首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to target key organic compounds in the Martian regolith using gas chromatography mass spectrometry (GC-MS), we have developed a new extraction procedure coupled with chemical derivatization. This new technique was tested on a Mars analog soil sample collected from the Atacama Desert in Chile. We found that amino and carboxylic acids can be extracted from the Atacama soil in a 1:1 mixture of isopropanol and water after ultrasonic treatment for 30 min. The extracted organic compounds were then derivatized in a single-step reaction using N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) as the silylating agent in order to transform these compounds into volatile species that can then be detected by GC-MS. We are currently developing a miniaturized reaction cell suited for spaceflight, where both organic extraction and chemical derivatization processes can take place in a single step.  相似文献   

2.
The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography‐mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot‐water extracts with high relative abundances of β‐alanine and γ‐amino‐n‐butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight‐chained amine‐terminal n‐ω‐amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites (Burton et al. 2012; Chan et al. 2012). A carbon isotope ratio of ?24‰ ± 6‰ for β‐alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of n‐ω‐amino acids may be due to a high temperature Fischer‐Tropsch‐type synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.  相似文献   

3.
The life marker chip (LMC) is being designed to test for the chemical signature of life in the soil and rocks of Mars. It will use an antibody array as part of its detection and characterisation system and aims to detect both polar and non-polar molecules at the sub-ppm to tens of ppb level. It is necessary to use a solvent to transfer organic compounds from the Martian samples to the LMC itself, but organic solvents such as dichloromethane or hexane, commonly used to dissolve non-polar molecules, are incompatible with the LMC antibodies. Hence, an aqueous-based solvent capable of dissolving the biomarkers that might exist in the soil or rocks of Mars is required. Solvent extractions of a Martian soil analogue, JSC Mars-1, spiked with a range of standards show that a 20:80 (vol:vol) mixture of methanol and water is incapable of extracting compounds insoluble in water. However, addition of 1.5 mg ml−1 of the surfactant polysorbate 80 produces extraction efficiencies of the aliphatic standards, hexadecane and phytane, equal to 25-30% of those produced by the common organic solvent mixture 93:7 (vol:vol) dichloromethane:methanol. Extraction of squalene and stigmasterol using the polysorbate solution is less efficient but still successful, at 5-10% of the efficiency of 93:7 dichloromethane:methanol. Such aliphatic compounds with occasional functional groups represent the compound classes to which most fossil organic biomarkers belong. The polysorbate solution did not extract the aromatic compounds pyrene and anthracene with great efficiency. A solvent of 20:80 methanol:water with 1.5 mg ml−1 polysorbate 80 is therefore capable of selectively extracting aliphatic biomarkers from Martian samples and transferring them to the antibody sites on the life marker chip.  相似文献   

4.
The polar condensation/sublimation of CO2, that involve about one fourth of the atmosphere mass, is the major Martian climatic cycle. Early observations in visible and thermal infrared have shown that the sublimation of the Seasonal South Polar Cap (SSPC) is not symmetric around the geographic South Pole.Here we use observations by OMEGA/Mars Express in the near-infrared to detect unambiguously the presence of CO2 at the surface, and to estimate albedo. Second, we estimate the sublimation of CO2 released in the atmosphere and show that there is a two-step process. From Ls=180° to 220°, the sublimation is nearly symmetric with a slight advantage for the cryptic region. After Ls=220° the anti-cryptic region sublimation is stronger. Those two phases are not balanced such that there is 22% ± 9 more mass the anti-cryptic region, arguing for more snow precipitation. We compare those results with the MOLA height measurements. Finally we discuss implications for the Martian atmosphere about general circulation and gas tracers, e.g. Ar.  相似文献   

