首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of gas ejection on the structure and binding energy of newly formed stellar clusters is investigated. The star formation efficiency (SFE), necessary for forming a gravitationally bound stellar cluster, is determined.
Two sets of numerical N -body simulations are presented. As a first simplified approach we treat the residual gas as an external potential. The gas expulsion is approximated by reducing the gas mass to zero on a given time-scale, which is treated as a free parameter. In a second set of simulations we use smoothed particle hydrodynamics (SPH) to follow the dynamics of the outflowing residual gas self-consistently. We investigate cases where gas outflow is induced by an outwards propagating shock front and where the whole gas cloud is heated homogeneously, leading to ejection.
If the stars are in virial equilibrium with the gaseous environment initially, bound clusters only form in regions where the local SFE is larger than 50 per cent or where the gas expulsion time-scale is long compared with the dynamical time-scale. A small initial velocity dispersion of the stars leads to a compaction of the cluster during the expulsion phase and reduces the SFE needed to form bound clusters to less than 10 per cent.  相似文献   

2.
In the present work we examined the hypothesis that, a core mass function (CMF), such as the one deduced for cores in the Orion molecular cloud (OMC), could possibly be the primogenitor of the stellar initial mass function (IMF). Using the rate of accretion of a protostar from its natal core as a free parameter, we demonstrate its quintessential role in determining the shape of the IMF. By varying the rate of accretion, we show that a stellar mass distribution similar to the universal IMF could possibly be generated starting from either a typical CMF such as the one for the OMC, or a uniform distribution of prestellar core masses which leads us to suggest, the apparent similarity in shapes of the CMF and the IMF is perhaps, only incidental. The apodosis of the argument being, complex physical processes leading to stellar birth are crucial in determining the final stellar masses, and consequently, the shape of stellar mass distribution. This work entails partial Monte-Carlo treatment of the problem, and starting with a randomly picked sample of cores, and on the basis of classical arguments which include protostellar feedback and cooling due to emission from warm dust, a theoretical distribution of stellar masses is derived for five realisations of the problem; the magnetic field, though, has been left out of this exercise.  相似文献   

3.
The relation between molecular clouds, star clusters, and the stellar component of the galactic disk is investigated. According to Elmegreen (1985) bound stellar systems, e.g., open star clusters, can be formed from molecular cloud of mass 104 M . A close encounter with a giant molecular cloud or massive black hole disrupts such stellar systems and forms superclusters. This explains why some open star clusters are so mass-deficient. Unbound stellar systems, e.g., expanding OB associations, are formed from molecular clouds of mass 105 M . When disruptive O-type stars appear the star formation is halted and the cloud is destroyed. An example of the relict of GMC disruption in the solar vicinity is Gould's belt. The velocity dispersion-versus-age relation is also investigated and explained as a consequence of gravitational scattering of stars on GMC, or massive black holes, or as due to recurrent transient spirals.Paper presented at a Workshop on The Role of Dust in Dense Regions of Interstellar Matter, held at Georgenthal, G.D.R., in March 1986.  相似文献   

4.
We present results from high-resolution hydrodynamical simulations that explore the effects of small-scale clustering in star-forming regions. A large ensemble of small- N clusters with five stellar seeds have been modelled and the resulting properties of stars and brown dwarfs statistically derived and compared with observational data.
Close dynamical interactions between the protostars and competitive accretion driven by the cloud collapse are shown to produce a distribution of final masses that is bimodal, with most of the mass residing in the binary components. When convolved with a suitable core mass function, the final distribution of masses resembles the observed initial mass function, in both the stellar and substellar regimes. Binaries and single stars are found to constitute two kinematically distinct populations, with about half of the singles attaining velocities ≥2 km s−1, which might deprive low-mass star-forming regions of their lightest members in a few crossing times. The eccentricity distribution of binaries and multiples is found to follow a distribution similar to that of observed long-period (uncircularized) binaries.
The results obtained support a mechanism in which a significant fraction of brown dwarfs form under similar circumstances as those of normal stars but are ejected from the common envelope of unstable multiple systems before their masses exceed the hydrogen burning limit. We predict that many close binary stars should have wide brown dwarf companions. Brown dwarfs, and, in general, very low-mass stars, would be rare as pure binary companions. The binary fraction should be a decreasing function of primary mass, with low-mass or substellar primaries being scarce. Where such binaries exist, they are expected either to be close enough (semimajor axis ∼10 au) to survive strong interactions with more massive binaries or to be born in very small molecular cloud cores.  相似文献   

