首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We present the two-dimensional imaging observations of radio bursts in the frequency range 25–50 MHz made with the Clark Lake multifrequency radioheliograph during a coronal mass ejection event (CME) observed on 1984, June 27 by the SMM Coronagraph/Polarimeter and Mauna Loa K-coronameter. The event was spatially and temporally associated with precursors in the form of meter-decameter type III bursts, soft X-ray emission and a H flare spray. The observed type IV emission in association with the CME (and the H spray) could be interpreted as gyrosynchrotron emission from a plasmoid containing a magnetic field of 2.5 G and nonthermal electrons with a number density of 105 cm–3 and energy 350 keV.On leave from Indian Institute of Astrophysics, Kodaikanal, India.  相似文献   

2.
A study is made of Lyman continuum observations of solar flares, using data obtained by the Harvard College Observatory EUV spectroheliometer on the Apollo Telescope Mount. We find that there are two main types of flare regions: an overall mean flare coincident with the H flare region, and transient Lyman continuum kernels which can be identified with the H and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet Sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density m 5/sx 10–6 g cm–2 in the quiet Sun to m 3/sx 10–4 g cm–2 in the mean flare, and to m 10–3g cm–2 in kernels. From these results we derive the amount of chromospheric material evaporated into the high temperature region, which is found to be - 1015g, in agreement with observations of X-ray emission measures. A comparison is made between kernel observations and the theoretical predictions made by model heating calculations, available in the literature; significant discrepancies are found between observation and current particle-heating models.  相似文献   

3.
R. P. Lin 《Solar physics》1982,113(1-2):217-220
We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting 3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to 100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically 102 kV compared to 10 kV for auroral substorms.  相似文献   

4.
Kane  R.P. 《Solar physics》2001,202(2):395-406
For solar cycle 23, the maximum sunspot number was predicted by several workers, and the range was very wide, 80–210. Cycle 23 started in 1996 and seems to have peaked in 2000, with a smoothed sunspot number maximum of 122. From about 20 predictions, 8 were within 122±20. There is an indication that a long-term oscillation of 80–100 years may be operative and might have peaked near cycle 20 (1970), and sunspot maxima in cycles in the near future may be smaller and smaller for the next 50 years or so and rebound thereafter in the next 50 years or so.  相似文献   

5.
The flare of 11 November, 1980, 1725 UT occurred in a magnetically complex region. It was preceded by some ten minutes by a gradual flare originating over the magnetic inversion line, close to a small sunspot. This seems to have triggered the main flare (at 70 000 km distance) which originated between a large sunspot and the inversion line. The main flare started at 172320 UT with a slight enhancement of hard X-rays (E > 30 keV) accompanied by the formation of a dark loop between two H bright ribbons. In 3–8 keV X-rays a southward expansion started at the same time, with - 500 km s –1. At the same time a surge-like expansion started. It was observable slightly later in H, with southward velocities of 200 km s–1. The dark H loop dissolved at 1724 UT at which time several impulsive phenomena started such as a complex of hard X-ray bursts localized in a small area. At the end of the impulsive phase at 172540 UT, a coronal explosion occurred directed southward with an initial expansion velocity of 1800 km s–1, decreasing in 40 s to 500 km s–1.Now at Fokker Aircraft Industries, Schiphol, The Netherlands.  相似文献   

6.
A model of -bursts is considered that treats the flares of neutron stars as a result of convectiveoscillation instability associated with the stars having strong internal magnetic fields ( 1013 to 1014 G). In the context of this model only sufficiently old (104 to 107 yr), drastically cooled-down neutron stars may be sources of -bursts. The paper shows that major characteristics of a -burster in the Supernova N 49 remnant (energy release during burst up to 1044 erg, age 104 yr, burst-to-burst interval (I to 3)×106s; rotation period P=8 s) may be explained under the assumption that the mass of the neutron star is about 0.14M · while its mean magnetic field strength is 1.5×1014 G abd 1013 G within the star and on its surface, respectively. The observational tests of the model discussed conclude the paper.  相似文献   

7.
Voitenko  Yurii M. 《Solar physics》1998,182(2):411-430
At the onset of a solar flare, initiated by magnetic reconnection high in the corona, reconnection outflow sets up warm proton beams (PBs), streaming down along just-reconnected field lines through steady underlying plasma. Incorporating this scenario, we study excitation of kinetic Alfvén waves (KAWs) by PBs, keeping the effects of a beam-induced electric field and thermal effects. Taking into account the high growth rate (105 s–1), short relaxation distance (106 cm), and energy flux partition between the waves and the beam after relaxation (PKAW/PPB1), we conclude that PB-driven KAW instability is an efficient energy conversion mechanism in flaring loops. The quasilinear spectral energy concentration at the largest wavenumbers indicates the possibility of nonlinear spectral modification. We suggest that the resulting turbulence of KAWs plays an important role in the flare plasma energization.  相似文献   