5.
Abstract– Sample preparation, involving physical and chemical methods, is an unavoidable step in geochemical analysis. From a noble gas perspective, the two important effects are loss of sample gas and/or incorporation of air, which are significant sources of analytical artifacts. This article reports on the effects of sample exposure to laboratory air without mechanical influence and during sample grinding. The experiments include pure adsorption on terrestrial analog materials (gibbsite and olivine) and grinding of Martian meteorites. A consistent observation is the presence of an elementally fractionated air component in the samples studied. This is a critical form of terrestrial contamination in meteorites as it often mimics the heavy noble gas signatures of known extra‐terrestrial end‐members that are the basis of important conclusions about the origin and evolution of a meteorite. Although the effects of such contamination can be minimized by avoiding elaborate sample preparation protocols, caution should be exercised in interpreting the elemental ratios (Ar/Xe, Kr/Xe), especially in the low‐temperature step extractions. The experiments can also be transferred to the investigation of Martian meteorites with long terrestrial residence times, and to Mars, where the Mars Science Laboratory mission will be able to measure noble gas signatures in the current atmosphere and in rocks and soils collected on the surface in Gale crater.  相似文献   

6.
For planetary landing missions, the capability to acquire samples of soil and rock is of high importance whenever complex analyses (e.g. isotopic studies) on these materials are to be carried out, or when samples are to be returned to Earth. Not only surface samples are of relevance, but in recent concepts at least for Mars landing missions also subsurface samples are required. Subsurface material on Mars is believed to have been protected from the inferred oxidants at the immediate surface while also being protected from the UV influx. Therefore, there is considerable hope that in subsurface soil samples on Mars, at least organic matter delivered by meteorites may be detected, and possibly also relics of earlier simple microbial life on the planet. Likewise, samples from the inside of Martian surface rocks promise to have been protected from weathering and for the same reason they are important for organic chemistry studies. In this paper, an overview is given of the development and science of two different subsurface sampling devices for the Beagle 2 lander of ESA's Mars Express mission, being a “Mole” subsurface soil sampler and a small rock coring and sampling mechanism. Besides their sampling function, both the Mole and the Corer/Grinder will provide data on physical properties of Martian soils and rock, respectively, through the way they interact with the sampled materials. Details of the Mole and Corer/Grinder design are presented, along with results of recent tests with prototypes in the laboratory on physically analogous sample materials.  相似文献   

7.
In order to understand the complex multi-parameter system of destruction of organic material on the surface of Mars, step-by-step laboratory simulations of processes occurring on the surface of Mars are necessary. This paper describes the measured effects of two parameters, a CO2 atmosphere and low temperature, on the destruction rate of amino acids when irradiated with Mars-like ultraviolet light (UV). The results show that the presence of a 7 mbar CO2 atmosphere does not affect the destruction rate of glycine, and that cooling the sample to 210 K (average Mars temperature) lowers the destruction rate by a factor of 7. The decrease in the destruction rate of glycine by cooling the sample is thought to be predominantly caused by the slower reaction kinetics. When these results are scaled to Martian lighting conditions, cold thin films of glycine are assumed to have half-lives of 250 h under noontime peak illumination. It has been hypothesised that the absence of detectable native organic material in the Martian regolith points to the presence of oxidising agents. Some of these agents might form via the interaction of UV with compounds in the atmosphere. Water, although a trace component of Mars’ atmosphere, is suggested to be a significant source of oxidising species. However, gaseous CO2 or adsorbed H2O layers do not influence the photodestruction of amino acids significantly in the absence of reactive soil. Other mechanisms such as chemical processes in the Martian regolith need to be effective for rapid organic destruction.  相似文献   

8.
This review is intended to summarize the current observations of reduced carbon in Martian meteorites, differentiating between terrestrial contamination and carbon that is indigenous to Mars. Indeed, the identification of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade, including the Mars Science Laboratory and Mars 2020. Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance; however, not all forms of reduced carbon are conducive to biological systems. This paper discusses the significance of reduced organic carbon (including methane) in Martian geological and astrobiological systems. Specifically, it summarizes current thinking on the nature, sources, and sinks of Martian organic carbon, a key component to Martian habitability. Based on this compilation, reduced organic carbon on Mars, including detections of methane in the Martian atmosphere, is best described through a combination of abiotic organic synthesis on Mars and infall of extraterrestrial carbonaceous material. Although conclusive signs of Martian life have yet to be revealed, we have developed a strategy for life detection on Mars that can be utilized in future life‐detection studies.  相似文献   

