首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The main terrains involved in the Cretaceous–Tertiary tectonism in the South Carpathians segment of the European Alpine orogen are the Getic–Supragetic and Danubian continental crust fragments separated by the Severin oceanic crust-floored basin. During the Early–Middle Cretaceous times the Danubian microplate acted initially as a foreland unit strongly involved in the South Carpathians nappe stacking. Multistage folding/thrusting events, uplift/erosion and extensional stages and the development of associated sedimentary basins characterize the South Carpathians during Cretaceous to Tertiary convergence and collision events. The main Cretaceous tectogenetic events responsible for contraction and crustal thickening processes in the South Carpathians are Mid-Cretaceous (“Austrian phase”) and Latest Cretaceous (“Laramide” or “Getic phase”) in age. The architecture of the South Carpathians suggests polyphase tectonic evolution and mountain building and includes from top to bottom: the Getic–Supragetic basement/cover nappes, the Severin and Arjana cover nappes, and Danubian basement/cover nappes, all tectonically overriding the Moesian Platform. The Severin nappe complex (including Obarsia and Severin nappes) with Late Jurassic–Early Cretaceous ophiolites and turbidites is squeezed between the Danubian and Getic–Supragetic basement nappes as a result of successive thrusting of dismembered units during the inferred Mid- to Late Cretaceous subduction/collision followed by tectonic inversion processes.

Early Cretaceous thick-skinned tectonics was replaced by thin-skinned tectonics in Late Cretaceous. Thus, the former Middle Cretaceous “Austrian” nappe stack and its Albian–Lower Senonian cover got incorporated in the intra-Senonian “Laramide/Getic” stacking of the Getic–Supragetic/Severin/Arjana nappes onto the Danubian nappe duplex. The two contraction events are separated by an extensional tectonic phase in the upper plate recorded by the intrusion of the “Banatitic” magmas (84–73 Ma). The overthrusting of the entire South Carpathian Cretaceous nappe stack onto the fold/thrust foredeep units and to the Moesian Platform took place in the Late Miocene (intra-Sarmatian) times and was followed by extensional events and sedimentary basin formation.  相似文献   


2.
The Late Cretaceous–Cenozoic evolution of the eastern North Sea region is investigated by 3D thermo-mechanical modelling. The model quantifies the integrated effects on basin evolution of large-scale lithospheric processes, rheology, strength heterogeneities, tectonics, eustasy, sedimentation and erosion.

The evolution of the area is influenced by a number of factors: (1) thermal subsidence centred in the central North Sea providing accommodation space for thick sediment deposits; (2) 250-m eustatic fall from the Late Cretaceous to present, which causes exhumation of the North Sea Basin margins; (3) varying sediment supply; (4) isostatic adjustments following erosion and sedimentation; (5) Late Cretaceous–early Cenozoic Alpine compressional phases causing tectonic inversion of the Sorgenfrei–Tornquist Zone (STZ) and other weak zones.

The stress field and the lateral variations in lithospheric strength control lithospheric deformation under compression. The lithosphere is relatively weak in areas where Moho is deep and the upper mantle warm and weak. In these areas the lithosphere is thickened during compression producing surface uplift and erosion (e.g., at the Ringkøbing–Fyn High and in the southern part of Sweden). Observed late Cretaceous–early Cenozoic shallow water depths at the Ringkøbing–Fyn High as well as Cenozoic surface uplift in southern Sweden (the South Swedish Dome (SSD)) are explained by this mechanism.

The STZ is a prominent crustal structural weakness zone. Under compression, this zone is inverted and its surface uplifted and eroded. Contemporaneously, marginal depositional troughs develop. Post-compressional relaxation causes a regional uplift of this zone.

The model predicts sediment distributions and paleo-water depths in accordance with observations. Sediment truncation and exhumation at the North Sea Basin margins are explained by fall in global sea level, isostatic adjustments to exhumation, and uplift of the inverted STZ. This underlines the importance of the mechanisms dealt with in this paper for the evolution of intra-cratonic sedimentary basins.  相似文献   


3.
The geometry and dynamics of the Mesozoic basins of the Weald–Boulonnais area have been controlled by the distribution of preexisting Variscan structures. The emergent Variscan frontal thrust faults are predominantly E–W oriented in southern England while in northern France they have a largely NW–SE orientation.Extension related to Tethyan and Atlantic opening has reactivated these faults and generated new faults that, together, have conditioned the resultant Mesozoic basin geometries. Jurassic to Cretaceous N–S extension gave the Weald–Boulonnais basin an asymmetric geometry with the greatest subsidence located along its NW margin. Late Cretaceous–Palaeogene N–S oriented Alpine (s.l.) compression inverted the basin and produced an E–W symmetrical anticline associated with many subsidiary anticlines or monoclines and reverse faults. In the Boulonnais extensional and contractional faults that controlled sedimentation and inversion of the Mesozoic basin are examined in the light of new field and reprocessed gravity data to establish possible controls exerted by preexisting Variscan structures.  相似文献   