5.
We investigate the formation of binary stellar systems. We consider a model where a 'seed' protobinary system forms, via fragmentation, within a collapsing molecular cloud core and evolves to its final mass by accreting material from an infalling gaseous envelope. This accretion alters the mass ratio and orbit of the binary, and is largely responsible for forming the circumstellar and/or circumbinary discs.
Given this model for binary formation, we predict the properties of binary systems and how they depend on the initial conditions within the molecular cloud core. We predict that there should be a continuous trend such that closer binaries are more likely to have equal-mass components and are more likely to have circumbinary discs than wider systems. Comparing our results with observations, we find that the observed mass-ratio distributions of binaries and the frequency of circumbinary discs as a function of separation are most easily reproduced if the progenitor molecular cloud cores have radial density profiles between uniform and 1/ r (e.g., Gaussian) with near-uniform rotation. This is in good agreement with the observed properties of pre-stellar cores. Conversely, we find that the observed properties of binaries cannot be reproduced if the cloud cores are in solid-body rotation and have initial density profiles which are strongly centrally condensed. Finally, in agreement with the radial-velocity searches for extrasolar planets, we find that it is very difficult to form a brown dwarf companion to a solar-type star with a separation ≲10 au, but that the frequency of brown dwarf companions should increase with larger separations or lower mass primaries.  相似文献   

6.
It is generally accepted that the lifetime of molecular clouds does not exceed 3×107 yr due to disruption by stellar feedback. We put together some arguments giving evidence that a substantial fraction of molecular clouds (primarily in the outer regions of a disc) may avoid destruction process for at least 108 yr or even longer. A molecular cloud can live long if massive stars are rare or absent. Massive stars capable to destroy a cloud may not form for a long time if a cloud is low massive, or stellar initial mass function is top-light, or if there is a delay of the beginning of active star formation. A long duration of the inactive phase of clouds may be reconciled with the low amount of the observed starless giant molecular clouds if to propose that they were preceded by slowly contraction phase of the magnetized dark gas, non-detected in CO-lines.  相似文献   

7.
We use numerical simulations of the fragmentation of a  1000 M  molecular cloud and the formation of a stellar cluster to study how the initial conditions for star formation affect the resulting initial mass function (IMF). In particular, we are interested in the relation between the thermal Jeans mass in a cloud and the knee of the IMF, i.e. the mass separating the region with a flat IMF slope from that typified by a steeper, Salpeter-like, slope. In three isothermal simulations with   M Jeans= 1, 2  and  5 M  , the number of stars formed, at comparable dynamical times, scales roughly with the number of initial Jeans masses in the cloud. The mean stellar mass also increases (though less than linearly) with the initial Jeans mass in the cloud. It is found that the IMF in each case displays a prominent knee, located roughly at the mass scale of the initial Jeans mass. Thus clouds with higher initial Jeans masses produce IMFs which are shallow to higher masses. This implies that a universal IMF requires a physical mechanism that sets the Jeans mass to be near  1 M  . Simulations including a barotropic equation of state as suggested by Larson, with cooling at low densities followed by gentle heating at higher densities, are able to produce realistic IMFs with the knee located at  ≈1 M  , even with an initial   M Jeans= 5 M  . We therefore suggest that the observed universality of the IMF in the local Universe does not require any fine tuning of the initial conditions in star forming clouds but is instead imprinted by details of the cooling physics of the collapsing gas.  相似文献   

8.
We investigate the dependence of stellar properties on the initial kinematic structure of the gas in star-forming molecular clouds. We compare the results from two large-scale hydrodynamical simulations of star cluster formation that resolve the fragmentation process down to the opacity limit, the first of which was reported by Bate, Bonnell & Bromm. The initial conditions of the two calculations are identical, but in the new simulation the power spectrum of the velocity field imposed on the cloud initially and allowed to decay is biased in favour of large-scale motions. Whereas the calculation of Bate et al. began with a power spectrum   P ( k ) ∝ k −4  to match the Larson scaling relations for the turbulent motions observed in molecular clouds, the new calculation begins with a power spectrum   P ( k ) ∝ k −6  .
Despite this change to the initial motions in the cloud and the resulting density structure of the molecular cloud, the stellar properties resulting from the two calculations are indistinguishable. This demonstrates that the results of such hydrodynamical calculations of star cluster formation are relatively insensitive to the initial conditions. It is also consistent with the fact that the statistical properties of stars and brown dwarfs (e.g. the stellar initial mass function) are observed to be relatively invariant within our Galaxy and do not appear to depend on environment.  相似文献   