9.
We have developed antibodies and a multi-array competitive immunoassay (MACIA) for the detection of a wide range of molecular size compounds, from single aromatic ring derivatives or polycyclic aromatic hydrocarbons (PAHs), through small peptides, proteins or whole cells (spores). Multiple microarrays containing target molecules are used simultaneously to run several competitive immunoassays. The sensitivity of the MACIA for small organic compounds like naphthalene, 4-phenilphenol or 4-tertbutilphenol is in the range of 100–500 ppb (ng ml−1), for others like the insecticide terbutryn it is at the ppt (ng l−1) level, while for small peptides, as well as for more complex molecules like the protein thioredoxin, the sensitivity is approximately 1–2 ppb, or 104–105 spores of Bacillus subtilis per milliliter. For organic compounds, a water–methanol solution was used in order to achieve a better dissolution of the organics without compromising the antibody–antigen interaction. The above-mentioned compounds were detected by MACIA in water–(10%) methanol extracts from spiked pyrite and hematite-containing rock powder samples, as well as from a spiked-sand sample subjected to organic extraction with dichloromethane–methanol (1/1).  相似文献   

10.
Abstract– The identification of adenine by surface enhanced Raman scattering (SERS) on different mineral phases of a Martian meteorite Dar al Gani (DaG) 670 has been adopted as a test to verify the capability of this technique to detect trace amounts of organic or biological substances deposited over, or contained in, extraterrestrial materials. Raman spectra of different phases of meteorite (olivine, pyroxene, and ilmenite), representative of Martian basaltic rocks, have been measured by three laser sources with wavelengths at 785, 632.8, and 514.5 nm, coupled to a confocal micro‐Raman apparatus. Adenine deposited on the Martian meteorite cannot be observed in the normal Raman spectra; when, instead, meteorite is treated with silver colloidal nanoparticles, the SERS bands of adenine are strongly enhanced, allowing an easy and simple identification of this nucleobase at subpicogram level.  相似文献   

11.
It has been reported by several groups that methane in the Martian atmosphere is both spatially and temporally variable. Gough et al. (2010) suggested that temperature dependent, reversible physical adsorption of methane onto Martian soils could explain this variability. However, it is also useful to consider if there might be chemical destruction of methane (and compensating sources) operating on seasonal time scales. The lifetime of Martian methane due to known chemical loss processes is long (on the order of hundreds of years). However, observations constrain the lifetime to be 4 years or less, and general circulation models suggest methane destruction must occur even faster (<1 year) to cause the reported variability and rapid disappearance. The Martian surface is known to be highly oxidizing based on the Viking Labeled Release experiments in which organic compounds were quickly oxidized by samples of the regolith. Here we test if simulated Martian soil is also oxidizing towards methane to determine if this is a relevant loss pathway for Martian methane. We find that although two of the analog surfaces studied, TiO2·H2O2 and JSC-Mars-1 with H2O2, were able to oxidize the complex organic compounds (sugars and amino acids) used in the Viking Labeled Release experiments, these analogs were unable to oxidize methane to carbon dioxide within a 72 h experiment. Sodium and magnesium perchlorate, salts that were recently discovered at the Phoenix landing site and are potential strong oxidants, were not observed to directly oxidize either the organic solution or methane. The upper limit reaction coefficient, α, was found to be <4×10?17 for methane loss on TiO2·H2O2 and <2×10?17 for methane loss on JSC-Mars-1 with H2O2. Unless the depth of soil on Mars that contains H2O2 is very deep (thicker than 500 m), the lifetime of methane with respect to heterogeneous oxidation by H2O2 is probably greater than 4 years. Therefore, reaction of methane with H2O2 on Martian soils does not appear to be a significant methane sink, and would not destroy methane rapidly enough to cause the reported atmospheric methane variability.  相似文献   