8.
A Monte-Carlo model of the MINISAT 01 satellite has been built. Thismodel, based on the GEANT software suite, is used to study the backgroundnoise induced in the cadmium zinc telluride (CZT) in the LEGRI detector.We find that the background noise count rate at the poles is 50%higher than at the equator. This increase is due to the effects of geomagneticrigidity cut-off. We also simulate the effects of passages through theSouth Atlantic Anomaly (SAA) with simulations showing an increase of 0.5 counts cm-2 sec-1 after the SAA, in good agreement withobservational data.  相似文献   

9.
L. W. Avery 《Solar physics》1976,49(1):141-149
Observations of the continuum microwave flux at 2.8 cm from quiet regions of the solar disc reveal low amplitude, quasiperiodic fluctuations at periods of 234 s and 150 s. For oscillating elements 10 arc seconds in extent, the corresponding peak to peak temperature variations are 230 K and 190 K. The energy flux in the oscillations is estimated to be 2.5x102 ergs cm2 s–1, assuming they are caused by acoustic waves. If the oscillating elements are 1 arc second in extent, the energy flux is comparable to that required for coronal heating.No evidence is found for strong oscillations at periods greater than 250 s, although other authors have claimed microwave detection of strong fluctuations at periods of 280 s and 400 s.  相似文献   

10.
Laboratory transmission IR spectra of relatively thick films (up to 500 m) of mixed H2O and SO2 ices were measured at several temperatures between 10 and 130 K in the range 5000-450 cm–1. In addition to the strong features due to crystalline SO2 the spectra reveal bands at 3668 cm–1, 3634 cm–1 (with some structure) and 3300 cm–1 which are identified with H2O in SO2 environment. Also, there is no overlap between any of the H2O bands with the 3584 cm–1 band of SO2 at any temperature in the above range. The implication of this result is that H2O, if present on Io, must be far less than 1 part in 105 SO2.  相似文献   

11.
Using archival ASCA observations of TT Arietis, X-ray energy spectra and power spectra of the intensity time series are presented for the first time. The energy spectra are well-fitted by a two continuum plasma emission model with temperatures 1 keV and 10 keV. A coherent feature at 0.643 mHz appeared in the power spectra during the observation.  相似文献   

12.
We analyze hard and soft X-ray, microwave and meter wave radio, interplanetary particle, and optical data for the complex energetic solar event of 22 July 1972. The flare responsible for the observed phenomena most likely occurred 20° beyond the NW limb of the Sun, corresponding to an occultation height of 45 000 km. A group of type III radio bursts at meter wavelengths appeared to mark the impulsive phase of the flare, but no impulsive hard X-ray or microwave burst was observed. These impulsive-phase phenomena were apparently occulted by the solar disk as was the soft X-ray source that invariably accompanies an H flare. Nevertheless essentially all of the characteristic phenomena associated with second-stage acceleration in flares - type II radio burst, gradual second stage hard X-ray burst, meter wave flare continuum (FC II), extended microwave continuum, energetic electrons and ions in the interplanetary medium - were observed. The spectrum of the escaping electrons observed near Earth was approximately the same as that of the solar population and extended to well above 1 MeV.Our analysis of the data leads to the following results: (1) All characteristics are consistent with a hard X-ray source density n i 108 cm–3 and magnetic field strength 10 G. (2) The second-stage acceleration was a physically distinct phenomenon which occurred for tens of minutes following the impulsive phase. (3) The acceleration occurred continuously throughout the event and was spatially widespread. (4) The accelerating agent was very likely the shock wave associated with the type II burst. (5) The emission mechanism for the meter-wave flare continuum source may have been plasma-wave conversion, rather than gyrosynchrotron emission.  相似文献   

