首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
Three categories of fibrous calcite from early to middle Caradoc platform-marginal buildups in east Tennessee can be delineated using cathodoluminescent microscopy, minor element chemistry and stable C-O isotopic composition. Bright luminescent fibrous cement has elevated Mn (>1000 p.p.m.), negative δ13C and intermediate δ18O values relative to other types of fibrous calcite. This cement reflects fibrous calcite that interacted with reducing Mn-rich fluids. Dully luminescent fibrous cement has elevated Fe (>400 p.p.m.), positive δ13C and negative δ18O values relative to other fibrous cements. This cement was stabilized by burial fluids. Nonluminescent fibrous cement has low Mn and Fe (generally below 400 p.p.m.) and positive δ13C and δ18O values relative to other types of fibrous calcite. The latter cement is interpreted to be the best material for determining the isotopic composition of calcite precipitated in equilibrium with early to middle Caradoc seawater, which is δ13C=1% PDB and δ18O=?4 to ?5‰ PDB. Results from this study and Ashgillian brachiopods indicate that the average δ18O composition of the Ordovician ocean, during nonglacial periods, was probably never more negative than ?3‰ SMOW. Assuming an Ordovician seawater δ18O value of ?1‰ SMOW, Holston Formation fibrous cements would have precipitated at temperatures between 27 and 36 °C, which is near the upper temperature limit for metazoans. A seawater δ18O value of ?2‰ SMOW yields temperatures ranging from 23 to 31 °C, while a ?3‰ SMOW value yields temperatures of 18–26 °C.  相似文献   

2.
Late Miocene platform carbonates from Nijar, Spain, have been extensively dolomitized. Limestones are present in the most landward parts of the platform, in stratigraphically lower units and topographically highest outcrops, suggesting that dolomitizing fluids were derived from the adjacent Nijar Basin. The dolomite crystals range from <10 to ≈100 μm existing as both replacements and cements. Na, Cl and SO4 concentrations in the dolomites range from 200 to 1700 p.p.m., 250–650 p.p.m., and 600–7000 p.p.m., respectively, comparable with other Tertiary and modern brine dolomite values, and also overlapping values from mixing-zone dolomites. Sr concentrations range between 50 and 300 p.p.m., and the molar Sr/Ca ratios of dolomitizing fluids are estimated to range between 7× seawater brine to freshwater ratios. The δ18O and δ13C of the dolomites range from ?1·0 to +4·2‰ PDB, and ?4·0 to +2·0‰ PDB, respectively. 87Sr/86Sr values (0·70899–0·70928) of the dolomites range from late Miocene seawater to values greater than modern seawater. Mixtures of freshwater with seawater and evaporative brines probably precipitated the Nijar dolomites. Modelled covariations of molar Sr/Ca vs. δ18O and Na/Ca vs. δ18O from these mixtures are consistent with those of the proposed Nijar dolomitizing fluids. Complete or partial dolomite recrystallization is ruled out by well preserved CL zoning, nonstoichiometry and quantitative water–rock interaction modelling of covariations of Na vs. Sr and δ18O vs. δ13C. The possibility of multiple dolomitization events induced by evaporative brines, seawater and freshwater, respectively, is consistent with mineral-mineral mixing modelling. The basin-derived dolomitizing brines probably mixed with freshwater in the Nijar Basin or mixed with fresh groundwater in the platform, and were genetically related either to deposition of the Yesares gypsum or the Feos gypsum. Dolomitization occurred during either the middle Messinian or the early upper Messinian. Nijar dolomitization models may be applicable to dolomitization of other late Miocene platform carbonates of the western Mediterranean. Moreover, the Nijar models may offer an analogue for more ancient evaporite-absent platform carbonates fringing evaporite basins.  相似文献   