12.
Experimental studies related to the sublimation of ice, in bulk or as small particles, alone or mixed with dust similar to that expected on the surface of Mars, are reported. The experiments, a cloud physics particle sublimation model, and a convection model presented by Ingersoll, all indicate a strong dependence of sublimation rate on temperature, and this appears to be the dominant factor, assuming that the relative humidity of the air is fairly low. In addition the rate of loss of water vapour appears to depend primarily on exposed surface area and less on particle size and the total mass of the sample, or the mass of ice in the sample. The 2007/8 Phoenix Scout mission plans to obtain and analyse samples of sub-surface ice from about 70° N on Mars. A concern is that these samples, in the form of ice chips of size about 1 mm diameter, could be prone to sublimation when exposed for prolonged periods (many hours) to a relatively warm and dry atmosphere. Our laboratory simulations confirm that this could be a problem if particles are simply left lying on the surface, but also indicate that samples kept suitably cold and collected together in confined piles will survive long enough for the collection and delivery (to the analysis instruments) procedure to be completed.  相似文献   

13.
3.5 billion years (byr) ago, when it is thought that Mars and Earth had similar climates, biological evolution on Earth had made considerable progress, such that life was abundant. It is therefore surmised that prior to this time period the advent of chemical evolution and subsequent origin of life occurred on Earth and may have occurred on Mars. Analysis for organic compounds in the soil buried beneath the Martian surface may yield useful information regarding the occurrence of chemical evolution and possibly biological evolution. Calculations based on the stability of amino acids lead to the conclusion that remnants of these compounds, if they existed on Mars 3.5 byr ago, might have been preserved buried beneath the surface oxidizing layer. For example, if phenylalanine, an amino acid of average stability, existed on Mars 3.5 byr ago, then 1.6% would remain buried today, or 25 pg-2.5 ng of C g-1 Martian soil may exist from remnants of meteoritic and cometary bombardment, assuming that 1% of the organics survived impact.  相似文献   

14.
A Modular Assay System for Solar System Exploration (MASSE) is being developed to include sample handling, pre-treatment, separation and analysis of biological target compounds by both DNA and protein microarrays. To better design sensitive and accurate initial upstream sample handling of the MASSE instrument, experiments investigating the sensitivity and potential extraction bias of commercially available DNA extraction kits between classes of environmentally relevant prokaryotes such as gram-negative bacteria (Escherichia coli), gram-positive bacteria (Bacillus megatarium), and Archaea (Haloarcula marismortui) were performed. For extractions of both planktonic cultures and spiked Mars simulated regolith, FTA® paper demonstrated the highest sensitivity, with detection as low as 1×101 cells and 3.3×102 cells, respectively. In addition to the highest sensitivity, custom modified application of FTA® paper extraction protocol is the simplest in terms of incorporation into MASSE and displayed little bias in sensitivity with respect to prokaryotic cell type. The implementation of FTA paper for environmental microbiology investigations appears to be a viable and effective option potentially negating the need for other pre-concentration steps such as filtration and negating concerns regarding extraction efficiency of cells. In addition to investigations on useful technology for upstream sample handling in MASSE, we have also evaluated the potential for μTAS to be employed in the MASSE instrument by employing proprietary lab-on-a-chip development technology to investigate the potential for microfluidic cell lysis of different prokaryotic cells employing both chemical and biological lysis agents. Real-time bright-field microscopy and quantitative PMT detection indicated that that gram positive, gram negative and archaeal cells were effectively lyzed in a few seconds using the microfluidic chip protocol developed. This included employing a lysis buffer with components including lysozyme, Protease, Proteinase K, Tween-20 and TritonX-100. The effectiveness of antibiotics and other chemical lysis agents were also screened and demonstrated partial effectiveness on all three cell types. This work demonstrates a step wise approach to evaluating the efficacy and sensitivity of commercial macro-scale technology and state-of-the-art developmental microfluidic technology under consideration for incorporation into the remotely operated MASSE instrument currently under development at the Carnegie Institution of Washington.  相似文献   