13.
We have discussed, in general, the important physical parameters, likemaximum mass, radius, and the minimum rotation period of self-bound,causally consistent, and pulsationally stable neutron stars (Q-starmodels) by using a realistic stiff EOS (such that, the speed of sound,v P N, or nP=K(E-E a ) n, where K 1 and n =1/(1-2N);where P and E represent respectively, the pressure and theenergy-density, and E a is the value of E at the surface (r = a) of the configuration) within the two constraints imposed by: (i) The minimumrotation period, P rot, for the pulsar known to date corresponds to1.558 ms, and (ii) The maximum number density anywhere inside thestructure for the models described as Q-stars cannot exceed 1nucleon/fm3. By using the empirical formula given by Koranda,Stergioulas and Friedman (1997) (KSF-formula), and imposing constraint(i), we have obtained an upper bound of M max 7.76 M radius a 32.5 km, and the central energy-density around 2.17 ×1014 g cm-3 (for n =1.01). Constraint (ii) provides the minimumrotation period, P rot 0.489 ms for the maximum mass M max 2.4 M, and the central energy-density around 2.20 ×1015 g cm-3 (for n =1.01). The speed of sound at the centre ofthese models approaches 99% of the speed of light `c' (in thevacuum) and vanishes at the surface of the configuration together withpressure. If we relax the maximum Kepler frequency imposed by the fastestrotating pulsar known to date (constraint (i)), in view of certainobservational effects and theoretical evidences, and allow the present EOSto produce larger rotation rates than the 1.558 ms pulsar, the maximummass of the non-rotating model drops down to a value 7.2 M .The higher values of masses ( 7 M ) and radii (31-32 km) obtained in this study imply that these models may representthe massive compact objects like Cyg X-1, Cyg XR-1, LMC X-3, and otherswhich are known as black hole candidates (BHCs). This study also suggestthat the strongest contender for black hole at present might be recurrentnova V404 Cyg (mass estimate 8 -12 M ).  相似文献   

14.
We report AAT observations of two southern AM Herculis variables, H0139-68 and E1405-451. H0139-68 was found to be in an unusually faint state (V17), and this has permitted the first measurement of the magnetic field of the white dwarf,B p3×107 G. Linear polarimetry of E1405-451 has revealed a substantial position angle variation with phase, corresponding to an orbital inclination of 60° and a colatitude of 20° for the magnetic pole of the white dwarf.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

15.
In the standard cosmological model symmetry breaking in grand unified theories will occur at times 10–39 s after the initial singularity when the Universe has cooled to a temperature 1016 GeV. We investigate here whether it is possible for a uniform, large-scale, magnetic field present in the early universe to delay significantly the time at which symmetry breaking occurs. Given the present magnitude of the intergalactic B-field (10–11–10–9 G) it is found that no significant effects are introduced.  相似文献   

16.
We present an analysis of spacecraft observations of non-thermal X-rays and escaping electrons for 5 selected small solar flares in 1967. OSO-3 multi-channel energetic X-ray measurements during the non-thermal component of the solar flare X-ray bursts are used to derive the parent electron spectrum and emission measure. IMP-4 and Explorer-35 observations of > 22 keV and > 45 keV electrons in the interplanetary medium after the flares provide a measure of the total number and spectrum of the escaping particles. The ratio of electron energy loss due to collisions with the ambient solar flare gas to the energy loss due to bremsstrahlung is derived. The total energy loss due to collisions is then computed from the integrated bremsstrahlung energy loss during the non-thermal X-ray burst. For > 22 keV flare electrons the total energy loss due to collisions is found to be 104 times greater than the bremsstrahlung energy loss and 102 times greater than the energy loss due to escaping electrons. Therefore the escape of electrons into the interplanetary medium is a negligible energetic electron loss mechanism and cannot be a substantial factor in the observed decay of the non-thermal X-ray burst for these solar flares.We present a picture of electron acceleration, energy loss and escape consistent with previous observations of an inverse relationship between rise and decay times of the non-thermal X-ray burst and X-ray energy. In this picture the acceleration of electrons occurs throughout the 10–100 sec duration of the non-thermal X-ray burst and determines the time profile of the burst. The average energy of the accelerated electrons first rises and then falls through the burst. Collisions with the ambient gas provide the dominant energetic electron loss mechanism with a loss time of 1 sec. This picture is consistent with the ratio of the total number of energetic electrons accelerated in the flare to the maximum instantaneous number of electrons in the flare region. Typical values for the parameters derived from the X-ray and electron observations are: total energy in > 22 keV electrons total energy lost by collisions = 1028–29 erg, total number of electrons accelerated above 22 keV = 1036, total energy lost by non-thermal bremsstrahlung = 1024erg, total energy lost in escaping > 22 keV electrons = 1026erg, total number of > 22 keV electrons escaping = 1033–34.The total energy in electrons accelerated above 22 keV is comparable to the energy in the optical or quasi-thermal flare, implying a flare mechanism with particle acceleration as one of the dominant modes of energy dissipation.The overall efficiency for electron escape into the interplanetary medium is 0.1–1% for these flares, and the spectrum of escaping electrons is found to be substantially harder than the X-ray producing electrons.Currently at Tokyo Astronomical Observatory, Mitaka, Tokyo, Japan.  相似文献   

