首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
Effects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil (gas_min) at which oxygen stress occurs.First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, gas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale).We analyzed the validity of constant critical values to represent oxygen stress in terms of gas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake).The simulations showed that gas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, gas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress.We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for gas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.  相似文献   

2.
Connectivity of high/low-permeability areas has been recognized to significantly impact groundwater flow and solute transport. The task of defining a rigorous quantitative measure of connectivity for continuous variables has failed so far, and thus there exist a suite of connectivity indicators which are dependent on the specific hydrodynamic processes and the interpretation method. Amongst the many existing indicators, we concentrate on those characterizing connectivity between the points involved in a hydraulic or tracer test. The flow connectivity indicator used here is based on the time elapsed for hydraulic response in a pumping test (e.g., the storage coefficient estimated by the Cooper–Jacob method, Sest). Regarding transport, we select the estimated porosity from the breakthrough curve (est). According to Knudby and Carrera [Knudby C, Carrera J. On the relationship between indicators of geostatistical, flow and transport connectivity. Adv Water Resour 2005;28(4):405–21] these two indicators measure connectivity differently, and are poorly correlated. Here, we use perturbation theory to analytically investigate the intrinsic relationship between Sest and est. We find that est can be expressed as a weighted line integral along the particle trajectory involving two parameters: the transmissivity point values, T, and the estimated values of Sest along the particle path. The weighting function is linear with the distance from the pumping well, thus the influence of the weighting function is maximum at the injection area, whereas the hydraulic information close to the pumping well becomes redundant (null weight). The relative importance of these two factors is explored using numerical simulations in a given synthetic aquifer and tested against intermediate-scale laboratory tracer experiments. We conclude that the degree of connectivity between two points of an aquifer (point-to-point connectivity) is a key issue for risk assessment studies aimed at predicting the travel time of a potential contaminant.  相似文献   

3.
We present the results of a probabilistic seismic hazard assessment and disaggregation analysis aimed to understand the dominant magnitudes and source-to-site distances of earthquakes that control the hazard at the Celano site in the Abruzzo region of central Italy. Firstly, we calculated a peak ground acceleration map for the central Apennines area, by using a model of seismogenic sources defined on geological-structural basis. The source model definition and the probabilistic seismic hazard evaluation at the regional scale (central Apennines) were obtained using three different seismicity models (Gutenberg–Richter model; characteristic earthquake model; hybrid model), consistent with the available seismological information. Moreover, a simplified time-dependent hypothesis has been introduced, computing the conditional probability of earthquakes occurrence by Brownian passage time distributions.Subsequently, we carried out the disaggregation analysis, with a modified version of the SEISRISK III code, in order to separate the contribution of each source to the total hazard.The results show the percentage contribution to the Celano hazard of the various seismogenic sources, for different expected peak ground acceleration classes. The analysis was differentiated for close (distance from Celano <20 km) and distant (distance from Celano >20 km) seismogenic sources. We propose three different “scenario earthquakes”, useful for the site condition studies and for the seismic microzoning study: (1) large (M=6.6) local (Celano-epicentre distance 16 km) earthquake, with mean recurrence time of 590 years; (2) moderate (M=5.5) local (Celano-epicentre distance 7.5 km) earthquake, with mean recurrence time of 500 years; and (3) large (M=6.6) distant (Celano-epicentre distance 24 km) earthquake, with mean recurrence time of 980 years.The probabilistic and time-dependent approach to the definition of the “scenario earthquakes” changes clearly the results in comparison to traditional deterministic analysis, with effects in terms of engineering design and seismic risk reduction.  相似文献   

