparcos parallaxes confirms these conclusions. Stronger magnetic fields tend to be found in hotter, younger and more massive stars, as well as in stars with shorter rotation periods. The longest rotation periods are found only in stars which spent already more than 40% of their main sequence life, in the mass domain between 1.8 and 3 M and with log g values ranging from 3.80 to 4.13. No evidence is found for any loss of angular momentum during the main‐sequence life. The magnetic flux remains constant over the stellar life time on the main sequence. An excess of stars with large obliquities β is detected in both higher and lower mass stars. It is quite possible that the angle β becomes close to 0. in slower rotating stars of mass M > 3 M too, analog to the behaviour of angles β in slowly rotating stars of M < 3 M. The obliquity angle distribution as inferred from the distribution of r ‐values appears random at the time magnetic stars become observable on the H‐R diagram. After quite a short time spent on the main sequence, the obliquity angle β tends to reach values close to either 90. or 0. for M < 3 M. The evolution of the obliquity angle β seems to be somewhat different for low and high mass stars. While we find a strong hint for an increase of β with the elapsed time on the main sequence for stars with M > 3 M, no similar trend is found for stars with M < 3 M. However, the predominance of high values of β at advanced ages in these stars is notable. As the physics governing the processes taking place in magnetised atmospheres remains poorly understood, magnetic field properties have to be considered in the framework of dynamo or fossil field theories. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We have produced brightness and magnetic field maps of the surfaces of CV Cha and CR Cha: two actively accreting G- and K-type T Tauri stars in the Chamaeleon I star-forming cloud with ages of 3–5 Myr. Our magnetic field maps show evidence for strong, complex multipolar fields similar to those obtained for young rapidly rotating main-sequence stars. Brightness maps indicate the presence of dark polar caps and low-latitude spots – these brightness maps are very similar to those obtained for other pre-main-sequence and rapidly rotating main-sequence stars.
Only two other classical T Tauri stars have been studied using similar techniques so far: V2129 Oph and BP Tau. CV Cha and CR Cha show magnetic field patterns that are significantly more complex than those recovered for BP Tau, a fully convective T Tauri star.
We discuss possible reasons for this difference and suggest that the complexity of the stellar magnetic field is related to the convection zone; with more complex fields being found in T Tauri stars with radiative cores (V2129 Oph, CV Cha and CR Cha). However, it is clearly necessary to conduct magnetic field studies of T Tauri star systems, exploring a wide range of stellar parameters in order to establish how they affect magnetic field generation, and thus how these magnetic fields are likely to affect the evolution of T Tauri star systems as they approach the main sequence.  相似文献   

9.
We study torsional Alfvén oscillations of magnetars, that is neutron stars with a strong magnetic field. We consider the poloidal and toroidal components of the magnetic field and a wide range of equilibrium stellar models. We use a new coordinate system  ( X , Y )  , where     and     and a 1 is the radial component of the magnetic field. In this coordinate system, the one+two-dimensional evolution equation describing the quasi-periodic oscillations (QPOs), see Sotani et al., is reduced to a one+one-dimensional equation where the perturbations propagate only along the y -axis. We solve the one+one-dimensional equation for different boundary conditions and the open magnetic field lines, that is magnetic field lines that reach the surface and there match up with the exterior dipole magnetic field as well as closed magnetic lines, i.e. magnetic lines that never reach the stellar surface. For the open field lines, we find two families of QPO frequencies: a family of 'lower' QPO frequencies which is located near the x -axis and a family of 'upper' frequencies located near the y -axis. According to Levin, the fundamental frequencies of these two families can be interpreted as the turning point of the continuous spectrum. We find that the upper frequencies are multiples of the lower ones by a constant equalling  2 n + 1  . For the closed lines, the corresponding factor is   n + 1  . By using these relations, we can explain both the lower and the higher observed frequencies in SGR 1806−20 and SGR 1900+14.  相似文献   

10.
Measuring solar-like oscillations in an ensemble of stars in a cluster, holds promise for testing stellar structure and evolution more stringently than just fitting parameters to single field stars. The most-ambitious attempt to pursue these prospects was by Gilliland et al. who targeted 11 turn-off stars in the open cluster M67 (NGC 2682), but the oscillation amplitudes were too small (<20 μmag) to obtain unambiguous detections. Like Gilliland et al. we also aim at detecting solar-like oscillations in M67, but we target red giant stars with expected amplitudes in the range 50–  500 μmag  and periods of 1 to 8 h. We analyse our recently published photometry measurements, obtained during a six-week multisite campaign using nine telescopes around the world. The observations are compared with simulations and with estimated properties of the stellar oscillations. Noise levels in the Fourier spectra as low as  27 μmag  are obtained for single sites, while the combined data reach  19 μmag  , making this the best photometric time series of an ensemble of red giant stars. These data enable us to make the first test of the scaling relations (used to estimate frequency and amplitude) with an homogeneous ensemble of stars. The detected excess power is consistent with the expected signal from stellar oscillations, both in terms of its frequency range and amplitude. However, our results are limited by apparent high levels of non-white noise, which cannot be clearly separated from the stellar signal.  相似文献   