15.
Abstract— In the framework of international planetary exploration programs, several space missions are planned to search for organics and bio‐signatures on Mars. Previous attempts have not detected any organic compounds in the Martian regolith. It is therefore critical to investigate the processes that may affect organic molecules on and below the planet's surface. Laboratory simulations can provide useful data about the reaction pathways of organic material at Mars' surface. We have studied the stability of amino acid thin films against ultraviolet (UV) irradiation and use those data to predict the survival time of these compounds on and in the Martian regolith. We show that thin films of glycine and D‐alanine are expected to have half‐lives of 22 ± 5 hr and of 3 ± 1 hr, respectively, when irradiated with Mars‐like UV flux levels. Modelling shows that the half‐lives of the amino acids are extended to the order of 107 years when embedded in regolith. These data suggest that subsurface sampling must be a key component of future missions to Mars dedicated to organic detection.  相似文献   

16.
Abstract– Even in the absence of any biosphere on Mars, organic molecules, including polycyclic aromatic hydrocarbons (PAHs), are expected on its surface due to delivery by comets and meteorites of extraterrestrial organics synthesized by astrochemistry, or perhaps in situ synthesis in ancient prebiotic chemistry. Any organic compounds exposed to the unfiltered solar ultraviolet spectrum or oxidizing surface conditions would have been readily destroyed, but discoverable caches of Martian organics may remain shielded in the subsurface or within surface rocks. We have studied the stability of three representative polycyclic aromatic hydrocarbons (PAHs) in a Mars chamber, emulating the ultraviolet spectrum of unfiltered sunlight under temperature and pressure conditions of the Martian surface. Fluorescence spectroscopy is used as a sensitive indicator of remaining PAH concentration for laboratory quantification of molecular degradation rates once exposed on the Martian surface. Fluorescence‐based instrumentation has also been proposed as an effective surveying method for prebiotic organics on the Martian surface. We find the representative PAHs, anthracene, pyrene, and perylene, to have persistence half‐lives once exposed on the Martian surface of between 25 and 60 h of noontime summer UV irradiation, as measured by fluorescence at their peak excitation wavelength. This equates to between 4 and 9.6 sols when the diurnal cycle of UV light intensity on the Martian surface is taken into account, giving a substantial window of opportunity for detection of organic fluorescence before photodegradation. This study thus supports the use of fluorescence‐based instrumentation for surveying recently exposed material (such as from cores or drill tailings) for native Martian organic molecules in rover missions.  相似文献   

17.
A theoretical reconstruction of the history of Martian volatiles indicates that Mars probably possessed a substantial reducing atmosphere at the outset of its history and that its present tenous and more oxidized atmosphere is the result of extensive chemical evolution. As a consequence, it is probable that Martian atmospheric chemical conditions, now hostile with respect to abiotic organic synthesis in the gas phase, were initially favorable. Evidence indicating the chronology and degradational history of Martian surface features, surface mineralogy, bulk volatile content, internal mass distribution, and thermal history suggests that Mars catastrophically developed a substantial reducing atmosphere as the result of rapid accretion. This atmosphere probably persisted—despite the direct and indirect effects of hydrogen escape—for a geologically short time interval during, and immediately following, Martian accretion. That was the only portion of Martian history when the atmospheric environment could have been chemically suited for organic synthesis in the gas phase. Subsequent gradual degrassing of the Martian interior throughout Martian history could not sustain a reducing atmosphere due to the low intensity of planet-wide orogenic activity and the short atmospheric mean residence time of hydrogen on Mars. During the post-accretion history of Mars, the combined effects of planetary hydrogen escape, solar-wind sweeping, and reincorporation of volatiles into the Martian surface produced and maintained the present atmosphere.  相似文献   

