首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
未来气候变化对东北玉米品种布局的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
为探求未来气候变化对我国东北玉米品种布局的影响,基于玉米生产潜力和气候资源利用率,结合区域气候模式输出的2011—2099年RCP_4.5,RCP_8.5两种气候背景气象资料和1961—2010年我国东北地区91个气象站的观测数据,分析了未来气候变化情况下,东北玉米品种布局、生产潜力、气候资源利用率的时空变化。结果表明:未来东北地区玉米可种植边界北移东扩,南部为晚熟品种,新扩展区域以早熟品种为主,不能种植区域减少。未来玉米生产潜力为南高北低,增加速率均高于历史情景,水分适宜度最低,而历史情景下温度是胁迫玉米生产的关键因子。未来东北玉米对气候资源利用率整体下降,其中RCP8.5情景利用率最低。  相似文献   

2.
This paper presents a preliminary assessment of the relative effects of rate of climate change (four Representative Concentration Pathways - RCPs), assumed future population (five Shared Socio-economic Pathways - SSPs), and pattern of climate change (19 CMIP5 climate models) on regional and global exposure to water resources stress and river flooding. Uncertainty in projected future impacts of climate change on exposure to water stress and river flooding is dominated by uncertainty in the projected spatial and seasonal pattern of change in climate. There is little clear difference in impact between RCP2.6, RCP4.5 and RCP6.0 in 2050, and between RCP4.5 and RCP6.0 in 2080. Impacts under RCP8.5 are greater than under the other RCPs in 2050 and 2080. For a given RCP, there is a difference in the absolute numbers of people exposed to increased water resources stress or increased river flood frequency between the five SSPs. With the ‘middle-of-the-road’ SSP2, climate change by 2050 would increase exposure to water resources stress for between approximately 920 and 3,400 million people under the highest RCP, and increase exposure to river flood risk for between 100 and 580 million people. Under RCP2.6, exposure to increased water scarcity would be reduced in 2050 by 22-24 %, compared to impacts under the RCP8.5, and exposure to increased flood frequency would be reduced by around 16 %. The implications of climate change for actual future losses and adaptation depend not only on the numbers of people exposed to changes in risk, but also on the qualitative characteristics of future worlds as described in the different SSPs. The difference in ‘actual’ impact between SSPs will therefore be greater than the differences in numbers of people exposed to impact.  相似文献   

3.
Based on integrated simulations of 26 global climate models provided by the Coupled Model Intercomparison Project(CMIP), this study predicts changes in temperature and precipitation across China in the 21 st century under different representative concentration pathways(RCPs), and analyzes uncertainties of the predictions using Taylor diagrams. Results show that increases of average annual temperature in China using three RCPs(RCP2.6, RCP4.5,RCP8.5) are 1.87 ℃, 2.88 ℃ and 5.51 ℃, respectively. Increases in average annual precipitation are 0.124, 0.214, and 0.323 mm/day, respectively. The increased temperature and precipitation in the 21 st century are mainly contributed by the Tibetan Plateau and Northeast China. Uncertainty analysis shows that most CMIP5 models could predict temperature well, but had a relatively large deviation in predicting precipitation in China in the 21 st century. Deviation analysis shows that more than 80% of the area of China had stronger signals than noise for temperature prediction;however, the area proportion that had meaningful signals for precipitation prediction was less than 20%. Thus, the multi-model ensemble was more reliable in predicting temperature than precipitation because of large uncertainties of precipitation.  相似文献   

4.
We evaluated the potential impact of future climate change on spring maize and single-crop rice in northeastern China(NEC) by employing climate and crop models. Based on historical data, diurnal temperature change exhibited a distinct negative relationship with maize yield, whereas minimum temperature correlated positively to rice yield. Corresponding to the evaluated climate change derived from coupled climate models included in the Coupled Model Intercomparison Project Phase 5(CMIP5) under the Representative Concentration Pathway 4.5 scenario(RCP4.5), the projected maize yield changes for three future periods [2010–39(period 1), 2040–69(period 2), and 2070–99(period 3)] relative to the mean yield in the baseline period(1976–2005) were 2.92%, 3.11% and 2.63%, respectively. By contrast, the evaluated rice yields showed slightly larger increases of 7.19%, 12.39%, and 14.83%, respectively. The uncertainties in the crop response are discussed by considering the uncertainties obtained from both the climate and the crop models. The range of impact of the uncertainty became markedly wider when integrating these two sources of uncertainty. The probabilistic assessments of the evaluated change showed maize yield to be relatively stable from period 1 to period 3, while the rice yield showed an increasing trend over time. The results presented in this paper suggest a tendency of the yields of maize and rice in NEC to increase(but with great uncertainty) against the background of global warming, which may offer some valuable guidance to government policymakers.  相似文献   

