首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
-- We propose a thermal-mechanical model of shear deformation of a viscoelastic material to describe the temperature-dependence of friction law. We consider shear deformation of one-dimensional layer composed of a Maxwell linear viscoelastic material under a constant velocity V and temperature Tw at the boundary. The strain rate due to viscous deformation depends both on temperature and shear stress. The temperature inside the layer changes owing to frictional heating and conductive cooling. Steady-state calculations show that the sign of dss/dV, where †ss is steady-state stress, changes from positive to negative as V increases, and that the threshold velocity above which the sign of dss/dV is negative increases with increasing Tw. These results are in accordance with the conjecture that the downdip limit of seismogenic zones is marked by the transition in the sign of dss/dV due to temperature rise with depth. We also find that the response of steady state to a step change in V is quite similar to the response of frictional slip with constitutive laws which employ state variables. These findings suggest that by further improving the present model a model of constitutive relations along faults or plate boundaries can be developed which contains temperature-dependence in a physically-sound manner.  相似文献   

2.
Based on the three-dimensional (3D) elasticity theories, an analytical solution for the infinite pipeline surrounded by the infinite soil medium subjected to an incident plane wave is derived. The Coulomb frictional force is applied at the pipeline–soil interface to represent the slip condition between the pipeline and the soil medium. This applied interface interaction can be considered as the viscous damping with some considerations. The normal and shear stress distributions along the cross-section of the pipeline are obtained by solving the obtained equations analytically. Furthermore, the superposition and the corresponding principles are used to obtain the von Misses strains. The critical and maximum amplitude ranges of the incident wave for which slipping and yielding, respectively, occur are estimated. The solutions are presented for ranges of soil densities and pipe thicknesses with perfect/imperfect bonds and different incident wave angles.  相似文献   

3.
Based on the three-dimensional (3D) elasticity theories, an analytical solution for the infinite pipeline surrounded by the infinite soil medium subjected to an incident plane wave is derived. The Coulomb frictional force is applied at the pipeline–soil interface to represent the slip condition between the pipeline and the soil medium. This applied interface interaction can be considered as the viscous damping with some considerations. The normal and shear stress distributions along the cross-section of the pipeline are obtained by solving the obtained equations analytically. Furthermore, the superposition and the corresponding principles are used to obtain the von Misses strains. The critical and maximum amplitude ranges of the incident wave for which slipping and yielding, respectively, occur are estimated. The solutions are presented for ranges of soil densities and pipe thicknesses with perfect/imperfect bonds and different incident wave angles.  相似文献   

4.
-- In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by Dieterich and Kilgore (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance Dc on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.  相似文献   

5.
Stiffness degradation and damping represent some of the most well-known aspects of cyclic soil behavior. While standard equivalent linear approaches reproduce these features by (separately) prescribing stiffness reduction and damping curves, in this paper a multiaxial, 3D, viscoelastic – plastic model is developed for the simultaneous simulation of both cyclic curves over a wide cyclic shear strain range.The proposed constitutive relationship is based on two parallel resisting/dissipative mechanisms, purely frictional (elastic–plastic) and viscous. The frictional mechanism is formulated as a bounding surface plasticity model with vanishing elastic domain, including pressure-sensitive failure locus and non-associative plastic flow – which are essential for effective stress analysis. At the same time, the use of the parallel viscous mechanism is shown to be especially beneficial to improve the simulation of the overall dissipative performance.In order to enable model calibration from stiffness degradation (G/Gmax) and damping curves, the constitutive equations are purposely kept as simple as possible with a low number of material parameters. Although the model performance is here explored with reference to pure shear cyclic tests, the 3D, multiaxial formulation is appropriate for general loading conditions.  相似文献   