4.
Using 3 years of high-quality temperature measurements (2002–2004) recorded from Maui, HI (20.8°N), we have investigated the characteristics of mesospheric seasonal oscillations at low-latitudes. Measurements of the near-infrared OH (6,2) and O2 (0,1) nightglow emission layers (centered at 87 and 94 km) independently reveal a distinct semi-annual oscillation (SAO) and annual oscillation (AO) with amplitudes of 3.8 and 2.0 K, respectively. An observed asymmetry in the seasonal variation of the nocturnal mean, previously reported by Taylor et al. [2005. Characterization of the semi-annual-oscillation in mesospheric temperatures at low-latitudes. Advances in Space Research 35, doi:10.1016/j.asr.2005.05.111] from this site is shown to be due to a superposed AO of amplitude 50% of the SAO signature. Detailed investigations of the local-time variation of the SAO amplitude and phase combined with TIME-GCM simulations of the seasonal variation of the diurnal tide strongly suggest a large local-time dependence of the amplitude (but not phase) of the observed SAO. These data indicate that the true mean temperature SAO amplitude could be as high as 7 K at this latitude.  相似文献   

5.
The polar geomagnetic activity resulting from solar wind–magnetosphere interactions can be characterized the Polar Cap (PC) indices, PCN and PCS. PC index values are derived from polar magnetic variations calibrated on a statistical basis such that the index approximate values in units of mV/m of the interplanetary “geo-effective” (or “merging”) electric field (EM) conveyed by the solar wind. The timing and amplitude relations of the PC index to solar wind plasma and magnetic field parameters are reported. The solar wind effects are parameterized in terms of the geo-effective electric field (EM) and the dynamical pressure (PDYN). The PC index has a delayed and damped response to EM variations and display saturation-like effects for EM values exceeding 10 mV/m. Steady or slowly varying levels of solar wind dynamical pressure have little or no impact on the PC index above the effects related to EM for which the solar wind velocity is also a factor. Sharp increases in the dynamical pressure generate impulsive variations in the PC index comprising a initial negative impulse of 5–10 min duration followed by a positive impulse lasting 10–20 min. Typical amplitudes of both the negative and the positive impulses are 0.2–0.5 units. A sharp decrease in the pressure produces the inverse sequence of pulses in the PC index. Auroral substorm activity represented by the AL index level has a marked influence on the average PC/EM level at the transition from very quiet (AL0 nT) to disturbed conditions while more or less disturbed conditions (AL<100 nT) have no systematic effect on the average PC/EM values. At distinct substorm events the PC/EM ratio has a minimum (0.8) in the pre-onset phase at around 20 min before substorm onset. The average ratio gradually increases in the expansion phase to reach a maximum value (1.1) at around 40 min after substorm onset (or 20 min after the largest (negative) peak in AL). At substorm recovery during the next 2 h the PC/EM ratio decreases. Finally, we report on the application of polar magnetic variations to model the disturbance storm time (Dst) index development during magnetic storms by using the PC index as a source function to quantify the energy input to the ring current representing accumulated storm energy and characterized by the Dst index.  相似文献   

6.
Organic thermometry for chondritic parent bodies   总被引:1,自引:0,他引:1  
A unique spectroscopic feature has been identified in a study of twenty-five different samples of meteoritic insoluble organic matter (IOM) spanning multiple chemical classes, groups, and petrologic types, using carbon X-ray Absorption Near Edge Structure (XANES) spectroscopy. The intensity of this feature, a 1s − σ exciton, appears to provide a precise measure of parent body metamorphism. The intensity of this exciton is also shown to correlate well with a large negative paramagnetic shift observed through solid state 13C NMR. Experiments reveal that upon heating primitive IOM is transformed into material that is indistinguishable from that in thermally processed chondrites, including the development of the 1s − σ exciton. A thermo-kinetic expression is derived from the experimental data that allows the intensity of the 1s − σ exciton to be used to estimated the effective temperature integrated over time. A good correlation is observed between the intensity of the 1s − σ exciton and previously published microRaman spectral data. These data provide a self-consistent organic derived temperature scale for the purpose of calibrating Raman based thermometric expressions.  相似文献   