4.
The TRANSALP consortium, comprising institutions from Italy, Austria and Germany, carried out deep seismic reflection measurements in the Eastern Alps between Munich and Venice in 1998, 1999 and 2001. In order to complement each other in resolution and depth range, the Vibroseis technique was combined with simultaneous explosive source measurements. Additionally, passive cross-line recording provided three-dimensional control and alternative north–south sections. Profits were obtained by the combination of the three methods in sectors or depths where one method alone was less successful.The TRANSALP sections clearly image a thin-skinned wedge of tectonic nappes at the northern Alpine front zone, unexpected graben or half-graben structures within the European basement, and, thick-skinned back-thrusting in the southern frontal zone beneath the Dolomite Mountains. A bi-vergent structure at crustal scale is directed from the Alpine axis to the external parts. The Tauern Window obviously forms the hanging wall ramp anticline above a southward dipping, deep reaching reflection pattern interpreted as a tectonic ramp along which the Penninic units of the Tauern Window have been up-thrusted.The upper crystalline crust appears generally transparent. The lower crust in the European domain is characterized by a 6–7 km thick laminated structure. On the Adriatic side the lower crust displays a much thicker or twofold reflective pattern. The crustal root at about 55 km depth is shifted around 50 km to the south with respect to the main Alpine crest.  相似文献   

5.
H. Lapierre  G. Rocci 《Tectonophysics》1976,30(3-4):299-313
An important volcanism of Late Triassic age is known from SW Cyprus. It occurs in the Mamonia nappe system emplaced during the Late Maastrichtian. Three main volcanic episodes interbedded with detrital and pelagic sediments can be seen from the base to the top:

1. (1) pyroclastic rocks (breccias, tuffs) associated with coarse-grained sandstone, suggesting explosive eruptions in grabens

2. (2) basaltic or andesitic pillowed flows, interbedded first with fine-grained sandstone and small Halobia limestone strata, then with pelagic limestones and radiolarian red cherts

3. (3) columnar trachyte flows.

The whole volcanic series belongs to a very differenciated sodic suite with high titanium contents. The Mamonia lavas are very similar to the Afar volcanics and can be considered as belonging to an interplate volcanism in a rift system. This alkaline basaltic suite is found in many places of the East Mediterranean Alpine orogenic domain, especially in the Antalya nappes (South Turkey) and in the Baer-Bassit (Syria). In Greece, a similar volcanism has been noticed (Othrys—Pindos). In Italy there exists a Middle or Late Triassic volcanism with alkaline affinities. Therefore, this Late Triassic magmatism, which is widespread in the whole Mediterranean Alpine region and always in tectonic association with ophiolites, has a very great paleogeographic significance. We thus propose the existence of a rift system associated with an alkaline basaltic suite along the northern edge of the African plate during Norian—Carnian times. Afterwards a mid-oceanic ridge would have been formed during the Jurassic and Cretaceous. To explain this evolution two hypotheses can be proposed:

1. (1) A single mid-Tethysian ridge existed and all the ophiolites (Greece, Turkey, Cyprus, the ‘croissant ophiolitique peri-arabe’) have been thrust from the same area.

2. (2) A marginal sea existed along the mid-Tethysian ridge north of the African plate but separated from the Tethys by a carbonate shelf, where, after the Triassic events, oceanization began with slightly different ophiolites (a large sheeted complex, low-K tholeiites with some calc-alkaline affinities).

Therefore, Troodos, Hatay, Zagros and Oman would not have come from the main ophiolite zone present further north, but from a marginal ocean, now obducted on the African plate. We think that the second hypothesis is more reasonable because the Upper Cretaceous sedimentary cover (Kannaviou Formation) of the Troodos is very similar to the detritic formation present in South Turkey (Kastel Formation) which is known to grade to shelf carbonates belonging to the Arabian plate towards the south.  相似文献   