6.
Finite Element Analysis of a Sandwich Friction Experiment Model of Rocks   总被引:1,自引:0,他引:1  
-- Sandwich friction experiments are one of the most widely used standard methods for measuring the frictional behavior between rocks. A finite element code for modeling the nonlinear friction contact between elastoplastic bodies has been developed and extended to analyze the sandwich friction experiment model with a rate- and state-dependent friction law. The influences of prescribed slip velocity and variation of movement direction and state on the friction coefficient, the relative slip velocity, the normal contact force, the frictional force, the critical frictional force and the transition of stick-slip state between the deformable rocks are thoroughly investigated, respectively. The calculated results demonstrate the usefulness of this code for simulating the friction behavior between rocks.  相似文献   

7.
本文介绍了在断层区的岩体中进行的现场大尺度摩擦实验。实验的目的是探索地壳中变形波的存在。实验结果表明,在加载时断层泥屈服时间不一致,加载一端的断层泥先屈服,然后屈服范围逐步扩大,此过程相应于塑性变形波在断层泥中的传播。实验测得试件中塑性变形波波速约为2—3 cm/min,实际相当于10—16km/year。  相似文献   

8.
骊山山前断裂第四纪活动性的研究   总被引:1,自引:0,他引:1  
骊山山前断裂是发育于骊山凸起北侧的一条近东西走向并向北倾斜的正断层。断裂形变遗迹,地貌标志、新生代沉积物的厚度变化特征表明,该断裂第四纪晚期以来,在区域构造引张应力场的控制下,一直作掀斜式的倾向拉张运动。在长期的形变过程中表现了蠕滑和粘滑两种活动方式。现在仍在以蠕动的方式运动着。  相似文献   

9.
10.
--The earthquake generation cycle consists of tectonic loading, quasi-static rupture nucleation, dynamic rupture propagation and stop, and subsequent stress redistribution and fault restrengthening. From a macroscopic point of view, the entire process of earthquake generation cycles should be consistently described by a coupled nonlinear system of a slip-response function, a fault constitutive law and a driving force. On the basis of such a general idea, we constructed a realistic 3-D simulation model for earthquake generation cycles at a transcurrent plate boundary by combining the viscoelastic slip-response function derived for a two-layered elastic-viscoelastic structure model, the slip- and time-dependent fault constitutive law that has an inherent mechanism of fault restrengthening, and the steady relative plate motion as a driving force into a single closed system. With this model we numerically simulated the earthquake generation cycles repeated in a seismogenic region on a plate interface, and examined space-time changes in shear stress, slip deficits and fault constitutive properties during one complete cycle in detail. The occurrence of unstable dynamic slip brings about decrease both in fault strength and shear stress to a constant residual level. After the arrest of dynamic slip, the breakdown strength drop j†p of fault is restored rapidly and the process of stress accumulation resumes in the seismogenic region. On the other hand, the restoration of the critical weakening displacement Dc proceeds gradually with time through the interseismic period. The restoration of Dc can be regarded as the macroscopic manifestation of the microscopic recovery process of fractal fault surface structure. Through numerical simulation with a multi-segmented fault model, we examined the effects of viscoelastic fault-to-fault interaction. The effect of transient viscoelastic stress transfer through the asthenosphere is significant as well as the direct effect of elastic stress transfer, and it possibly explains the time lag of the sequential occurrence of large events along a plate boundary.  相似文献   

11.
孔隙压岩石三轴摩擦实验装置是研究孔隙压对岩石滑动面摩擦性状影响的专用设备.该设备包括孔隙压岩石三轴实验装置和岩石摩擦装置两部分.摩擦装置由上、下压头,密封套筒和具有内部滑动块体的岩石样品组成.滑动面宽20×20mm、高40mm 的长方体,滑动面宽20mm、高30mm.最大孔隙压P_(max)=100MPa,最大位移L_(max)=10mm.应用该装置将三轴条件下样品之间的斜向摩擦滑动变为轴向滑动.滑动面上的法向压力σ_n=σ_3,即σ_n 变为与轴压无关的独立变量.  相似文献   