18.
Searching for traces of extinct and/or extant life on the surface of Mars is one of the major objectives for remote-sensing and in-situ exploration of the planet. In the present paper we study the infrared (IR) spectral modifications induced by thermal processing on differently preserved calcium carbonate fossils, in order to discriminate them from their abiotic counterparts.The main conclusion of this study is that the degree of alteration of the fossils, derived from IR spectral analysis, seems to be well correlated with the sample age, and that terrestrial fossils after a billion years are so altered that it becomes impossible to trace their biotic origin. Since it is reasonable to assume that the putative Martian fossils should be at least 3.5 billion years old, this would imply that our spectroscopic method could not be able to detect them, if their degradation rate were the same as that we have found in usual conditions for the terrestrial fossils. However, due to the different climate evolution of the two planets, there is the possibility of having two different degradation rates, much lower for Mars than for Earth, especially if the fossils are embedded in a protective layer, such as a clay deposit. In this case IR spectroscopy, coupled with thermal processing, can be a useful tool for discriminating between abiotic and biotic (fossil) carbonate samples collected on the Martian surface.  相似文献   

19.
We are entering in a new era of space exploration signed by sample return missions. Since the Apollo and Luna Program, the study of extraterrestrial samples in laboratory is gathering an increased interest of the scientific community so that nowadays exploration program of the Solar System is characterized by swelling sample return missions. Beside lunar samples, the NASA Stardust mission was the first successful space mission that on 15 January 2006 brought to Earth solid extraterrestrial samples collected from comet 81P/Wild 2 coma. Grains were collected during cometary fly-by into aerogel and once on Earth have been extracted for laboratory analyses. In the coming two decades many space missions on going or under study will harvest samples from minor bodies. Measurements required for detailed analysis that cannot be performed from a robotic spacecraft, will be carried out on Earth laboratories with the highest analytical accuracy attainable so far. An intriguing objective for the next sample return missions is to understand the nature of organic compounds. Organic compounds found in Stardust grains even if processed to large extend during aerogel capturing are here reported. Major objectives of Marco Polo mission are reported. Various ground-based observational programs within the framework of general characterizations of families and classes, cometary–asteroid transition objects and NEOs with cometary albedo are discussed and linked to sample return mission.  相似文献   

20.
Compound‐specific carbon isotope analysis (δ13C) of meteoritic organic compounds can be used to elucidate the abiotic chemical reactions involved in their synthesis. The soluble organic content of the Murchison carbonaceous chondrite has been extensively investigated over the years, with a focus on the origins of amino acids and the potential role of Strecker‐cyanohydrin synthesis in the early solar system. Previous δ13C investigations have targeted α‐amino acid and α‐hydroxy acid Strecker products and reactant HCN; however, δ13C values for meteoritic aldehydes and ketones (Strecker precursors) have not yet been reported. As such, the distribution of aldehydes and ketones in the cosmos and their role in prebiotic reactions have not been fully investigated. Here, we have applied an optimized O‐(2,3,4,5,6‐pentafluorobenzyl)hydroxylamine (PFBHA) derivatization procedure to the extraction, identification, and δ13C analysis of carbonyl compounds in the Murchison meteorite. A suite of aldehydes and ketones, dominated by acetaldehyde, propionaldehyde, and acetone, were detected in the sample. δ13C values, ranging from ?10.0‰ to +66.4‰, were more 13C‐depleted than would be expected for aldehydes and ketones derived from the interstellar medium, based on interstellar 12C/13C ratios. These relatively 13C‐depleted values suggest that chemical processes taking place in asteroid parent bodies (e.g., oxidation of the IOM) may provide a secondary source of aldehydes and ketones in the solar system. Comparisons between δ13C compositions of meteoritic aldehydes and ketones and other organic compound classes were used to evaluate potential structural relationships and associated reactions, including Strecker synthesis and alteration‐driven chemical pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号