3.
Three peritidal carbonate crusts and associated intercrust sediments (total thickness of ~30cm; aged <3000 years BP) on Ambergris Cay, Belize, contain 32–100% calcian dolomite (δx=72·5% dolomite) ranging in composition from 40 to 46 mol% MgCO3x=43·3). Dolomite replaced high Mg calcite foraminiferal muds penecontemporaneously with sedimentation, forming partially dolomitized sediments and lithified crusts. Dolomitization probably occurred in normal to moderately evaporated seawater and is apparently continuing at the present. Detailed scanning electron microscope analysis shows a linear increase in mean dolomite crystal size with depth; 0·4 μm near the top of the section to 1·0 μm near the base of the dolomitized section. This size increase is not accompanied by any significant decrease in porosity. Crystal size distributions appear to be log-normal and become increasingly broad and flat with depth. Rietveld X-ray pattern-fitting structure refinements indicate increasing Ca and Mg concentrations on their respective sites (cation ordering) as a function of increasing depth. Most of the ordering occurs within the first 15 cm of the surface. Stoichiometry does not increase with depth indicating no relationship between the Ca/Mg ratio and cation ordering. Strong geochemical trends were observed down-section in the dolomite, including: (1) increasing Mn content (44 to 274 ppm), and (2) decreasing δ13C values (?0·9 to ?5·5‰ PDB). Oxygen isotope values range from δ18O = 1·3‰ PDB in the upper part of the section to 2·6‰ PDB in the lower part of the section and are interpreted to represent two distinct groups of values rather than a continuous trend. Down-section dolomite crystal size increase and shapes of crystal size distributions are consistent with recrystallization via a surface energy-driven dissolution-reprecipitation process (Ostwald ripening). The observed trends in carbon isotopes and Mn content probably result from geochemical re-equilibration during recrystallization and reflect reducing conditions and an isotopically light, organically derived, carbon source. Oxygen isotope compositions probably reflect relict original dolomite values and are a result of decreasing evaporation due to rising sea level.  相似文献   

4.
ABSTRACT A calcite mass more than 1·5 km long and 20 m wide crops outs along the faulted margin of the Albian carbonate platform of Jorrios in northern Spain. The mass contains abundant dissolution cavities up to 7 m long and 1 m high, filled with cross‐stratified quartz sandstone and alternating sandstone–calcite laminae. Similar cavities are also present in a 50‐m‐wide zone of platform limestones adjacent to the calcite mass that are filled with limestone breccias and sandstone. The calcite mass has mean δ18O values of 19·6‰ (SMOW), whereas platform limestones have mean δ18O values of 24·4‰ (SMOW). Synsedimentary faulting of the carbonate margin and circulation of heated fault‐related waters resulted in replacement of a band of limestone by calcite. Soon after this replacement, dissolution by undersaturated fluids affected both the calcite mass and the adjacent limestones. Percolating marine quartz sand filled all dissolution cavities, sometimes alternating with precipitating calcite. The resulting cavities and fills, which recall products of meteoric diagenesis, are attributed to a hydrothermal origin based on their geometry, occurrence along the profile and synsedimentary tectonic relationships. The early faulting and diagenesis are related to local extensional tectonism in a large‐scale strike‐slip setting. Movements occurred during the early dispar/appenninica zone of the Late Albian.  相似文献   

5.
The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated dolostone of the Sinian Dengying Formation.The ore minerals are primarily sphalerite and galena,and the gangue minerals comprise of dolomite,quartz,barite,calcite and solid bitumen.Fluid inclusions from ore-stage quartz and calcite have homogenization tempreatures from 98 to 337℃ and salinities from 7.7 wt%to 22.2 wt%(NaCl equiv.).The vapor phase of the inclusions is mainly composed of CH_4 with minor CO_2 and H_2S.The δD_(fluid) values of fluid inclusions in quartz and calcite display a range from-68‰ to-113‰(SMOW),and the δ~(18)O_(fluid)values calculated from δ~(18)O_(quartz) and δ~(18)O_(calcite) values range from 4.5‰ to 16.7‰(SMOW).These data suggest that the ore-forming fluids may have been derived from evaporitic sea water that had reacted with organic matter.The δ~(13)C_(CH4) values of CH_4 in fluid inclusions range from-37.2‰ to-21.0‰(PDB),suggesting that the CH_4 in the ore-forming fluids was mainly derived from organic matter.This,together with the abundance of solid bitumen in the ores,suggest that organic matter played an important role in mineralization,and that the thermochemical sulfate reduction(TSR) was the main mechanism of sulfide precipitation.The Mayuan Pb-Zn deposit is a carbonate-hosted epigenetic deposit that may be classified as a Mississippi Valley type(MVT) deposit.  相似文献   