12.
In coseismic surface rupture zones caused by the 2008 Mw 7.9 Wenchuan earthquake, some thin-layered fault gouges with strong deformation were observed in different locations. In this paper, fault gouge samples were taken as research objects from the Bajiaomiao village in the south-west segment of the principal rupture and the Heshangping village and the Shaba village in the north-east segment of the principal rupture where larger displacements were measured. Fabric characteristics of the fault gouge samples and the morphologies and structures of micro-nanometer grains on Y-shear surfaces were then analyzed by using a stereoscope and SEM. Observation results showed that obvious Y- and R-shears and obvious scratches were well developed in coseismic gouges caused by the 2008 Wenchuan earthquake. Micro-nanometer grains in the fault gouge of the Wenhcuan earthquake were formed mainly due to breaking, grinding, and powdering of fault slipping friction surface. Heat caused by fault slipping (maybe also including heat caused by thermal decomposition) played an important role in producing micro-nanometer sized grains. Existence occurrence state of micro-nanometer sized grains on fault slip surface includes singled grains and their complexes with shapes of ball, silkworm, pancake and mass. The structures mainly include dispersed and close-packed structures besides a few of striped and layered structures. All these structures were formed at the extreme unbalance conditions caused by rapid deforming during an earthquake. There always exist some voids between structures due to loosely contact. Only alienated grains are included in the stripped structure. But there are some singled grains with no deformation in dispersed and close-packed structures besides complexes of grains with morphologies of ball, silkworm, pancake and mass. The striped and close-packed structures are the results of plastic deformation, and the dispersed and layered structures are the results of brittle deformation whereas loose contact of different structures was caused mainly by discontinuous dynamic friction (fault stick-slipping). The structures of the micro-nanometer sized grains in coseismic fault gouge caused by the Wenchuan earthquake are the geological records of seismic fault slipping (it is not pseudotachylite), which could be used as an index of paleo-seismic events.  相似文献   

13.
The Pengxian blind fault is a typical active fault in the central Longmen Shan front belt. It has important reference value for understanding the growth mode and process of the eastern Tibetan plateau. Because the fault is covered by the thick Upper Cenozoic strata in the western Sichuan Basin, its three-dimensional spatial distribution, structural style and formation mechanism remain unclear. In this paper, based on several high-resolution 3-D seismic reflection profiles, together with near-surface geological data and borehole data, we investigate the structural geometry of the Pengxian blind fault and build a 3-D model based on the results. We analyze the shape and scale of underground spatial distribution of the fault through a three-dimensional fault model. According to the theory of fault-related fold and fold-accommodation fault, this paper discusses the forming mechanism of the Pengxian buried structures. The shallow tectonic deformation in front of Longmen Shan is closely related to the detachment layer of the Middle and Lower Triassic, and this detachment layer f1 horizontally propagates into the Longquanshan anticline in the western Sichuan Basin. The Pengxian buried fault is a typical fault-bend fold and the f1 horizontally propagates into the western Sichuan Basin with a fault slip of 3.5km. The Pengxian blind fault is a high angle(50°~60°)thrust fault developed in the front wing of the kink-band zone, striking NE-SW, with a total length of~50km; But the fault is not connected with the Dayi buried fault in the south section of Longmen Shan. They are two different faults, and this defines the scale of the Pengxian blind fault. This limitation makes sense for analyzing and evaluating the magnitudes of potential earthquake. All above study provides research basis for further analysis of the potential seismic risk in this area. The Pengxian blind fault is parallel to the anticlinal axis with small amount of offset as a fold-accommodation fault. We believe that the fault formation is related to the fold deformation of the fold front limb. The study reveals the geometry, kinematics and formation mechanism of the Pengxian active fault, and provides a basis for further analysis of fault activity and hazard. Therefore, there is little possibility of strong earthquakes at the Pengxian blind fault due to its formation mechanism of the fault which is generally characterized by fold deformation and shortening deformation. In this paper, we discuss the location of Pengxian blind fault in the middle of Longmen Shan and Sichuan Basin. Because the Pengxian buried structures are in the transition area, the shortening amount in Pengxian indicates that the absorption in the basin is quite limited. It reflects the blocking effect of Sichuan Basin. In the study, we find that the relationship between folds, faults and sediments is an important part of tectonic interpretation; the theory of fault-related fold and fold-accommodation fault is well used for analysis. This would have great significance for the study of structural deformation, which can help to build a three-dimensional model of fault.  相似文献   