6.
The complicated structural and rheologic properties of Western Carpathian lithosphere reflect the complex geodynamic history of the Carpathian orogen. Based on critical analysis of earlier models, new interpolation of existing geophysical data and results of integrated modelling, a new map of the lithosphere thickness for the Carpathian–Pannonian region has been constructed. The map allows for the distinction of a frontal orogen collision zone in the NE (from increased lithosphere thickness) as well as a zone of oblique collision with the Bohemian Massif in the West, where lithosphere is not significantly thickened. The MOHO discontinuity beneath the Western Carpathian hinterland (Danube and East Slovak Basins), as defined by deep reflection seismic profiling, is relatively shallow. This probably reflects recent crustal extension related to oblique collision between the European plate and the ALCAPA block and an increase of the asthenospheric updoming from the Middle Miocene onward.Crustal thickness reflects the combined effects of deep-seated orogenic processes and mantle thermal evolution beneath the Pannonian Basin system. In this study, we focus particularly the structures of: (1) the Late Alpine collision and Neogene back arc basin development, including deep-seated contacts between colliding plates, a zone of slab detachment, the compressional accretionary wedge of the Outer Western Carpathian Flysch Belt, and extensional structures produced by subduction rollback and asthenosphere upwelling; (2) Early Alpine structures related to Cretaceous thrust-stacking, including subhorizontal reflection packages (interpreted as multi-generational extensional structures), the underplated intra-Penninic (Oravic) continental ribbon, and ophiolite traces of the Meliatic oceanic suture; and (3) north-dipping reflectors interpreted as remnant Hercynian lithotectonic fragments with opposed vergency to the subducted Alpine units.  相似文献   

7.
The Western Black Sea basin opened during Cretaceous times by back-arc rifting in association with a north dipping subduction at the rear of the Cretaceous–Early Tertiary Pontide volcanic arc. The sedimentary wedge developed on the shelf of the Romanian Black Sea sector reflects a complex interplay between large scale rifting, uplift of the orogenic flanks, large-scale post-rift subsidence and sea level changes. We examine the detailed structural configuration of this sector for a regional correlation with the adjacent offshore in Ukraine and Bulgaria. The evolution of the western Black Sea basin started in the Albian–Cenomanian times, when two extensional phases with significantly different directions (N–S and subsequently E–W) lead to the formation of a complex interplay between isolated blocks organised in horsts and grabens generally deepening eastwards. Superposition of normal faults footwall blocks from the two extensional episodes generated a deeply subsided area with enhanced accommodation space, i.e., the Histria Depression, and, consequently, recorded a larger thickness of Paleogene sediments in the post-rift stage. (Re)activation of faults and associated folding reflects repeated inversion during the Late Cretaceous–Oligocene times, associated with subsequent periods of non-deposition and/or erosion during moments of basin fill exposure. These periods of inversion recorded in the Black Sea are controlled by coeval orogenic deformations taking place in the Balkans, Pontides and the Crimean thrust belt. Sea level fluctuations during the Neogene and late Alpine tectonics in the neighbouring orogens caused massive sedimentation followed by sediment starvation and/or significant erosion. Large thicknesses of sediments accumulated during the Pontian, presumably associated with an extensional episode deepening the distal parts of the basin and with differential compaction structures. The interpretation of a high-quality seismic dataset combined with published data allowed the correlation of major structural units and lineaments defined onshore towards the Carpathians with the ones deeply buried below the western Black Sea basin sediments. Unit correlations are furthermore used to derive an integrated tectonic image of the western Black Sea area.  相似文献   