6.
Petrography demonstrates the presence of three types of fibrous calcite cement in buildup deposits of the Kullsberg Limestone (middle Caradoc), central Sweden. Translucent fibrous calcite has intrinsic blue luminescence (CL) indicative of pure calcite. This cement has 2–5 mol% MgCO3, low Mn and Fe (≤ 100 p.p.m.), and is considered to be slightly altered to unaltered, primary low- to intermediate-Mg calcite. Grey turbid fibrous calcite has variable but generally low MgCO3 content (most analyses <2 mol%) and variable CL response, with Mn and Fe concentrations up to 1200 and 500 p.p.m., respectively. The heterogeneous characteristics of this variety of fibrous calcite are caused by diagenetic alteration of a translucent fibrous calcite precursor. Light-brown turbid fibrous calcite has low MgCO3 (near 1 mol%) and variable Mn (up to 800 p.p.m.) and Fe (up to 500 p.p.m.) concentrations, with an abundance of bright luminescent patches, which formed during alteration caused by reducing diagenetic fluids. The δ13C and δ18O values of all fibrous calcite form a tight field (δ13C=1·7 to 3·1‰ PDB, δ18O= ? 2·6 to ? 4·1‰ PDB) compared with fibrous calcite isotope values from other units. Fibrous calcite δ18O values are larger than adjacent meteoric or burial cements, which have δ18O δ ? 8‰ PDB. Consequently, most diagenetic alteration of Kullsberg fibrous calcite is interpreted to have occurred in the marine diagenetic realm. First-generation equant and bladed calcite cements, which pre-date fibrous calcite, are interpreted as unaltered, low-Mg calcite marine cements based on δ13C and δ18O data (δ13C = 2·3 to 2·7‰ PDB, δ18O= ? 2·8 to ? 3·5‰ PDB). Unlike fibrous cement, which reflects global sea water chemistry, first-generation equant and bladed calcite are indicators of localized modification of seawater chemistry in restricted settings. Kullsberg abiotic marine cements have larger δ18O values than most Caradoc marine precipitates from equatorial Laurentia. Positive Kullsberg δ18O values are attributed to lower seawater temperatures and/or slightly elevated salinity on the Baltic platform relative to seawater from which other marine precipitates formed.  相似文献   

7.
Magnesite forms a series of 1‐ to 15‐m‐thick beds within the ≈2·0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680‐m‐thick formation is composed of a stromatolite–dolomite–‘red bed’ sequence formed in a complex combination of shallow‐marine and non‐marine, evaporitic environments. Dolomite‐collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by δ13C values from +7·1‰ to +11·6‰ (V‐PDB) and δ18O ranging from 17·4‰ to 26·3‰ (V‐SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high δ13C values ranging from +9·0‰ to +11·6‰ and δ18O values of 20·0–25·7‰. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water‐derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high δ13C values reflect a combined contribution from both global and local carbon reservoirs. A 13C‐rich global carbon reservoir (δ13C at around +5‰) is related to the perturbation of the carbon cycle at 2·0 Ga, whereas the local enhancement in 13C (up to +12‰) is associated with evaporative and restricted environments with high bioproductivity.  相似文献   

8.
HAIRUO Qing 《Sedimentology》1998,45(2):433-446
The petrography and geochemistry of fine- and medium-crystalline dolomites of the Middle Devonian Presqu’ile barrier at Pine Point (Western Canada Sedimentary Basin) are different from those of previously published coarse-crystalline and saddle dolomites that are associated with late-stage hydrothermal fluids. Fine-crystalline dolomite consists of subhedral to euhedral crystals, ranging from 5 to 25 μm (mean 8 μm). The dolomite interbedded with evaporitic anhydrites that occur in the back-barrier facies in the Elk Point Basin. Fine-crystalline dolomite has δ18Ο values between ?1·6 to –3·8‰ PDB and 87Sr/86Sr ratios from 0·7079–0·7081, consistent with derivation from Middle Devonian seawater. Its Sr concentrations (55–225 p.p.m., mean 105 p.p.m.) follow a similar trend to modern Little Bahama seawater dolomites. Its rare earth element (REE) patterns are similar to those of the limestone precursors. These data suggest that this fine-crystalline dolomite formed from Middle Devonian seawater at or just below the sea floor. Medium-crystalline dolomite in the Presqu’ile barrier is composed of anhedral to subhedral crystals (150–250 μm, mean 200 μm), some of which have clear rims toward the pore centres. This dolomite occurs mostly in the southern lower part of the barrier. Medium-crystalline dolomite has δ18O values between ?3·7 to ?9·4‰ PDB (mean ?5·9‰ PDB) and 87Sr/86Sr ratios from 0·7081–0·7087 (mean 0·7084); Sr concentrations from 30 to 79 p.p.m. (mean 50 p.p.m.) and Mn content from 50 to 253 p.p.m. (mean 161 p.p.m.); and negative Ce anomalies compared with those of marine limestones. The medium-crystalline dolomite may have formed either (1) during shallow burial at slightly elevated temperatures (35–40 °C) from fluids derived from burial compaction, or, more likely (2) soon after deposition of the precursor sediments by Middle Devonian seawater derived from the Elk Point Basin. These results indicate that dolomitization in the Middle Devonian Presqu’ile barrier occurred in at least two stages during evolution of the Western Canada Sedimentary Basin. The geochemistry of earlier formed dolomites may have been modified if the earlier formed dolomites were porous and permeable and water/rock ratios were large during neomorphism.  相似文献   