7.
During volcanic eruptions, volcanic ash transport and dispersion models (VATDs) are used to forecast the location and movement of ash clouds over hours to days in order to define hazards to aircraft and to communities downwind. Those models use input parameters, called “eruption source parameters”, such as plume height H, mass eruption rate , duration D, and the mass fraction m63 of erupted debris finer than about 4 or 63 μm, which can remain in the cloud for many hours or days. Observational constraints on the value of such parameters are frequently unavailable in the first minutes or hours after an eruption is detected. Moreover, observed plume height may change during an eruption, requiring rapid assignment of new parameters. This paper reports on a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption. We do so by first compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships. We find that the existing scatter in plots of H versus yields an uncertainty within the 50% confidence interval of plus or minus a factor of four in eruption rate for a given plume height. This scatter is not clearly attributable to biases in measurement techniques or to well-recognized processes such as elutriation from pyroclastic flows. Sparse data on total grain-size distribution suggest that the mass fraction of fine debris m63 could vary by nearly two orders of magnitude between small basaltic eruptions ( 0.01) and large silicic ones (> 0.5). We classify eleven eruption types; four types each for different sizes of silicic and mafic eruptions; submarine eruptions; “brief” or Vulcanian eruptions; and eruptions that generate co-ignimbrite or co-pyroclastic flow plumes. For each eruption type we assign source parameters. We then assign a characteristic eruption type to each of the world's  1500 Holocene volcanoes. These eruption types and associated parameters can be used for ash-cloud modeling in the event of an eruption, when no observational constraints on these parameters are available.  相似文献   

8.
Microscopic mechanisms for heat transport in dense minerals (phonon scattering and photon attenuation) exhibit aspects of threshold behavior, discussed qualitatively here. For all minerals examined so-far using laser-flash analysis, the lattice component of the thermal conductivity of the mantle asymptotes to a constant above a critical temperature of 1500 K. Radiative transfer calculated from absorption spectra has thresholds in both grain-size and Fe content, and a rather complex dependence on temperature. These critical phenomena impact convection of the lower mantle, because the lattice contribution tends to destabilize the cold boundary layers, whereas radiative transfer mostly promotes stability in the lower mantle, unless the grains are large and Fe-rich, which makes convection chaotic and time-dependent. The specific behavior suggests that flow in the lower mantle is sluggish, whereas flow in the upper mantle-transition zone is time-dependent. The decrease in krad as Fe/(Fe + Mg) increases beyond 0.1 may be connected with formation of lower mantle, thermo-chemical plumes through positive feedback.  相似文献   

9.
In solar cycles 22–23, all solar indices showed maxima near 1990 and 2000 and minima in 1996. The maximum to minimum variation was only 1–2% in the UV range 240–350 nm. Dobson ozone intensities did not show any clear relationship with solar cycle and ozone variations were less than 10%. The UV-B (295–325 nm) observed at ground by Brewer spectrophotometers at some locations had variations of 50–100% for 295–300 nm, and 20–50% for 305–325 nm. The maxima were in different years at different locations (even with separations of only 300 km), did not match with the solar cycle, and were far too large to be explained on the basis of ozone changes (1% decrease of ozone is expected to cause 2% increase of UV-B). Thus, if the data are not bad, the UV-B changes do not match with solar activity or ozone changes and must be mostly due to other local effects (clouds, etc.?). When data are averaged over wide geographical regions, UV-B variation ranges are smaller (10–20%, probably because localised, highly varying cloud effects get filtered out), and are roughly as expected from ozone variations.  相似文献   