8.
J. Golonka   《Tectonophysics》2004,381(1-4):235
Thirteen time interval maps were constructed, which depict the Triassic to Neogene plate tectonic configuration, paleogeography and general lithofacies of the southern margin of Eurasia. The aim of this paper is to provide an outline of the geodynamic evolution and position of the major tectonic elements of the area within a global framework. The Hercynian Orogeny was completed by the collision of Gondwana and Laurussia, whereas the Tethys Ocean formed the embayment between the Eurasian and Gondwanian branches of Pangea. During Late Triassic–Early Jurassic times, several microplates were sutured to the Eurasian margin, closing the Paleotethys Ocean. A Jurassic–Cretaceous north-dipping subduction boundary was developed along this new continental margin south of the Pontides, Transcaucasus and Iranian plates. The subduction zone trench-pulling effect caused rifting, creating the back-arc basin of the Greater Caucasus–proto South Caspian Sea, which achieved its maximum width during the Late Cretaceous. In the western Tethys, separation of Eurasia from Gondwana resulted in the formation of the Ligurian–Penninic–Pieniny–Magura Ocean (Alpine Tethys) as an extension of Middle Atlantic system and a part of the Pangean breakup tectonic system. During Late Jurassic–Early Cretaceous times, the Outer Carpathian rift developed. The opening of the western Black Sea occurred by rifting and drifting of the western–central Pontides away from the Moesian and Scythian platforms of Eurasia during the Early Cretaceous–Cenomanian. The latest Cretaceous–Paleogene was the time of the closure of the Ligurian–Pieniny Ocean. Adria–Alcapa terranes continued their northward movement during Eocene–Early Miocene times. Their oblique collision with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and its foreland basin. The formation of the West Carpathian thrusts was completed by the Miocene. The thrust front was still propagating eastwards in the eastern Carpathians.During the Late Cretaceous, the Lesser Caucasus, Sanandaj–Sirjan and Makran plates were sutured to the Iranian–Afghanistan plates in the Caucasus–Caspian Sea area. A north-dipping subduction zone jumped during Paleogene to the Scythian–Turan Platform. The Shatski terrane moved northward, closing the Greater Caucasus Basin and opening the eastern Black Sea. The South Caspian underwent reorganization during Oligocene–Neogene times. The southwestern part of the South Caspian Basin was reopened, while the northwestern part was gradually reduced in size. The collision of India and the Lut plate with Eurasia caused the deformation of Central Asia and created a system of NW–SE wrench faults. The remnants of Jurassic–Cretaceous back-arc systems, oceanic and attenuated crust, as well as Tertiary oceanic and attenuated crust were locked between adjacent continental plates and orogenic systems.  相似文献   

9.
Fluid inclusions and clay mineralogy of the Permo-Triassic rocks from the Espina and Espadà Ranges (SE Iberian Chain, Spain) have been investigated to establish their relationship with hydrothermal fluid circulation during the Alpine Orogeny. Primary fluid inclusions in quartz-filled tension gashes in Permo-Triassic sandstones reveal maximum temperatures around 230 °C and very constant salinities of 8.5% wt. eq. NaCl. Secondary fluid inclusions found in quartz from the Santonian Ba–Cu–Hg deposits show similar compositional and thermodynamic characteristics, denoting an Alpine recrystallization. Clay mineral composition of Permo-Triassic mudrocks is characterized by pyrophyillite, indicating low-grade metamorphic conditions. Field observations and experimental data suggest that the crystallization of quartz in tension gashes, the formation of secondary fluid inclusions and the development of the metamorphism are contemporaneous and related to fluid circulation during the Alpine compression. Fluid flow took place along the Hercynian fault system that was reactivated during the Mesozoic rift stage and inverted during the Alpine deformation.  相似文献   

10.
The evolution of the European Cenozoic Rift System (ECRIS) and the Alpine orogen is discussed on the base of a set of palaeotectonic maps and two retro-deformed lithospheric transects which extend across the Western and Central Alps and the Massif Central and the Rhenish Massif, respectively.During the Paleocene, compressional stresses exerted on continental Europe by the evolving Alps and Pyrenees caused lithospheric buckling and basin inversion up to 1700 km to the north of the Alpine and Pyrenean deformation fronts. This deformation was accompanied by the injection of melilite dykes, reflecting a plume-related increase in the temperature of the asthenosphere beneath the European foreland. At the Paleocene–Eocene transition, compressional stresses relaxed in the Alpine foreland, whereas collisional interaction of the Pyrenees with their foreland persisted. In the Alps, major Eocene north-directed lithospheric shortening was followed by mid-Eocene slab- and thrust-loaded subsidence of the Dauphinois and Helvetic shelves. During the late Eocene, north-directed compressional intraplate stresses originating in the Alpine and Pyrenean collision zones built up and activated ECRIS.At the Eocene–Oligocene transition, the subducted Central Alpine slab was detached, whereas the West-Alpine slab remained attached to the lithosphere. Subsequently, the Alpine orogenic wedge converged northwestward with its foreland. The Oligocene main rifting phase of ECRIS was controlled by north-directed compressional stresses originating in the Pyrenean and Alpine collision zones.Following early Miocene termination of crustal shortening in the Pyrenees and opening of the oceanic Provençal Basin, the evolution of ECRIS was exclusively controlled by west- and northwest-directed compressional stresses emanating from the Alps during imbrication of their external massifs. Whereas the grabens of the Massif Central and the Rhône Valley became inactive during the early Miocene, the Rhine Rift System remained active until the present. Lithospheric folding controlled mid-Miocene and Pliocene uplift of the Vosges-Black Forest Arch. Progressive uplift of the Rhenish Massif and Massif Central is mainly attributed to plume-related thermal thinning of the mantle-lithosphere.ECRIS evolved by passive rifting in response to the build-up of Pyrenean and Alpine collision-related compressional intraplate stresses. Mantle-plume-type upwelling of the asthenosphere caused thermal weakening of the foreland lithosphere, rendering it prone to deformation.  相似文献   