9.
川东北地区下三叠统飞仙关组为浅海碳酸盐岩夹泥页岩与蒸发岩序列,而在碳酸盐岩台地边缘通常发育一些白云石化的鲕粒滩。这些鲕粒滩白云岩储集层是川东北地区主要的产气层,一些学者认为该套白云岩为大气淡水与海水的混合水白云石化成因,另外一些学者将其视为回流—渗透白云石化成因。飞仙关组鲕粒滩白云岩稳定同位素氧值一般为-6.73‰~-3.65‰(PDB),平均值为-4.89‰(PDB)(罗家寨地区为-10.81‰(PDB)),稳定同位素碳值一般为+0.57‰~+3.00‰(PDB)。对基质和孔洞中充填的鞍状白云石和亮晶白云石胶结物而言,稳定同位素87Sr/86Sr值为0.70735~0.70800。这些有关鲕粒滩白云岩的数据表明白云石化作用是在埋藏条件下进行的。在测定流体包裹体的均一化温度后,计算出白云石化流体稳定同位素氧成分(δ18O白云石-δ18O=[3.2×106 T-2]-1.5,来自 Friedman 和 ONeil(1977)),其平均值约为+4‰(SMOW)。根据流体稳定同位素氧、碳成分与海水蒸发时流体盐度的正相关性,计算出流体δD平均值约为+25‰(SMOW)。流体包裹体盐度测定表明,白云石化流体是一种超盐度卤水,其盐度是海水的数倍,白云石化的温度为90~130℃。由于下三叠统鲕粒滩白云岩的稳定同位素氧和碳成分与上二叠统生物礁白云岩的稳定同位素氧和碳成分类似,因此,它们的白云石化流体很可能是同一来源。然而,这一结论还有待于进一步研究。  相似文献   

10.
Limestone consisting of finely to medium crystalline calcite mosaics is present in the upper part of the Winnipegosis Formation on the east‐central margin of the Elk Point Basin where the overlying Prairie Evaporite deposits have been removed. This type of crystalline limestone is interpreted as dedolomite, based on petrographic observations. The δ18O and δ13C values of the Winnipegosis dedolomite vary from ?12·8‰ to ?11·9‰ VPDB (Vienna Pee Dee Belemnite) and from ?0·5‰ to +1·7‰ VPDB, respectively; both values are significantly lower than those for the corresponding dolomite. The 87Sr/86Sr ratios of the dedolomite are significantly higher, between 0·7082 and 0·7087. The spatial distribution and geochemical data of the Winnipegosis dedolomite suggest that dedolomitization was related to an influx of fresh groundwater and dissolution of the Prairie Evaporite anhydrite during the latest Mississippian to the Early Cretaceous when the basin was subjected to uplift and erosion. The Winnipegosis dedolomite displays a series of replacement fabrics showing progressive calcitization of dolomite, including the occurrence of dedolomite restricted along fractures and adjacent areas, dolomite patches ‘floating’ in the dedolomite masses and massive dedolomite with sparsely scattered dolomite relicts. However, the characteristic fabrics resulting from dedolomitization documented in the literature have not been observed in the Winnipegosis dedolomite. Coarsely to very coarsely crystalline, subhedral to euhedral calcite cement is restricted in the dedolomite. The petrographic features, isotopic compositions and homogenization temperatures, coupled with the burial history of the Winnipegosis Formation, constrain the precipitation of the calcite cement from a mixing of basinal brines and fresh groundwater during Late Cretaceous to Neogene time. The more negative C‐isotopic signatures of the calcite cement (?5·3‰ to ?2·3‰ VPDB) probably reflect a hydrocarbon‐derived carbon.  相似文献   