11.
In our previous work on the 3-dimensional dynamical structure of planetary nebulae the effect of magnetic field was not considered. Recently Jordan et al. have directly detected magnetic fields in the central stars of some planetary nebulae. This discovery supports the hypothesis that the non-spherical shape of most planetary nebulae is caused by magnetic fields in AGB stars. In this study we focus on the role of initially weak toroidal magnetic fields embedded in a stellar wind in altering the shape of the PN. We found that magnetic pressure is probably influential on the observed shape of most PNe.  相似文献   

12.
Dynamo action within the cores of Ap stars may offer intriguing possibilities for understanding the persistent magnetic fields observed on the surfaces of these stars. Deep within the cores of Ap stars, the coupling of convection with rotation likely yields magnetic dynamo action, generating strong magnetic fields. However, the surface fields of the magnetic Ap stars are generally thought to be of primordial origin. Recent numerical models suggest that a primordial field in the radiative envelope may possess a highly twisted toroidal shape. We have used detailed 3-D simulations to study the interaction of such a twisted magnetic field in the radiative envelope with the core-dynamo operating in the interior of a 2 solar mass A-type star. The resulting dynamo action is much more vigorous than in the absence of such a fossil field, yielding magnetic field strengths (of order 100 kG) much higher than their equipartition values relative to the convective velocities. We examine the generation of these fields, as well as the growth of large-scale magnetic structure that results from imposing a fossil magnetic field. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We study the differences in chromospheric structure induced in K stars by stellar activity, to expand our previous work for G stars, including the Sun as a star. We selected six stars of spectral type K with  0.82 < B − V < 0.90  , including the widely studied Epsilon Eridani and a variety of magnetic activity levels. We computed chromospheric models for the stars in the sample, in most cases in two different moments of activity. The models were constructed to obtain the best possible match with the Ca  ii K and the Hβ observed profiles. We also computed in detail the net radiative losses for each model to constrain the heating mechanism that can maintain the structure in the atmosphere. We find a strong correlation between these losses and   S Ca II  , the index generally used as a proxy for activity, as we found for G stars.  相似文献   

14.
In our previous search for magnetic fields in Herbig Ae stars, we pointed out that HD 101412 possesses the strongest magnetic field among the Herbig Ae stars and hence is of special interest for follow‐up studies of magnetism among young pre‐main‐sequence stars. We obtained high‐resolution, high signal‐to‐noise UVES and a few lower quality HARPS spectra revealing the presence of resolved magnetically split lines. HD 101412 is the first Herbig Ae star for which the rotational Doppler effect was found to be small in comparison to the magnetic splitting and several spectral lines observed in unpolarized light at high dispersion are resolved into magnetically split components. The measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean quadratic field was found to vary in the range of 3.5 to 4.8 kG. To determine the period of variations, we used radial velocity, equivalent width, line width, and line asymmetry measurements of variable spectral lines of several elements, as well as magnetic field measurements. The period determination was done using the Lomb‐Scargle method. The most pronounced variability was detected for spectral lines of He I and the iron peak elements, whereas the spectral lines of CNO elements are only slightly variable. From spectral variations and magnetic field measurements we derived a potential rotation period Prot = 13.86 d, which has to be proven in future studies with a larger number of observations. It is the first time that the presence of element spots is detected on the surface of a Herbig Ae/Be star. Our previous study of Herbig Ae stars revealed a trend towards stronger magnetic fields for younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to a few other (non‐statistical) studies claiming that magnetic Herbig Ae stars are progenitors of the magnetic Ap stars. New developments in MHD theory show that the measured magnetic field strengths are compatible with a current‐driven instability of toroidal fields generated by differential rotation in the stellar interior. This explanation for magnetic intermediate‐mass stars could be an alternative to a frozen‐in fossil field (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
I present pointed ROSAT PSPC observations of the pre-cataclysmic binary V471 Tauri. The hard X-ray emission (>0.4 keV) is not eclipsed by the K star, demonstrating conclusively that this component cannot be emitted by the white dwarf. Instead I show that its spectrum and luminosity are consistent with coronal emission from the tidally spun-up K star. The star is more active than other K stars in the Hyades, but equally active as K stars in the Pleiades with the same rotation periods, demonstrating that rotation — and not age — is the key parameter in determining the level of stellar activity.   The soft X-ray emission (<0.4 keV) is emitted predominately by the white dwarf and is modulated on its spin period. I find that the pulse profile is stable on time-scales of hours and years, supporting the idea that it is caused by the opacity of accreted material. The profile itself shows that the magnetic field configuration of the white dwarf is dipolar and that the magnetic axis passes through the centre of the star.   There is an absorption feature in the light curve of the white dwarf, which occurs at a time when our line of sight passes within a stellar radius of the K star. The column density and duration of this feature imply a volume and mass for the absorber that are similar to those of coronal mass ejections of the Sun.   Finally I suggest that the spin–orbit beat period detected in the optical by Clemens et al. may be the result of the interaction of the K-star wind with the magnetic field of the white dwarf.  相似文献   