11.
In the Great Afghan Pamir (Pamir-e Kaland) the following formations can be distinguished, from bottom to top: Wakhan Fm. (3000–4000 m thick anchimetamorphic slates and sandstones with frequent intercalations of quartzites and rare beds of crystalline limestones; conodonts of Lower Triassic); Qal'a-e Panja Tonalite (epimetamorphic, cataclastic); Qal'a-e Ust Gneiss (meta- and orthogneisses); Issik Granodiorite (batholite of the Afghan Pamirs, equivalent to Baba Tangi-Lunkho Granodiorite; xenoliths, flow structures and diaphtoritic portions; Upper Jurassic to Eocene). The tectonics are determined by the Peripheric Southern Fault of the Pamirs and the Wakhan Fault, showing vertical dislocation up to 1000 m and sinistral thrusting in connection with the Western Himalayan Syntaxis. Late Variscan and Alpine deformations and an intensive middle Alpine metamorphism can be observed. Interpretations of satellite pictures lead to an insertion of the regional tectonic features into the model of plate tectonics of the Himalayan arc.  相似文献   

12.
The Turkish part of the Tethyan realm is represented by a series of terranes juxtaposed through Alpine convergent movements and separated by complex suture zones. Different terranes can be defined and characterized by their dominant geological background. The Pontides domain represents a segment of the former active margin of Eurasia, where back-arc basins opened in the Triassic and separated the Sakarya terrane from neighbouring regions. Sakarya was re-accreted to Laurasia through the Balkanic mid-Cretaceous orogenic event that also affected the Rhodope and Strandja zones. The whole region from the Balkans to the Caucasus was then affected by a reversal of subduction and creation of a Late Cretaceous arc before collision with the Anatolian domain in the Eocene. If the Anatolian terrane underwent an evolution similar to Sakarya during the Late Paleozoic and Early Triassic times, both terranes had a diverging history during and after the Eo-Cimmerian collision. North of Sakarya, the Küre back-arc was closed during the Jurassic, whereas north of the Anatolian domain, the back-arc type oceans did not close before the Late Cretaceous. During the Cretaceous, both domains were affected by ophiolite obduction, but in very different ways: north directed diachronous Middle to Late Cretaceous mélange obduction on the Jurassic Sakarya passive margin; Senonian synchronous southward obduction on the Triassic passive margin of Anatolia. From this, it appears that the Izmir-Ankara suture, currently separating both terranes, is composite, and that the passive margin of Sakarya is not the conjugate margin of Anatolia. To the south, the Cimmerian Taurus domain together with the Beydağları domain (part of the larger Greater Apulian terrane), were detached from north Gondwana in the Permian during the opening of the Neotethys (East-Mediterranean basin). The drifting Cimmerian blocks entered into a soft collision with the Anatolian and related terranes in the Eo-Cimmerian orogenic phase (Late Triassic), thus suturing the Paleotethys. At that time, the Taurus plate developed foreland-type basins, filled with flysch-molasse deposits that locally overstepped the lower plate Taurus terrane and were deposited in the opening Neotethys to the south. These olistostromal deposits are characterized by pelagic Carboniferous and Permian material from the Paleotethys suture zone found in the Mersin mélange. The latter, as well as the Antalya and Mamonia domains are represented by a series of exotic units now found south of the main Taurus range. Part of the Mersin exotic material was clearly derived from the former north Anatolian passive margin (Huğlu-type series) and re-displaced during the Paleogene. This led us to propose a plate tectonic model where the Anatolian ophiolitic front is linked up with the Samail/Baër-Bassit obduction front found along the Arabian margin. The obduction front was indented by the Anatolian promontory whose eastern end was partially subducted. Continued slab roll-back of the Neotethys allowed Anatolian exotics to continue their course southwestward until their emplacement along the Taurus southern margin (Mersin) and up to the Beydağları promontory (Antaya-Mamonia) in the latest Cretaceous–Paleocene. The supra-subduction ocean opening at the back of the obduction front (Troodos-type Ocean) was finally closed by Eocene north–south shortening between Africa and Eurasia. This brought close to each other Cretaceous ophiolites derived from the north of Anatolia and those obducted on the Arabian promontory. The latter were sealed by a Maastrichtian platform, and locally never affected by Alpine tectonism, whereas those located on the eastern Anatolian plate are strongly deformed and metamorphosed, and affected by Eocene arc magmatism. These observations help to reconstruct the larger frame of the central Tethyan realm geodynamic evolution.  相似文献   