9.
Two puzzles associated with open clusters have attracted a lot of attention – their formation, with densities and velocity dispersions that are not too different from those of the star forming regions in the galaxy, given that the observed Star Formation Efficiencies (SFE) are low and, the mass segregation observed/inferred in some of them, at ages significantly less than the dynamical relaxation times in them. Gas dynamical friction has been considered before as a mechanism for contracting embedded stellar clusters, by dissipating their energy. This would locally raise the SFE which might then allow bound clusters to form. Noticing that dynamical friction is inherently capable of producing mass segregation, since here, the dissipation rate is proportional to the mass of the body experiencing the force, we explore further, some of the details and implications of such a scenario, vis-à-vis observations. Making analytical approximations, we obtain a boundary value for the density of a star forming clump of a given mass, such that, stellar clusters born in clumps which have densities higher than this, could emerge bound after gas loss. For a clump of given mass and density, we find a critical mass such that, sub-condensations with larger masses than this could suffer significant segregation within the clump.  相似文献   

10.
We review status of theoretical development for jets and molecular outflows from young stellar objects. A particular framework for explaining these phenomena is one based on the X-wind theory in an environment of magnetized collapsing molecular cloud cores. The magnetized gravitational collapse follows the standard picture of isolated low-mass star formation, from quasi-static evolution of the parent molecular cloud cores. The outflow phenomena operate throughout the early evolution of young stars as a result of star-disk interaction. We discuss emission mechanisms of jets and formation of molecular outflows in this general framework. The general theoretical framework provides room for self-consistent interpretations for recent observations. Jets and outflows are integral part of earliest evolution of young stellar objects.  相似文献   

11.
We consider how the tidal potential of a stellar cluster or a dense molecular cloud affects the fragmentation of gravitationally unstable molecular cloud cores. We find that molecular cloud cores which would collapse to form a single star in the absence of tidal shear, can be forced to fragment if they are subjected to tides. This may enhance the frequency of binaries in star-forming regions such as Ophiuchus and the frequency of binaries with separations ≲100 au in the Orion Trapezium Cluster. We also find that clouds which collapse to form binary systems in the absence of a tidal potential will form bound binary systems if exposed to weak tidal shear. However, if the tidal shear is sufficiently strong, even though the cloud still collapses to form two fragments, the fragments are pulled apart while they are forming by the tidal shear and two single stars are formed. This sets an upper limit for the separation of binaries that form near dense molecular clouds or in stellar clusters.  相似文献   

12.
We present an analysis of star-forming gas cores in a smooth particle hydrodynamics simulation of a giant molecular cloud. We identify cores using their deep potential wells. This yields a smoother distribution with clearer boundaries than density. Additionally, this gives an indication of future collapse, as bound potential cores (p-cores) represent the earliest stages of fragmentation in molecular clouds. We find that the mass function of the p-cores resembles the stellar initial mass function and the observed clump mass function, although p-core masses  (∼0.7 M)  are smaller than typical density clumps. The bound p-cores are generally subsonic, have internal substructure and are only quasi-spherical. We see no evidence of massive bound cores supported by turbulence. We trace the evolution of the p-cores forward in time, and investigate the connection between the original p-core mass and the stellar mass that formed from it. We find that there is a poor correlation, with considerable scatter suggesting accretion on to the core is dependent on more factors than just the initial core mass. During the accretion process the p-cores accrete from beyond the region first bound, highlighting the importance of the core environment to its subsequent evolution.  相似文献   

13.
The forming star grows by mass inflow from the parent cloud core, mainly through the accretion disk. However, the core matter which has not yet contracted much is seriously disturbed by the activities of the forming star. We consider mass outflow and emission of ultraviolet radiation as such activities and determine the stellar mass as a function of the physical quantities of the parent cloud core.  相似文献   

14.
This work deals with a CCD imaging study at optical and near‐infrared wavelength oftwo giant molecular clouds (plus a control field) in the southern region of the Large Magellanic Cloud, one ofwhich shows multiple signs of star formation, whereas the other does not. The observational data from VLT FORS2 (R band) and NTT SOFI (Ks band) have been analyzed to derive luminosity functions and color‐magnitude diagrams. The young stellar content of these two giant molecular clouds is compared and confirmed to be different, in the sense that the apparently “starless” cloud has so far formed only low‐luminosity, low‐mass stars (fainter than mKs ∽ 16.5 mag, not seen by 2MASS), while the other cloud has formed both faint low‐mass and luminous high‐mass stars. The surface density excess oflow‐luminosity stars (∽2 per square arcmin) in the “starless” cloud with respect to the control field is about 20% whereas the excess is about a factor of 3 in the known star‐forming cloud. The difference may be explained theoretically by the gravo‐turbulent evolution of giant molecular clouds, one being younger and less centrally concentrated than the other (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Most formation scenarios of globular clusters assume a molecular cloud as the progenitor of the stellar system. However, it is still unclear, how this cloud is transformed into a star cluster, i.e. how the destructive processes related to gas removal or low star formation effiency can be avoided. Here a scheme of supernova (SN) induced cluster formation is studied. According to this scenario an expanding SN shell accumulates the mass of the cloud. This is accompanied by fragmentation resulting in star formation in the shell. Provided the stellar shell expands sufficiently slow, its self-gravity stops the expansion and the shell recollapses, by this forming a stellar system. I present N-body simulations of collapsing shells which move in a galactic potential on circular and elliptic orbits. It is shown that typical shells (105 M, 30 pc) evolve to twin clusters over a large range of galactocentric distances. Outside this range single stellar systems are formed, whereas at small galactocentric distances the shells are tidally disrupted. In that case many small fragments formed during the collapse survive as single bound entities. About 1/3 of the twin cluster systems formed on circular orbits merge within 400 Myr. On elliptic orbits the merger rate reduces to less than 4%. Thus, there could be a significant number of twin clusters even in our Galaxy, which, however, might be undetected as twins due to a large phase shift on their common orbit. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