11.
Detailed studies of a new, complete Marl Slate core in South Yorkshire have provided information on isotopic (δ13C, δ18O, δ34S) and geochemical variations (trace elements and C/S ratio) which enable the formulation of a model for carbonate and sulphide precipitation in the Late Permian Zechstein Sea. Calcite and dolomite are intimately associated; the fine lamination, organic character and absence of benthos in the sediments are indicative of anoxic conditions. Lithologically the core can be divided into a lower, predominantly sapropelic Marl Slate (2 m) and an upper Transition Zone (0·65 m) of alternating sapropel and calcite-rich and dolomite-rich carbonates. C/S ratios are 2·22 for the Marl Slate and 1·72 for the Transition Zone respectively, both characteristic of anoxic environments. δ18O in the carbonates shows a large and systematic variation closely mirrored by variations in calcite/dolomite ratio. The results suggest a fractionation factor equivalent to a depletion of 3·8% for 18O and 1·5% for 13C in calcite. The δ34S values of pyrite are isotopically light (mean value = - 32·7%) suggesting a fractionation factor for the Marl Slate of almost 44%, typical of anoxic basins. The results are related to stratification in the early Zechstein Sea. Calcite was precipitated in oxic upper layers above the halocline. Below the oxic/anoxic boundary framboidal pyrite was precipitated, resulting in lower sulphate concentration and elevated Mg/Ca ratio (due to calcite precipitation). As a result of this, dolomite formation occurred below the oxic/anoxic interface, within the anoxic water column and in bottom sediments. Variations in calcite/dolomite ratios, and isotopic variations, are thus explained by fluctuations in the relative level of the oxic/anoxic boundary in the Zechstein Sea.  相似文献   

12.
The Swan Hills Formation (Middle-Upper Devonian) of the Western Canada Basin is host to several NW-SE-trending gas fields developed in massive replacement dolostone. One of these, the Rosevear Field, contains two major dolostone trends along opposing margins of a marine channel that penetrates into a platform-reef complex. Dolostones consist predominantly of branching and bulbous strdmatoporoid floatstones and rudstones with well-developed moldic and vuggy porosity. Replacement dolomite is coarsely crystalline (100-600 μm), inclusion-rich, composed of euhedral through anhedral crystals and has a blotchy to homogeneous red cathodoluminescence. Geochemically, replacement dolomite is characterized by (i) nearly stoichiometric composition (50.1-51.1 mol% CaCO3), (ii) negative δ18O values (mean=-7.5‰, PDB) and (iii) variable 87Sr/86Sr ratios ranging from values similar to Late Devonian-Early Mississippian seawater (~0.7082) to radiogenic compositions comparable to saddle dolomite cements (>0.7100). Dolomitization began after widespread precipitation of early, equant calcite spar and after the onset of pressure solution, implying that replacement dolomite formed in a burial environment. Oxygen isotope data suggest that dolomite formed at 35-75°C, temperatures reached during burial in Late Devonian through Jurassic time, at minimum depths of 450 m. The linear NW-SE orientation of most dolomite fields in the Swan Hills Formation is suggestive of fault control on fluid circulation. Two models are proposed for fault-controlled circulation of dolomitizing fluids at the Rosevear Field. In the first, compaction-driven, updip fluid migration occurred in response to basin tilting commencing in the Late Palaeozoic. Deep basinal fluids migrating updip were focused into channel-margin sediments along fault conduits. The second model calls upon fault-controlled convective circulation of (i) warm Devonian-Mississippian seawater or (ii) Middle Devonian residual evaporitic brines. The overlap in 87Sr/86Sr and δ18O compositions, and similar cathodoluminescence properties between replacement and saddle dolomites provide evidence for neomorphism of some replacement dolomite. Quantitative modelling of Sr and O isotopes and Sr abundances suggests partial equilibration of some replacement dolomite with hot radiogenic brines derived during deep burial of the Swan Hills Formation in the Late Cretaceous-Palaeocene. Interaction of replacement dolomite with deep brines led to enrichment in 87Sr while leaving δ18O similar to pre-neomorphism values.  相似文献   