17.
Multiple moving magnetic structures in the solar corona   总被引:1,自引:0,他引:1  
We report the study of moving magnetic structures inferred from the observations of a moving type IV event with multiple sources. The ejection contains at least two moving radio emitting loops with different relative inclinations. The radio loops are located above multiple H flare loops in an active region near the limb. We investigate the relationship between the two systems of loops. The spatial, temporal and geometrical associations between the radio emission and near surface activities suggest a scenario similar to coronal mass ejection (CME) events, although no CME observations exist for the present event. From the observed characteristics, we find that the radio emission can be interpreted as Razin suppressed optically thin gyrosynchrotron emission from nonthermal particles of energy 100, keV and density 102–105 cm–3 in a magnetic field 2 G.  相似文献   

18.
Dense molecular clouds within the Taurus and NGC 2264 regions have undergone gravitational collapse and fragmentation to form groups of low mass (1M ) T-Tauri stars which are still embedded within the clouds and which are kinematically associated with them. Molecular column densities on the order of 1014 cm–2 are inferred from the emission lines of OH and NH3. Emission line widths are 2 km s–1 and the antenna beamwidths include linear extents of order 0.1 pc. The OH emission appears to be in a condition of local thermodynamic equilibrium, and it cannot arise from circumstellar sheils similar to those surrounding the masing infrared stars. The OH and NH3 emission occurs in clouds of 1 pc in extent with optical depths of 0.1 to 1.0 and excitation temperatures of the order of 10 K. The molecular clouds have radii of 0.5 pc, molecular hydrogen densities of 4000 cm–3, masses of 100 solar masses, and kinetic temperatures of 20 K. The observed data are not inconsistent with the molecular clouds being in a state of hydrostatic equilibrium.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

19.
The probable connection between cosmic rays and the electromagnetic state of the interplanetary medium was recognized by Hannes Alfvén as early as 1949 (Alfvén, 1949, 1950); he pointed out that the properties of cosmic rays necessitate a mechanism, external to Earth but within the solar system, capable of accelerating particles to extremely high energies. In advocating the view of local origin for part of the cosmic-ray spectrum, Alfvén and his colleagues developed a very general type of acceleration mechanism called magnetic pumping. The unique data set of the two Voyagers extends over an entire decade (1977–1987) and is most suitable to explore the problem of acceleration of charged particles in the heliosphere. The energy coverage of the Low Energy Charged Particle (LECP) experiment covers the range 30 keV to several hundred MeV for ions and 22 keV to several MeV for electrons. Selected observations of interplanetary acceleration events from 1 to 25 AU are presented and reviewed. These show frequent acceleration of ions to several tens of MeV in association with shocks; highest energies (220 MeV oxygen) were measured in the near-perpendicular ( Bn 87.5°) shock of January 5, 1978 at 1.9 AU, where electron acceleration was also observed. Examples of ion acceleration in association with corotating interaction regions are presented and discussed. It is shown that shock structures have profound effects on high-energy (70 MeV) cosmic rays, especially during solar minimum, when a negative latitudinal gradient was observed after early 1985 at all energies from 70 MeV down to 30 keV. By early 1987, most shock acceleration activity in the outer heliosphere (25 to 30 AU) had ceased both in the ecliptic (Voyager-2) and at higher (30°) ecliptic latitudes (Voyager-1). The totality of observations demonstrate that local acceleration to a few hundred MeV, and as high as a few GeV is continually present throughout the heliosphere. It should be noted that in 1954 when Alfvén suggested local acceleration and containment of cosmic rays within the solar system, no one treated his suggestion seriously, at any energy. The observations reviewed in this paper illustrate once more Alfvén's remarkable prescience and demonstrate how unwise it is to dismiss his ideas.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

20.
In this paper I present a new evolution model of QSOs luminosity. The model is based on edges distribution of apparent magnitude-redshift of QSOs. After the quasars were formed, the luminosities were increasing until they attained their maximum value atz=2+a, where –0.1a0.6, then the luminosities were decreasing. If the QSOs originate from superconducting cosmic string of same initial massM i 1012 M , the formation epochs are different, most of the quasars start atz cutoff5.6. The most luminous QSOs start at later epochz cutoff5.15. The present sky survey echniques may give us the possibility to see the formation of QSOs at apparent magnitudem V 22.5 by chance of 0.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号