14.
非连续介质力学方法中非连续变形分析(DDA)方法有利于分析分块运动特征,而非连续有限元方法(DFEM)能更细致地反映板块间相互作用。本文利用DDA和DFEM方法的各自优势,基于实测的308个GPS测站位移矢量,利用DDA方法提取了大陆边界位移信息;并以此边界位移条件建立了中国大陆的二维DFEM模型;利用该模型探讨了阿尔金断裂活动对整个大陆的地壳运动和构造变形方式的影响。  相似文献   

15.
为了深入理解断层带摩擦滑动速度依赖性转换及其机制,利用双轴摩擦实验对干燥及含水条件下岩盐断层带摩擦的速度依赖性进行了实验研究,并观测了摩擦滑动过程中的声发射,分析了断层带的微观结构.实验结果表明,干燥岩盐断层带在0.1~100 μm/s的速度范围内表现为速度弱化,增大σ2会使断层带向速度强化转变;含水条件下岩盐断层带在1~100 μm/s的速度范围内表现为速度弱化,而在0.1~0.01 μm/s的速度范围内表现为速度强化,速度依赖性转换出现在0.1~1 μm/s,其中断层表现为振荡或应力释放时间较长的黏滑事件;岩盐断层带在干燥条件下表现出很强的声发射活动,每个黏滑均对应一丛声发射事件,而在含水条件下一次黏滑只对应一个声发射事件.显微观察表明,局部化的脆性破裂是速度弱化域的主要变形机制,分布式的碎裂流动是干燥岩盐断层带在速度强化域的变形机制,颗粒边界迁移以及压溶作用的塑性变形是含水条件下岩盐断层带在速度强化域的主要变形机制,而脆性破裂和塑性变形共同控制着速度依赖性转换域断层带的变形.水的存在促进岩盐发生塑性变形,进而导致断层带从速度弱化向速度强化转换.上述结果有助于理解断层带上地震活动的特征和慢地震的机制.  相似文献   

16.
Introduction The history of research work on the response of buried pipeline under the fault movement hasbeen about 30 years. Several simplified design methods have been proposed to obtain the maxi-mum stress or strain in pipe. These methods include the theoretical method and the finite elementmethod (FEM). In the theoretical method, the pipe is usually modeled as a cable (Newmark, Hall1975; Kennedy, et al, 1977) or a beam (Wang, Wang, 1995; LIU, ZHANG, 2002). These theoreti-cal me…  相似文献   

17.
It is proposed that fault textures in two dissected rhyolitic conduits in Iceland preserve evidence for shallow seismogenic faulting within rising magma during the emplacement of highly viscous lava flows. Detailed field and petrographic analysis of such textures may shed light on the origin of long-period and hybrid volcanic earthquakes at active volcanoes. There is evidence at each conduit investigated for multiple seismogenic cycles, each of which involved four distinct evolutionary phases. In phase 1, shear fracture of unrelaxed magma was triggered by shear stress accumulation during viscous flow, forming the angular fracture networks that initiated faulting cycles. Transient pressure gradients were generated as the fractures opened, which led to fluidisation and clastic deposition of fine-grained particles that were derived from the fracture walls by abrasion. Fracture networks then progressively coalesced and rotated during subsequent slip (phase 2), developing into cataclasite zones with evidence for multiple localised slip events, fluidisation and grain size reduction. Phase 2 textures closely resemble those formed on seismogenic tectonic faults characterised by friction-controlled stick-slip behaviour. Increasing cohesion of cataclasites then led to aseismic, distributed ductile deformation (phase 3) and generated deformed cataclasite zones, which are enriched in metallic oxide microlites and resemble glassy pseudotachylite. Continued annealing and deformation eventually erased all structures in the cataclasite and formed microlite-rich flow bands in obsidian (phase 4). Overall, the mixed brittle–ductile textures formed in the magma appear similar to those formed in lower crustal rocks close to the brittle–ductile transition, with the rheological response mediated by strain-rate variations and frictional heating. Fault processes in highly viscous magma are compared with those elsewhere in the crust, and this comparison is used to appraise existing models of volcano seismic activity. Based on the textures observed, it is suggested that patterns of long-period and hybrid earthquakes at silicic lava domes reflect friction-controlled stick-slip movement and eventual healing of fault zones in magma, which are an accelerated and smaller-scale analogue of tectonic faults.Editorial responsibility: J. Stix  相似文献   