16.
17.
The mechanism responsible for exciting high-order acoustic oscillations in rapidly oscillating Ap stars is still an open issue. Recently, Balmforth et al. (hereafter BCDGV) proposed a model according to which high-frequency oscillations may be excited in roAp stars if the intensities of the magnetic fields present in these stars are sufficiently large to suppress convection at least in some region of their envelopes. Using models similar to those proposed by BCDGV, we predict the theoretical edges of the instability strip appropriate to roAp stars and compare them with the observations. Moreover, we discuss our results in the light of some of the systematic differences found between roAp stars, noAp stars and Ap stars in general. We suggest that a combination of intrinsic differences between these types of stars and a bias related to the frequencies of the unstable oscillations might hold the explanation to some of the differences observed.  相似文献   

18.
Modern spectropolarimeters are capable of detecting subkilogauss field strengths using the Zeeman effect in line profiles from the static photosphere, but supersonic Doppler broadening makes it more difficult to detect the Zeeman effect in the wind lines of hot stars. Nevertheless, the recent advances in observational capability motivate an assessment of the potential for detecting the magnetic fields threading such winds. We incorporate the weak-field longitudinal Zeeman effect in the Sobolev approximation to yield integral expressions for the flux of circularly polarized emission. To illustrate the results, two specific wind flows are considered: (i) spherical constant expansion with   v ( r ) = v   and (ii) homologous expansion with   v ( r ) ∝ r   . Axial and split monopole magnetic fields are used to schematically illustrate the polarized profiles. For constant expansion, optically thin lines yield the well-known 'flat-topped' total intensity emission profiles and an antisymmetric circularly polarized profile. For homologous expansion, we include occultation and wind absorption to provide a more realistic observational comparison. Occultation severely reduces the circularly polarized flux in the redshifted component, and in the blueshifted component, the polarization is reduced by partially offsetting emission and absorption contributions. We find that for a surface field of approximately 100 G, the largest polarizations result for thin but strong recombination emission lines. Peak polarizations are approximately 0.05 per cent, which presents a substantial although not inconceivable sensitivity challenge for modern instrumentation.  相似文献   

19.
Spruit has shown that an astrophysical dynamo can operate in the non-convective material of a differentially rotating star as a result of a particular instability in the magnetic field (the Tayler instability). By assuming that the dynamo operates in a state of marginal instability, Spruit has obtained formulae which predict the equilibrium strengths of azimuthal and radial field components in terms of local physical quantities. Here, we apply Spruit's formulae to our previously published models of rotating massive stars in order to estimate Tayler dynamo field strengths. There are no free parameters in Spruit's formulae. In our models of 10- and  50-M  stars on the zero-age main sequence, we find internal azimuthal fields of up to 1 MG, and internal radial components of a few kG. Evolved models contain weaker fields. In order to obtain estimates of the field strength at the stellar surface, we examine the conditions under which the Tayler dynamo fields are subject to magnetic buoyancy. We find that conditions for Tayler instability overlap with those for buoyancy at intermediate to high magnetic latitudes. This suggests that fields emerge at the surface of a massive star between magnetic latitudes of about 45° and the poles. We attempt to estimate the strength of the field which emerges at the surface of a massive star. Although these estimates are very rough, we find that the surface field strengths overlap with values which have been reported recently for line-of-sight fields in several O and B stars.  相似文献   

20.
Simultaneous MERLIN observations of the OH 1665- and 1667-MHz maser lines in the circumstellar envelope of the semiregular star W Hya have been taken in all Stokes parameters. The 1665-MHz emission comes from two elongated clusters located 80 au from the star. The 1667-MHz emission arises in an incomplete shell of radius 130 au, with the blueshifted features located in the northern part of the envelope and the redshifted components clustered south of the centre. The circularly polarized maser components exhibit spatial separation along the north–south direction. The linearly polarized components were found from the near side of the envelope. Their polarization position angles indicate that the projected axis of the magnetic field at PA ≃ −20° is consistent with spatial segregation of circular polarization. The intensity of the magnetic field, estimated from a tentative measurement of Zeeman splitting, is about 0.6 mG at the location of the 1667-MHz emission, with the field pointing away from the observer. A small change of position angles of linear polarization observed in both maser lines is interpreted as a weak Faraday effect in the maser regions with an electron density of about 2 cm−3. The overall polarization structure of the envelope suggests an ellipsoidal or weak bipolar geometry. In such a configuration, the circumstellar magnetic field may exert a non-negligible influence on mass loss. The velocity field in the circumstellar envelope recovered from observations of SiO, H2O, OH and CO lines at five radial distances reveals a logarithmic velocity gradient of 0.25 and 0.21 in the 1665- and 1667-MHz maser regions respectively. The acceleration within tens of stellar radii cannot be explained by the classical model of radiation pressure on dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号