13.
The calcite fossils of the Derbyhaven Beds, Isle of Man, have δ13C values (+ 1·8 PDB) similar to modern, shallow-water marine skeletons, but the δ18O values (?6·1 PDB) are much lighter than modern skeletons. The light oxygen values indicate either re-equilibration with isotopically light water before cementation started, or Carboniferous sea water with δ18O of ?6‰. Aragonite dissolution was followed by precipitation of zoned calcite cement. In this cement, up to six intracrystalline zones, recognized in stained thin sections, show isotopic variation. Carbon varies from + 3-8 to + 1-2‰. and oxygen from ? 2-6 to ? 12-4‰. with decreasing age of the cement. This trend is attributed to increasing temperature and to isotopic evolution of the pore waters during burial. The zoned calcite is sequentially followed by dolomite and kaolinite cements which continue the trend towards light isotopic values. This trend is continued with younger, fault-controlled dolomite, and is terminated by vein-filling calcite and dolomite. The younger calcite, interpreted as a near-surface precipitate from meteoric waters, is unrelated to the older sequence of carbonates and has distinctly different carbon isotope ratios: δ13C ? 6-8‰.  相似文献   

14.
Upper Pliocene dolomites (‘white earth’) from La Roda, Spain, offer a good opportunity to evaluate the process of dolomite formation in lakes. The relatively young nature of the deposits could allow a link between dolomites precipitated in modern lake systems and those present in older lacustrine formations. The La Roda Mg‐carbonates (dolomite unit) occur as a 3·5‐ to 4‐m‐thick package of poorly indurated, white, massive dolomite beds with interbedded thin deposits of porous carbonate displaying root and desiccation traces as well as local lenticular gypsum moulds. The massive dolomite beds consist mainly of loosely packed 1‐ to 2‐μm‐sized aggregates of dolomite crystals exhibiting poorly developed faces, which usually results in a subrounded morphology of the crystals. Minute rhombs of dolomite are sparse within the aggregates. Both knobbly textures and clumps of spherical bodies covering the crystal surfaces indicate that bacteria were involved in the formation of the dolomites. In addition, aggregates of euhedral dolomite crystals are usually present in some more clayey (sepiolite) interbeds. The thin porous carbonate (mostly dolomite) beds exhibit both euhedral and subrounded, bacterially induced dolomite crystals. The carbonate is mainly Ca‐dolomite (51–54 mol% CaCO3), showing a low degree of ordering (degree of ordering ranges from 0·27 to 0·48). Calcite is present as a subordinate mineral in some samples. Sr, Mn and Fe contents show very low correlation coefficients with Mg/Ca ratios, whereas SiO2 and K contents are highly correlated. δ18O‐ and δ13C‐values in dolomites range from ?3·07‰ to 5·40‰ PDB (mean=0·06, σ=1·75) and from ?6·34‰ to ?0·39‰ PDB (mean=?3·55, σ=1·33) respectively. Samples containing significant amounts of both dolomite and calcite do not in general show significant enrichment or depletion in 18O and 13C between the two minerals. The correlation coefficient between δ18O and δ13C for dolomite is extremely low and negative (r=?0·05), whereas it is higher and positive (r=0·47) for calcite. The lacustrine dolomite deposit from La Roda is interpreted mainly as a result of primary precipitation of dolomite in a shallow, hydrologically closed perennial lake. The lake was supplied by highly saturated HCO3?/CO32? groundwater that leached dolomitic Mesozoic formations. Precipitation of dolomite from alkaline lake waters took place under a semi‐arid to arid climate. However, according to our isotopic data, strong evaporative conditions were not required for the formation of the La Roda dolomite. A significant contribution by bacteria to the formation of the dolomites is assumed in view of both petrographic and geochemical evidence.  相似文献   