18.
野外地质调查结果显示,断层带常富集碳质.断层带中碳的分布结构是影响断层带电导率特征的一种重要参数.本文在室温、室内湿度和2MPa正应力条件下,对不同石墨含量(3,5,6和7wt%)的石英-石墨混合断层泥模拟样品开展了滑动速率介于500μm·s-1~1m·s-1的摩擦实验及相应的电导率测量,以期研究断层运动对碳分布结构的影响以及断层带电性特征对碳含量及分布的响应情况.结果显示,摩擦滑动能够显著地改变样品的电性特征(电导率大小及其各向异性).在平行滑动面方向(径向),样品电导率随着滑动位移的增加快速增加,在滑动约数十厘米之后,其电导率基本达到稳定状态;在垂直滑动面方向(轴向),样品电导率基本不随摩擦滑动速率和滑动距离而变化.SEM显微结构观测显示,摩擦滑动所引起的电导率各向异性直接反映了石墨分布结构的变化.该研究结果深化了对地震断裂带浅部电性特征的认识,为野外断层带大地电磁测深资料的解释提供了约束,同时对于了解含碳断层的力学性质和弱矿物相在剪切变形中的分布特征及其演化过程等方面也具有重要意义.  相似文献   

19.
断层黏滑动态变形过程的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
实验研究断层黏滑过程的变形演化,尤其是失稳黏滑瞬间的断层位移演化特征,对于了解地震从孕育到发生的全过程具有重要意义.本文基于数字散斑相关方法(digital speckle correlation method, DSCM),用三套图像采集系统(两套低速和一套高速图像采集系统)搭建了断层黏滑过程的多观测区域、多时间尺度的变形场测量系统,并用此系统对一种花岗岩双剪滑动模型的黏滑过程进行了实验研究.对间黏滑期和黏滑期断层位移演化特征进行深入分析的结果表明:间黏滑期断层位移演化体现出空间上的非均匀性和时间上的"趋同化"特征,断层滑动趋同化也许是断层错动匀阻化的一种宏观表现形式;断层黏滑动态过程持续时间非常短(本文300 mm断层黏滑过程持续时间约在1 ms量级),黏滑失稳前会出现预滑,预滑出现到黏滑失稳发生所经历的时间与黏滑失稳过程所用时间相差一个量级;断层的一次黏滑由若干个滑动速度不同的、小的失稳滑动组成,黏滑失稳过程中断层的滑动速度呈现出波动性,整个滑动过程中断层经历了多个高速滑动和低速滑动的交错.  相似文献   

20.
1999年台湾集集地震震后450天的GPS观测资料显示了几十到几百毫米的地表位移.下地壳的震后黏性松弛和断层无震蠕变产生的震后滑动是用来解释地表震后变形的两个主要机制.本文利用接触问题的黏弹性有限元(LDDA)方法,以GPS观测数据作为约束,分别考察了黏性松弛和震后滑动机制对地表震后变形的影响.计算结果表明,黏性松弛机制产生的地表位移与观测数据吻合较好,通过试错法由震后GPS观测约束得到的下地壳黏度为1017Pa·s,而上地幔黏度对计算结果影响不大.考察震后滑动机制对地表变形的影响时,在LDDA方法中结合了速率状态摩擦定律,结果显示震后滑动机制不能很好地解释震后450天的观测数据,它产生的地表变形只在震后50天内与观测大致吻合,之后位移值基本不随时间变化.这些结果有助于增进对集集地震震后变形机制的认识.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号