10.
The Cenozoic (mostly Neogene) volcanic activity in Syria is part of the extensive magmatism that took place in the Mashrek Region, Middle East, from upper Eocene to Holocene (40–0.0005 Ma). Samples in western Syria are mostly high TiO2 (TiO2 1.8–3.7 wt.%) alkaline mafic rocks (basanites, hawaiites and alkali basalts) plus rare transitional/tholeiitic basalts and basaltic andesites) with within-plate-like trace element signature.On the basis of incompatible trace element content, the volcanic activity in Syria has been divided into two stages: the first lasting from 25 to 5 Ma and the second from 5 to recent times. Indeed, the Syrian lavas show incompatible trace element content increasing with decreasing age from 25 to 5 Ma, followed by an abrupt decrease to low values roughly at the Miocene–Pliocene boundary. This temporal shift in composition is related to major tectonic re-organization occurred during upper Miocene.The proposed petrogenetic model invokes three steps: (a) passive upwelling of the shallow asthenosphere during the development of the Dead Sea transform fault system. Different degrees of partial melting were followed by variable extents of fractional crystallization and limited upper crustal contamination; (b) the Miocene–Pliocene boundary tectonic change enhanced passive decompression of the same sources and a consequent increase in degree of partial melting resulting in low incompatible trace element content of the relatively high-volume liquids; (c) after this phase, the incompatible trace element content in the basaltic magmas increased as consequence of fractional crystallization processes.Major and trace element content similarities with the rest of the circum-Mediterranean igneous rocks are consistent with a common relatively shallow origin for the Cenozoic anorogenic magmatism of the entire circum-Mediterranean area (the so-called Common Magmatic Reservoir). Because much of the igneous activity in the studied area is concentrated near the Dead Sea fault, the origin of Cenozoic magmatism in Syria (and in the rest of the circum-Mediterranean area) reflects a strong lithospheric control on the loci of partial melting. Mantle plumes from lower mantle and/or north-westward channelling of the Afar mantle plume is not needed to explain volcanic activity in Syria and the Mashrek area.  相似文献   

11.
Minimum extreme temperature variability from five meteorological stations in the central part of Mexico covering a period from 1920 to 1990 is examined. We found a correlation coefficient (r=0.65) between these temperature records and geomagnetic activity. Furthermore, by performing spectral analysis peaks were obtained with similar periodicities to those found in the sunspot number, the magnetic solar cycle, cosmic ray fluxes and geomagnetic activity; all of these phenomena are modulated by solar activity. Signals with periodicities comparable to those observed in El Niño and the Quasi-Biennial Oscillation were also identified. We conclude that the solar signal is probably present in the minimum extreme temperature record of the central part of Mexico.  相似文献   

12.
Better knowledge regarding internal soil moisture and piezometric responses in the process of rainfall-induced shallow slope failures is the key to an effective prediction of the landslide and/or debris flow initiation. To this end, internal soil moisture and piezometric response of 0.7-m-deep, 1.5-m-wide, 1.7-m-high, and 3.94-m-long semi-infinite sandy slopes rested on a bi-linear impermeable bedrock were explored using a chute test facility with artificial rainfall applications. The internal response time defined by the inflection point of the soil moisture and piezometric response curves obtained along the soil–bedrock interface were closely related to some critical failure states, such as the slope toe failure and extensive slope failures. It was also found that the response times obtained at the point of abrupt bedrock slope decrease can be used as indicators for the initiation of rainfall-induced shallow slope failures. An investigation of spatial distributions of soil water content, ω (or degrees of saturation, Sr), in the slope at critical failure states shows that the 0.2 m – below – surface zone remains unsaturated with Sr 40–60%, regardless of their distances from the toe and the rainfall intensity. Non-uniform distributions of ω (or Sr) along the soil–bedrock interface at critical failure states were always associated with near-saturation states (Sr 80–100%) around the point of bedrock slope change or around the transient ‘toe’ upstream of the slumped mass induced by the retrogressive failure of the slope. These observations suggest the important role of the interflow along the soil–bedrock interface and the high soil water content (or high porewater pressure) around the point of bedrock slope deflection in the rainfall-induced failure of sandy slopes consisting of shallow impermeable bedrocks. The present study proposes an ‘internal response time’ criterion to substantiate the prediction of rainfall-induced shallow slope failures. It is believed that the ‘internal response time’ reflects the overall characteristics of a slope under rainfall infiltration and can be as useful as the conventional meteorology-based threshold times. The ‘internal response time’ theory can be generalized via numerical modeling of slope hydrology, slope geology and slope stability in the future.  相似文献   