13.
The lateral termination of the Alpine-Pyrenean Orogen relief onshore is located in the NW Iberian Peninsula. It overlies a Variscan basement (Iberian Massif), where the sedimentary record of the Alpine tectonic is very scarce. Thus, the characterisation of the tectonic evolution of the lateral termination is difficult and timing and geometries of the main tectonic structures remain unclear. Combining the tectonothermal histories obtained by modelling of the apatite fission-track data (AFT) with structural mapping allows for a comparative study of the different tectonic scenarios and deformation transfer in the lateral termination of an orogen. AFT ages for the studied area vary from 53.5?±?12.9 and 222?±?12?Ma (from Late Triassic to Early Eocene). The beginning of the Cenozoic cooling episodes is in agreement with the infilling of the Tertiary basins (Late Eocene or Oligocene). Calculated uplift for the Alpine Orogeny is around 2,400?m. The Cantabrian Mountains were uplifted and emplaced southwards and the main period of exhumation began in the Palaeogene at rates of ~0.02?mm/a and continued during the Neogene at rates of ~0.06?mm/a. However, the Galaico-Leoneses Mountains, located to the south of the studied area, were uplifted and emplaced northwards during the Neogene, showing more rapid uplift rates of ~0.08?mm/a, suggesting that the western termination of the Alpine-Pyrenean Orogen relief is the result of the successive interaction of two Alpine deformation fronts.  相似文献   

14.
The thermal evolution of Corsica as recorded by zircon fission-tracks   总被引:1,自引:0,他引:1  
New zircon fission-track (ZFT) ages from Corsica record multiple thermal events that can be tied to the structural evolution of the western Mediterranean region. The Corsican zircons have a wide scatter of ZFT grain ages (243–14 Ma), which together define several age domains. Western Corsica consists largely of stable Hercynian basement characterized by ZFT ages in the range 161–114 Ma. We interpret these ages (Late Jurassic–Early Cretaceous) as the product of a long-lived Tethyan thermal event related to continental rifting and subsequent drifting during the separation of the European and African plates and the formation of the Liguro–Piemontese ocean basin. In contrast to Hercynian Corsica, Alpine Corsica (northeast Corsica) experienced widespread deformation and metamorphism in Late Cretaceous(?)–Tertiary time. Dated samples from Alpine Corsica range in age from 112 to 19 Ma and all are reset or partially reset by one or more Alpine thermal events. The youngest ZFT grain ages are from the northernmost Alpine Corsica and define an age population at  24 Ma that indicates cooling after Tertiary thermal events associated with the Alpine metamorphism and the opening of the Liguro–Provençal basin. A less well-defined ZFT age population at  72 Ma is present in both Alpine Corsica and Hercynian basement rocks. The thermal history of these rocks is not clear. One interpretation is that the ZFT population at  72 Ma reflects resetting during a Late Cretaceous event broadly synchronous with the early Alpine metamorphism. Another interpretation is that this peak is related to variable fission-track annealing and partial resetting during the Tertiary Alpine metamorphic event across central to north-eastern Corsica. This partial age resetting supports the presence of a fossil ZFT partial annealing zone and limits the peak temperature in this area below 300 °C, for both the affected pre-Alpine and Alpine units.  相似文献   

15.
徐亚军  杜远生 《地球科学》2018,43(2):333-353
华南的广西运动被认为是发生在早古生代的陆内造山作用,然而触发陆内变形的地球动力学机制仍然不清.广西运动形成了泥盆系与下伏岩石之间广泛的不整合面以及分布在局部地区的下古生界内部的多个不整合面.广西运动期间的构造热事件和古生物响应时间在460~380 Ma,时间上对应于奥陶系和泥盆系之间的多个不整合,而分布在华南南缘的寒武系和奥陶系之间的不整合面(郁南运动)仅与少量的530~480 Ma之间的变质事件相当,但是却同步于广泛分布在东冈瓦纳北缘的造山事件.华南南部寒武系-奥陶系不整合面上下的碎屑锆石年代学研究表明,早古生代华南与印度北缘相连,而三亚地块在寒武纪是澳大利亚西缘的一部分,直到奥陶纪才与华南拼合,同步于冈瓦纳最终的聚合.郁南运动之后,华夏板块处于冈瓦纳内部,来自冈瓦纳东缘造山作用的应力向大陆内部传播,在具有弱流变学性质的南华盆地聚集,导致盆地构造反转,触发了广西运动.早古生代的华南经历了从板缘碰撞(郁南运动)到陆内造山(广西运动)的演化过程.   相似文献   