16.
We investigate the dynamical effects of a molecular cloud complex with a mass ∼ 107 M and a size ∼ a few 100 pc on the vertical distribution of stars and atomic hydrogen gas in a spiral galactic disc. Such massive complexes have now been observed in a number of spiral galaxies. The extended mass distribution in a complex, with an average mass density 6 times higher than the Oort limit, is shown to dominate the local gravitational field. This results in a significant redistribution or clustering of the surrounding disc components towards the mid-plane, with a resulting decrease in their vertical scaleheights.
The modified, self-consistent stellar density distribution is obtained by solving the combined Poisson equation and the force equation along the z -direction for an isothermal stellar disc on which the complex is imposed. The effect of the complex is strongest at its centre, where the stellar mid-plane density increases by a factor of 2.6 and the vertical scaleheight decreases by a factor of 3.4 compared with the undisturbed stellar disc. A surprising result is the large radial distance of ∼ 500 pc from the complex centre over which the complex influences the disc; this is due to the extended mass distribution in a complex. The complex has a comparable effect on the vertical distribution of the atomic hydrogen gas in the galactic disc. This 'pinching' or constraining effect should be detectable in the nearby spiral galaxies, as for example has been done for NGC 2403 by Sicking. Thus the gravitational field of a complex results in local corrugations of the stellar and H  i vertical scaleheights, and the galactic disc potential is highly non-uniform on scales of the intercomplex separation of ∼ 1 kpc.  相似文献   

17.
We investigate the potential importance of molecular cloud and stellar perturbations on the orbits of Pluto and more distant (hypothetical) planets up to 500 AU from the Sun. It is found that stellar and molecular cloud-core perturbations are of roughly equal importance. It also is found that the likelihood of substantial perturbations on Pluto is not insignificant, and that numerous substantial stellar and molecular cloud perturbations are likely to have influenced the orbits of any planets beyond 200 AU. These perturbations may contribute to a prevalence of moderate eccentricities and inclinations for planets beyond the orbit of Neptune, and may be a characteristic of distant planetary orbits in other solar systems. Given the recent discovery of chaotic behavior in Pluto's orbit (Sussman and Wisdom 1988), the effects of external perturbations on the long-term stability of Pluto's orbit warrant continued study.  相似文献   

18.
Understanding the star formation process is central to much of modern astrophysics. Stellar birth is intimately linked to the dynamical behavior of the parental gas cloud. Gravoturbulent fragmentation determines where and when protostellar cores form, and how they contract and grow in mass via accretion from the surrounding cloud material to build up stars. Supersonic turbulence can provide support against gravitational collapse on global scales, whereas at the same time it produces localized density enhancements that allow for collapse on small scales. The efficiency and timescale of stellar birth in Galactic molecular clouds strongly depend on the properties of the interstellar turbulent velocity field, with slow, inefficient, isolated star formation being a hallmark of turbulent support, and fast, efficient, clustered star formation occurring in its absence.  相似文献   

19.
Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determinations of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M Recently, many relevant data have been accumulated for main sequence stars with larger masses, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weights to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. In comparison with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in the studies of statistical nature, but also in the studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.  相似文献   

20.
A semi-empirical formulation is given of the rate of stellar mass loss by stellar winds. Evolutionary studies of stars in the pre-main sequence (T Tauri) stage are presented for a variety of rates of mass loss. It has been found that different mass loss rates produce only small changes in the positions of equal evolutionary time lines in HR diagrams. Thus it is concluded that the spread of points in HR diagrams of young clusters results from a spread in their times of formation. This is consistent with the initiation of star formation by violent hydrodynamic compression of a typical interstellar cloud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号