13.
We report results from an investigation of the geologic processes controlling hydrothermal activity along the previously-unstudied southern Mid-Atlantic Ridge (3–7°S). Our study employed the NOC (UK) deep-tow sidescan sonar instrument, TOBI, in concert with the WHOI (USA) autonomous underwater vehicle, ABE, to collect information concerning hydrothermal plume distributions in the water column co-registered with geologic investigations of the underlying seafloor. Two areas of high-temperature hydrothermal venting were identified. The first was situated in a non-transform discontinuity (NTD) between two adjacent second-order ridge-segments near 4°02′S, distant from any neovolcanic activity. This geologic setting is very similar to that of the ultramafic-hosted and tectonically-controlled Rainbow vent-site on the northern Mid-Atlantic Ridge. The second site was located at 4°48′S at the axial-summit centre of a second-order ridge-segment. There, high-temperature venting is hosted in an  18 km2 area of young lava flows which in some cases are observed to have flowed over and engulfed pre-existing chemosynthetic vent-fauna. In both appearance and extent, these lava flows are directly reminiscent of those emplaced in Winter 2005−06 at the East Pacific Rise, 9°50′N and reference to global seismic catalogues reveals that a swarm of large (M 4.6−5.6) seismic events was centred on the 5°S segment over a  24 h period in late June 2002, perhaps indicating the precise timing of this volcanic eruptive episode. Temperature measurements at one of the vents found directly adjacent to the fresh lava flows at 5°S MAR (Turtle Pits) have subsequently revealed vent-fluids that are actively phase separating under conditions very close to the Critical Point for seawater, at  3000 m depth and 407 °C: the hottest vent-fluids yet reported from anywhere along the global ridge crest.  相似文献   

14.
Nearly 900 nocturnal temperature profiles (85–105 km) from the Colorado State University Na lidar at Fort Collins, CO (40.59N, 105.14W) from 1990 to 2007. After the removal of an episodic warming attributable to Mt. Pinatubo eruption, the time series is analyzed as the sum of the climatological mean, annual and semiannual oscillation, solar cycle effect and trends along with possible annual/semiannual modulation of the latter two. The direct seasonal variation is consistent with the concept of the two-level mesopause. The trends in summer and winter are comparable 90–96 km at −0.15±0.1 K/year. The summer trend turns positive above 96 km. The winter trend is negative with minimum of −0.3 K/year at 100 km but positive at 104 km. The negative trend values are a factor of five smaller than an earlier analysis of the early part of this data due to removal of an episodic event.  相似文献   