16.
The Roer Valley Rift System (RVRS) is located between the West European rift and the North Sea rift system. During the Cenozoic, the RVRS was characterized by several periods of subsidence and inversion, which are linked to the evolution of the adjacent rift systems. Combination of subsidence analysis and results from the analysis of thickness distributions and fault systems allows the determination of the Cenozoic evolution and quantification of the subsidence. During the Early Paleocene, the RVRS was inverted (Laramide phase). The backstripping method shows that the RVRS was subsequently mainly affected by two periods of subsidence, during the Late Paleocene and the Oligocene–Quaternary time intervals, separated by an inversion phase during the Late Eocene. During the Oligocene and Miocene periods, the thickness of the sediments and the distribution of the active faults reveal a radical rotation of the direction of extension by about 70–80° (counter clockwise). Integration of these results at a European scale indicates that the Late Paleocene subsidence was related to the evolution of the North Sea basins, whereas the Oligocene–Quaternary subsidence is connected to the West European rift evolution. The distribution of the inverted provinces also shows that the Early Paleocene inversion (Laramide phase) has affected the whole European crust, whereas the Late Eocene inversion was restricted to the southern North Sea basins and the Channel area. Finally, comparison of these deformations in the European crust with the evolution of the Alpine chain suggests that the formation of the Alps has controlled the evolution of the European crust since the beginning of the Cenozoic.  相似文献   

17.
Charlotte M. Allen 《Lithos》2000,51(4):331-349
A swarm of felsic and mafic dikes cuts a Late Carboniferous–Permian batholith called the Urannah Suite in central coastal Queensland. Late Permian–Triassic westward thrusting (Hunter–Bowen Orogeny) exposed this mid-crustal Suite and the crosscutting dikes, thus enabling examination of dikes that range in age from syn- to post-batholithic. Although both mafic and felsic dikes have the same dominant northerly strike, field, geochronologic and geochemical examination reveal that the swarm is composite; felsic dikes are older (285 Ma) and geochemically and isotopically distinct from mafic dikes (273–229 Ma). Dike compositions are compared to those of the host plutonic rocks, and to volcanic rocks the same age as the dikes. Whereas the felsic (older) dikes are compositionally similar to their host granites (initial 87Sr/86Sr>0.7045), the mafic (younger) dikes are isotopically (Sr, Nd, Pb) less radiogenic. Moreover, several different types of mafic dikes are evident based on geochemistry; most of these have mixed characteristics in terms of tectonic classification. All but two dikes of basalt and basaltic andesite composition classify as ‘with-in plate' on Ti–Zr–Y tectonic classification plots. Many of the basalts have high TiO2 contents (1.5–3.0 wt.%). Most of these have REE and spider diagram patterns like calc-alkaline tholeiites, the exceptions being a few alkali basalts recognized by their alkali content, and high Ti, Ce, Nb and Zr contents. When put into the context of all plutonic rocks in the area (late Paleozoic and Mesozoic), these dikes record a transition at 280 Ma, after which time, all magmatism in the region is less isotopically evolved (initial 87Sr/86Sr=0.7033–0.7044). A model of slab retreat and hinge movement to the east in the latest Permian explains the change of geochemical signature from arc-front to backarc at about 280 Ma.  相似文献   

18.
Chromian kyanites with a maximum content of 2.88 wt.% Cr2O3 occur in metachert and amphibolite from the Southern Alps, New Zealand. The presence of the whiteschist assemblage kyanite-talc, together with kyanite-zoisite assemblages in calc silicate bands imply high pressure metamorphism, with climactic conditions of approximately 10 kb at 650°–700° C. Mylonitization caused by a change to oblique-slip movements on the Alpine Fault is succeeded by retrograde alteration of kyanite-bearing assemblages. Kyanite is pseudomorphed by Cr-margarite-fuchsite-Cr-zoisite assemblages in metachert and by less chromian margarite and zoisite in amphibolite. Contemporaneously hornblende and phlogopite break down to chlorite. Subsequently the metachert pseudomorphs are mantled by muscovite and those in amphibolite by anorthite and chromite. The breakdown of margarite and zoisite to anorthite implies decompression under a low thermal gradient, compatible with almost isothermal uplift on the Alpine Fault. Late stage retrograde products include fibrous kyanite (probably forming by recrystallization of primary alluminosilicate) and scapolite (possibly orginating through interaction of Cl-bearing fluids in a geothermal system).In the Southern Alps there is a significant uplift following the Cretaceous Rangitata Orogeny, probably in the order of 11–15 km. However, the bulk of the uplift, approximately 25 km, took place in the past 10 m.y. during Kaikoura Orogenic uplift on the Alpine Fault. It is during this latest and continuing phase of uplift that the sequence of kyanite alteration reactions occurred.  相似文献   