15.
The study focuses on the formation of lacustrine dolomite in late Miocene lakes, located at the East Mediterranean margins (Northern Israel). These lakes deposited the sediments of the Bira (Tortonian) and Gesher (Messinian) formations that comprise sequences of dolostone and limestone. Dolostones are bedded, consist of small‐sized (<7 μm), Ca‐rich (52 to 56 mol %) crystals with relatively low ordering degrees, and present evidence for replacement of CaCO3 components. Limestones are comprised of a wackestone to mudstone matrix, freshwater macrofossils and intraclasts (mainly in the Bira Formation). Sodium concentrations and isotope compositions differ between limestones and dolostones: Na = ~100 to 150 ppm; ~1000 to 2000 ppm; δ18O = ?3·8 to ?1·6‰; ?2·0 to +4·3‰; δ13C = ?9·0 to ?3·4‰; ?7·8 to 0‰ (VPDB), respectively. These results indicate a climate‐related sedimentation during the Tortonian and early Messinian. Wet conditions and positive freshwater inflow into the carbonate lake led to calcite precipitation due to intense phytoplankton blooms (limestone formation). Dry conditions and enhanced evaporation led to precipitation of evaporitic CaCO3 in a terminal lake, which caused an increased Mg/Ca ratio in the residual waters and penecontemporaneous dolomitization (dolostone formation). The alternating lithofacies pattern reveals eleven short‐term wet–dry climate‐cycles during the Tortonian and early Messinian. A shift in the environmental conditions under which dolomite formed is indicated by a temporal decrease in δ18O of dolostones and Na content of dolomite crystals. These variations point to decreasing evaporation degrees and/or an increased mixing with meteoric waters towards the late Messinian. A temporal decrease in δ13C of dolostones and limestones and appearance of microbial structures in close association with dolomite suggest that microbial activity had an important role in allowing dolomite formation during the Messinian. Microbial mediation was apparently the main process that enabled local growth of dolomite under wet conditions during the latest Messinian.  相似文献   

16.
Glendonites, calcite pseudomorphs after the metastable mineral ikaite (CaCO3 · 6H2O), occur in the Late Aptian interval of the Bulldog Shale in the Eromanga Basin, Australia and in other Early Cretaceous basins at high paleolatitudes. Ikaite precipitation in the marine environment requires near-freezing temperatures (not higher than 4°C), high alkalinity, increased levels of orthophosphate, and high PCO2. The rapid and complete transformation of ikaite to calcite at temperatures between 5 and 8°C provides an upper limit on the oxygen isotopic composition of the pore waters: −2.6 <δw <−3.4‰SMOW. If it is assumed that these pore waters are representative of the shallow Eromanga Basin, the calculated δw can be used to reassess belemnite fossil oxygen isotopic paleotemperatures—temperature recorded by fauna living in the basin at the time of ikaite precipitation. Data previously reported as 11 to 16°C (assuming δw = 0.0‰SMOW) yield paleotemperatures ranging from −1 to 5°C, squarely in the range of ikaite stability. The low δw indicates hyposaline conditions, most likely caused by mixing high latitude meteoric waters with seawater. The 18O depleted, low temperature waters suggest that the region was at least seasonally colder than previously accepted.  相似文献   

17.
Carbonate cements in late Dinantian (Asbian and Brigantian) limestones of the Derbyshire carbonate platform record a diagenetic history starting with early vadose meteoric cementation and finishing with burial and localized mineral and oil emplacement. The sequence is documented using cement petrography, cathodoluminescence, trace element geochemistry and C and O isotopes. The earliest cements (Pre-Zone 1) are locally developed non-luminescent brown sparry calcite below intrastratal palaeokarsts and calcretes. They contain negligible Fe, Mn and Sr but up to 1000 ppm Mg. Their isotopic compositions centre around δ18O =?8.5‰, δ13C=?5.0‰. Calcretes contain less 13C. Subsequent cements are widespread as inclusion-free, low-Mg, low-Fe crinoid overgrowths and are described as having a‘dead-bright-dull’cathodoluminescence. The‘dead’cements (Zone 1) are mostly non-luminescent but contain dissolution hiatuses overlain by finely detailed bright subzones that correlate over several kilometres. Across‘dead'/bright subzones there is a clear trend in Mg (500–900 ppm), Mn (100–450 ppm) and Fe (80-230 ppm). Zone 1 cements have isotopic compositions centred around δ18O =?8.0‰ and δ13C=?2.5‰. Zone 2 cement is bright, thin and complexly subzoned. It is geochemically similar to bright subzones of Zone 1 cements. Dull Zone 3 cement pre-dates pressure dissolution and fills 70% or more of the pore space. It generally contains little Mn, Fe and Sr but can have more than 1000 ppm Mg, increasing stratigraphically upwards. The δ18O compositions range from ?5.5 to ?15‰ and the δ13C range is ?1 to + 3.20/00. Zone 4 fills veins and stylolite seams in addition to pores. It is synchronous with Pb, Ba, F ore mineralization and oil migration. Zone 4 is ferroan with around 500 ppm Fe, up to 2500 ppm Mg and up to 1500 ppm Mn. Isotopic compositions range widely; δ15O =?2.7 to ?9‰ and δ13C=?3.8 to+2.50‰. Unaltered marine brachiopods suggest a Dinantian seawater composition around δ15O = 0‰ (SMOW), but vital isotopic effects probably mask the original δ13C (PDB) value. Pre-Zone 1 calcites are meteoric vadose cements with light soil-derived δ13C and light meteoric δ18O. An unusually fractionated‘pluvial’δ15O(SMOW) value of around — 6‰ is indicated for local Dinantian meteoric water. Calcrete δ18O values are heavier through evaporation. Zone 1 textures and geochemistry indicate a meteoric phreatic environment. Fe and Mn trends in the bright subzones indicate stagnation, and precipitation occurred in increments from widespread cyclically developed shallow meteoric water bodies. Meteoric alteration of the rock body was pervasive by the end of Zone 1 with a general resetting of isotopic values. Zone 3 is volumetrically important and external sources of water and carbonate are required. Emplacement was during the Namurian-early Westphalian by meteoric water sourced at a karst landscape on the uplifted eastern edge of the Derbyshire-East Midland shelf. The light δ18O values mainly reflect burial temperatures and an unusually high local heat flow, but an input of highly fractionated hinterland-derived meteoric water at the unconformity is also likely. Relatively heavy δ13C values reflect the less-altered state of the source carbonate and aquifer. Zone 4 is partly vein fed and spans burial down to 2000 m and the onset of tectonism. Light organic-matter-derived δ13C and heavy δ18O values suggest basin-derived formation water. Combined with textural evidence of geopressures, this relates to local high-temperature ore mineralization and oil migration. Low water-to-rock ratios with host-rock buffering probably affected the final isotopic compositions of Zone 4, masking extremes both of temperature and organic-matter-derived CO2.  相似文献   