15.
A model has been developed to investigate the sensitivity of magma permeability, k, to various parameters. Power-law relationships between k and porosity J are revealed, in agreement with previous experimental and theoretical studies. These relationships take the form % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavTnhis1MBaeXatLxBI9gBae % rbd9wDYLwzYbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbIt % LDhis9wBH5garqqtubsr4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbb % f9v8qqaqFr0xc9pk0xbba9q8WqFfeaY-biLkVcLq-JHqpepeea0-as % 0Fb9pgeaYRXxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaabau % aaaOqaaiqbdUgaRzaajaGaeyypa0Jaem4AaSMaei4la8IaemOCai3a % aWbaaSqabeaacqaIYaGmaaGccqGH9aqpcqWGHbqycqGGOaakcqaHgp % GzcqGHsislcqaHgpGzdaWgaaWcbaGaem4yamMaemOCaihabeaakiab % cMcaPmaaCaaaleqabaGaemOyaigaaaaa!4CE4! [^(k)] = k/r2 = a(f- fcr )b\hat k = k/r^2 = a(\phi - \phi _{cr} )^b where r is the mean bubble radius, Jcr is the percolation threshold below which permeability is zero, and a and b are constants. It is discovered that % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavTnhis1MBaeXatLxBI9gBae % rbd9wDYLwzYbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbIt % LDhis9wBH5garqqtubsr4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbb % f9v8qqaqFr0xc9pk0xbba9q8WqFfeaY-biLkVcLq-JHqpepeea0-as % 0Fb9pgeaYRXxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaabau % aaaOqaaiqbdUgaRzaajaGaeyOeI0IaeqOXdygaaa!3CDB! [^(k)] - f\hat k - \phi relationships are independent of bubble size. The percolation threshold was found to lie at around 30% porosity. Polydisperse bubble-size distributions (BSDs) give permeabilities around an order of magnitude greater than monodisperse distributions at the same porosity. If bubbles are elongated in a preferred direction then permeability in this direction is increased, but, perpendicular to this direction, permeability is unaffected. In crystal-free melts the greatest control on permeability is the ease of bubble coalescence. In viscous magmas, or when the cooling time-scale is short, bubble coalescence is impeded and permeability is much reduced. This last effect can cause variations in permeability of several orders of magnitude.  相似文献   

16.
The new LIMA/ice model is used to study interhemispheric temperature differences at the summer upper mesosphere and their impact on the morphology of ice particle related phenomena such as noctilucent clouds (NLC), polar mesosphere clouds (PMC), and polar mesosphere summer echoes (PMSE). LIMA/ice nicely reproduces the mean characteristics of observed ice layers, for example their variation with season, altitude, and latitude. The southern hemisphere (SH) is slightly warmer compared to the NH but the difference is less than 3 K at NLC/PMC/PMSE altitudes and poleward of 70N/S. This is consistent with in situ temperature measurements by falling spheres performed at 69N and 68S. Earth's eccentricity leads to a SH mesosphere being warmer compared to the NH by up to approximately 85 km and fairly independent of latitude. In general, NH/SH temperature differences in LIMA increase with decreasing latitude and reach at 50. The latitudinal variation of NH/SH temperature differences is presumably caused by dynamical forcing and explains why PMSE are basically absent at midlatitudes in the SH whereas they are still rather common at similar colatitudes in the NH. The occurrence frequency and brightness of NLC and PMC are larger in the NH but the differences decrease with increasing latitude. Summer conditions in the SH terminate earlier compared to NH, leading to an earlier weakening and end of the ice layer season. The NLC altitude in the SH is slightly higher by 0.6–1 km, whereas the NLC altitudes itself depend on season in both hemispheres. Compared to other models LIMA/ice shows smaller interhemispheric temperature differences but still generates the observed NH/SH differences in ice layer characteristics. This emphasizes the importance of temperature controlling the existence and morphology of ice particles. Interhemispheric differences in NLC/PMC/PMSE characteristics deduced from LIMA/ice basically agree with observations from lidars, satellites, and radars.  相似文献   

17.
A sodium resonance lidar at 589 nm has been operated in São José dos Campos, Brazil (23°S, 46°W) since 1972 mainly for studies related to the origin, chemistry and dynamics of the mesospheric sodium layer. Beginning in 1993, the improved laser capability has also enabled the processing of the Rayleigh signal from which the temperatures from 35 to 65 km are retrieved on a nightly mean basis. We used these nightly profiles to determine the monthly temperature profiles from 1993 to 2006. The mean temperature characteristics for each year and for the whole period are obtained. Seasonal thermal amplitude is small (6 K peak to peak at 40 and 60 km). Compared with the MSISE-90 model, a large difference is noted, with temperature lower than the model below the stratopause and higher above. Also the seasonal variation has a large difference with better agreement occurring around local winter, but with temperatures higher by 8–10 K at the equinoxes. The semiannual component is dominant over the annual at all altitudes. Linear trends with decreasing temperature of 1.09, 2.29 and 1.42 K/decade are observed at 40, 50 and 60 km, respectively.  相似文献   