19.
The eastern Officer Basin in South Australia contains a Neoproterozoic to Devonian succession overlain by relatively thin (<500 m) Permian, Mesozoic and Tertiary deposits. Within the basin fill, there are several major unconformities representing uncertain amounts of erosion. Three of these surfaces are associated with regional deformational events. Regional unconformities formed between 560 and 540 Ma (Petermann Ranges Orogeny), approximately 510–490 Ma (Delamerian Orogeny), 370–300 Ma (Alice Springs Orogeny), 260–150 Ma; and 95–40 Ma. AFTA® results from 13 samples of Neoproterozoic, Cambrian and Permian sedimentary rocks in five wells (Giles-1, Manya-2, -5 and -6 and Lake Maurice West-1) show clear evidence for a number of distinct thermal episodes. Results from all samples are consistent with cooling from the most recent thermal episode beginning at some time between 70 and 20 Ma (Maastrichtian–Miocene). AFTA results from Giles-1 indicate at least two pre-Cretaceous thermal episodes with cooling beginning between 350 and 250 Ma (Carboniferous–Permian) and between 210 and 110 Ma (Late Triassic–Albian). Results from Manya-2, -5 and -6 and Lake Maurice West-1 show evidence for at least one earlier higher temperature event, with cooling from elevated paleotemperatures beginning between 270 and 200 Ma (Late Permian to Late Triassic). These episodes can be correlated with other cooling/erosional events outside the study area, and the AFTA-derived paleotemperatures are consistent with kilometre-scale erosion for each of the episodes identified. Integration of the AFTA data with organic thermal maturation indicators (MPI) in the Manya and Giles-1 wells suggests that the Cambrian and Neoproterozoic successions in the northern part of the study area reached peak maturation prior to the Permian, while limited data from Lake Maurice West-1 allows peak maturation to have occurred as young as the Late Permian to Late Triassic thermal episode revealed by AFTA. The approach outlined in this study is relevant to all ancient basins as it emphasises the importance of understanding events associated with neighbouring regions. The thermal history of the Officer Basin, as with most other ancient basins, has been strongly affected by significant tectonic events throughout its history, even though younger deposits are not preserved in the basin itself. The recognition of these younger events, and the implications of these events for the depositional history, is important as it allows identification of the best regions for preservation of early generated hydrocarbons, and in some cases, suggests areas where generation of hydrocarbons could have occurred more recently than previously thought.  相似文献   

20.
The Late Precambrian through Silurian tectonic evolution of east-central South China is modeled in terms of a history of rift, drift, and collision during Late Proterozoic, Sinian, and Late Ordovician-Early Silurian times, respectively. We review the regional stratigraphie development of this area, focusing particularly on north-central Hunan province, and argue from our observations and those of others that the Jiangnan, Xuefeng, and Jiuling ranges of the Nanling realm approximately demarcate the paleogeographic transition in Sinian to Ordovician times of shelf to off-shelf environments developed along a passive-type continental margin that started rifting in the pre-Sinian Late Proterozoic. The rift sequence is recorded by the Penhsi (= Banxi) Group, which rests unconformably above an older-presumed Middle to early Late Proterozoic-low-grade metamorphic basement. The Penhsi varies markedly in thickness but is everywhere characterized by nonmarine to paralic clastic facies. The Penhsi conformably to disconformably underlies the Sinian through Lower Paleozoic sequence throughout central South China, which developed along an E-facing, passive-type continental margin. This passive-type margin was destroyed by the Guangxian Orogeny. The Guangxian Orogeny was marked initially by the northwestward progradation of deep-marine turbidites of Late Ordovician age in the most off-shelf regions, progressing to earliest Silurian age on the shelf to the northwest. Folding and concomitant thrusting in the off-shelf regions, and subsequent erosion beneath the unconformably overlying nonmarine Middle Devonian strata, truncate the stratigraphie record of the orogen within the Early Silurian. Farther northwest, in regions undisturbed by the Guangxian Orogeny, Silurian foreland-basin sedimentation included the entire Lower Silurian succession, which grades rapidly upward from basinal to inter-tonguing marine and nonmarine elastics. This reflects a change from flexurally induced subsidence first outpacing local sedimentation, followed by sedimentation outstripping and then keeping pace with subsidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号