18.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   

19.
Brine extremely rich in potassium, boron and bromine has been discovered from the Middle Triassic Leikoupo Formation at a depth of 4300 m in Sichuan Province. It contains ~50 g/L of K+, >92 g/L of Na+, >12 g/L of B2O3, >2.36 g/L of Br? and ~0.030 g/L of I+. The solid precipitates during evaporation at 25°C include KB5O8·4H2O, K2B4O7·3H2O, MgCl2·6H2O and KMgCl3·6H2O. The brine ranges from 2.2‰ to 2.8‰ (SMOW) in δ18O, ? 38‰ – ? 53‰ (SMOW) in δD, 15.6‰ in δ34S, and 13.5‰–15.1‰ in δ11B. These data, particularly the isotopic composition of boron, indicate that the brine has a composite derivation from marine and nonmarine brines and dissolved marine evaporites in the Triassic system.  相似文献   

20.
Lower Messinian stromatolites of the Calcare di Base Formation at Sutera in Sicily record periods of low sea‐level, strong evaporation and elevated salinity, thought to be associated with the onset of the Messinian Salinity Crisis. Overlying aragonitic limestones were precipitated in normal to slightly evaporative conditions, occasionally influenced by an influx of meteoric water. Evidence of bacterial involvement in carbonate formation is recorded in three dolomite‐rich stromatolite beds in the lower portion of the section that contain low domes with irregular crinkly millimetre‐scale lamination and small fenestrae. The dominant microfabrics are: (i) peloidal and clotted dolomicrite with calcite‐filled fenestrae; (ii) dolomicrite with bacterium‐like filaments and pores partially filled by calcite or black amorphous matter; and (iii) micrite in which fenestrae alternate with dark thin wispy micrite. The filaments resemble Beggiatoa‐like sulphur bacteria. Under scanning electron microscopy, the filaments consist of spherical aggregates of dolomite, interpreted to result from calcification of bacterial microcolonies. The dolomite crystals are commonly arranged as rounded grains that appear to be incorporated or absorbed into developing crystal faces. Biofilm‐like remains occur in voids between the filaments. The dolomite consistently shows negative δ13C values (down to ?11·3‰) and very positive δ18O (mean value 7·9‰) that suggest formation as primary precipitate with a substantial contribution of organic CO2. Very negative δ13C values (down to ?31·6‰) of early diagenetic calcite associated with the dolomite suggest contribution of CO2 originating by anaerobic methane oxidation. The shale‐normalized rare earth element patterns of Sutera stromatolites show features similar to those in present‐day microbial mats with enrichment in light rare earth elements, and M‐type tetrad effects (enrichment around Pr coupled to a decline around Nd and a peak around Sm and Eu). Taken together, the petrography and geochemistry of the Sutera stromatolites provide diverse and compelling evidence for microbial influence on carbonate precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号