18.
We take a fresh look at the topography, structure and seismicity of the Ganges–Brahmaputra Delta (GBD)–Burma Arc collision zone in order to reevaluate the nature of the accretionary prism and its seismic potential. The GBD, the world's largest delta, has been built from sediments eroded from the Himalayan collision. These sediments prograded the continental margin of the Indian subcontinent by  400 km, forming a huge sediment pile that is now entering the Burma Arc subduction zone. Subduction of oceanic lithosphere with > 20 km sediment thickness is fueling the growth of an active accretionary prism exposed on land. The prism starts at an apex south of the GBD shelf edge at  18°N and widens northwards to form a broad triangle that may be up to 300 km wide at its northern limit. The front of the prism is blind, buried by the GBD sediments. Thus, the deformation front extends 100 km west of the surface fold belt beneath the Comilla Tract, which is uplifted by 3–4 m relative to the delta. This accretionary prism has the lowest surface slope of any active subduction zone. The gradient of the prism is only  0.1°, rising to  0.5° in the forearc region to the east. This low slope is consistent with the high level of overpressure found in the subsurface, and indicates a very weak detachment. Since its onset, the collision of the GBD and Burma Arc has expanded westward at  2 cm/yr, and propagated southwards at  5 cm/yr. Seismic hazard in the GBD is largely unknown. Intermediate-size earthquakes are associated with surface ruptures and fold growth in the external part of the prism. However, the possibility of large subduction ruptures has not been accounted for, and may be higher than generally believed. Although sediment-clogged systems are thought to not be able to sustain the stresses and strain-weakening behavior required for great earthquakes, some of the largest known earthquakes have occurred in heavily-sedimented subduction zones. A large earthquake in 1762 ruptured  250 km of the southern part of the GBD, suggesting large earthquakes are possible there. A large, but poorly documented earthquake in 1548 damaged population centers at the northern and southern ends of the onshore prism, and is the only known candidate for a rupture of the plate boundary along the subaerial part of the GBD–Burma Arc collision zone.  相似文献   

19.
An experimental study was carried out on a granitic mylonite (La Bresse, France) to analyze the influence of pore microstructure on transport properties. Different crack networks were obtained by a controlled thermal treatment. Microstructures were analyzed by means of gas adsorption and mercury porosimetry. Transport properties have been investigated by measuring gas permeability and electrical conductivity. The dependence of permeability on confining pressure shows an exponential decrease, characteristic of a porosity made of cracks. Correlations between measured parameters have been analyzed by comparing them with relations deduced from theoretical models. Linking the formation factor to the porosity leads to a rather low tortuosity value (about 2.4), characterizing a medium with a well connected porosity. Correlation between permeabilityk and formation factorF leads to a power-law relationk F –n wheren2.9, which is consistent with a crack model describing the behavior of the thermally treated rock.  相似文献   

20.
The effect of different organic-rich sewage concentration (0%, 20% and 60% diluted in seawater) and absence or presence of mangrove trees on the survival, bioturbation activities and burrow morphology of fiddler crabs species was assessed. After 6 months, males of both species always showed higher survival (80%) when compared to females (20%). Crabs inhabiting pristine conditions achieved higher survival (67–87%) than those living in sewage-exposed mesocosms (40–71%). At 60% sewage loading, fiddler crabs processed less sediment (34–46%) during feeding and excavated slightly more sediment (45–80%) than at pristine conditions. While percent volume of the burrow chambers increased (13–66%) at contaminated mesocosms for both vegetation conditions, burrows were shallower (33%) in bare cells loaded with sewage. The results show that fiddler crabs presented moderate mortality levels in these artificial mangrove wetlands, but mainly in sewage impacted cells. However, they still function as ecosystem engineers through bioturbation activities and burrow construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号