5.
气候变化背景下中国小麦需水量的敏感性研究   总被引:1,自引:0,他引:1  
利用CROPWAT作物模型模拟分析了过去50年(1961-2010年)及IPCC RCPs情景下未来2020年代(2020-2029年)中国小麦需水量的变化情况。在此基础上,以小麦需水量的变化率作为敏感性因子,对RCP4.5和RCP8.5排放情景下中国小麦需水量的敏感性进行了探讨。结果表明:中国小麦多年平均需水量约为1056.4亿m3,最高值位于黄淮海地区。小麦需水量对气候变化的敏感性存在空间差异,华北和西北地区是小麦需水量的重度和极度敏感区,东北地区以及云贵高原地带是小麦需水量的轻度敏感区,而中国中部及南方部分地区的小麦需水量对气候变化不敏感。不同RCP排放情景下小麦需水量的敏感性分布不同,RCP8.5高排放情景下的小麦需水量敏感性区域比RCP4.5中排放情景下明显扩大,轻度和中度敏感区域扩大尤为明显。  相似文献   

6.
鉴于热带气旋(TC)对我国沿海地区的影响,研究全球变暖背景下未来登陆我国TC活动的变化,对于我国沿海地区的防灾减灾具有重要意义。基于CMIP5中全球气候模式HadGEM2-ES数据,文中利用区域气候模式RegCM4开展了历史时期和3种情景(RCP2.6、RCP4.5和RCP8.5)下未来东亚区域气候的动力降尺度模拟,检验了模式对历史登陆我国TC活动及其相关大尺度环境场的模拟能力,并预估了3种情景下2030—2039年、2050—2059年和2089—2098年,登陆我国TC的路径、强度和频率的变化特征。结果表明:模式能合理地再现东亚区域历史时期(1986—2005年)大气环流场的空间结构以及登陆我国TC的特征;在3种情景下未来登陆我国TC的平均强度和数量均有不同程度的增加,尤其是台风及以上级别TC的总数明显增加,其中RCP8.5情景最突出,到21世纪末期(2089—2098年)登陆我国TC的平均强度、台风及以上级别TC总数的年平均值较历史时期将分别增加7.56%和1.05个;不同情景下未来登陆我国TC的路径均有不同程度的北移趋势,且全球升温的幅度越大,北移趋势越明显,这可能与未来中国近海显著变暖和垂直风切变减弱有关。未来我国沿海地区尤其是中高纬度很可能将面临日益严峻的TC灾害风险,亟需尽快开展防灾减灾及对策研究。  相似文献   

7.
气候变化条件下雅砻江流域未来径流变化趋势研究   总被引:1,自引:0,他引:1  
雅砻江为我国重要的水电基地,未来气候变化条件下流域径流变化将直接影响雅砻江梯级水库群运行安全和发电调度,因此研究气候变化对雅砻江流域径流的影响十分必要。首先建立了流域月尺度的SWAT模型,然后使用统计降尺度模型(SDSM)模拟未来2006—2100年流域内各站点的气象数据,最后使用流域SWAT模型对未来2006—2100年月径流进行模拟。结果表明,未来雅砻江流域径流呈上升趋势,且增幅随着辐射强迫的增加同步增大,RCP2.6、RCP4.5、RCP8.5这3种典型浓度路径下年平均径流增幅分别为8.9%、12.5%、16.7%,且2020S(2006—2035年)、2050S(2036—2065年)、2080S(2066—2100年)这3个时期年径流量呈现不同的变化趋势,其中RCP2.6浓度路径下为先逐步增加达到峰值后略有减少,RCP4.5浓度路径下为先逐步增加达到峰值后趋于稳定,RCP8.5浓度路径下为持续增加。流域径流年内分配方面,3种典型浓度路径下汛期径流占全年比例在2020S、2050S、2080S这3个时期均为先降后升趋势,整个预测期总体为降低趋势,RCP2.6、RCP4.5及RCP8.5这3种浓度路径下整个预测期的均值分别由基准期的75.9%降低为72.9%、72.0%、71.2%。径流增加会对流域洪水特性产生较大影响,为此应该修正流域设计洪水计算结果和调整防洪调度方案,以降低雅砻江流域梯级水库群因气候变化而产生的运行风险,并提高发电调度效率。  相似文献   

8.
基于来自于CMIP5中CESM模式的三种RCP情景下的气象场的降尺度模拟,应用区域空气质量模式系统RAMS-CMAQ模拟2045-2050年中国地区气溶胶浓度.三种RCP情景下气象场的降尺度模拟表明,与RCP2.6相比,在RCP4.5和RCP8.5下,华北和华南的近地表温度差减小,风速在华北和华南地区增加,在中部地区下降.RCP2.6情景下,模拟的2045年到2050年平均的PM 2.5浓度在华北平原,长三角的部分地区和四川盆地最高,约为40-50μg m-3,在中国中部和珠三角的部分地区约为30-40 μg m-3.与RCP2.6相比,在RCP4.5和RCP8.5下,PM2.5增加了4-12μgm-3,其中在RCP4.5和RCP8.5下,SO42-和NH4+的浓度增加,在RCP4.5下,NO3-浓度降低,在RCP8.5下,NO3-浓度升高,在RCP4.5和RCP8.5下,BC浓度变化很小,而OC浓度下降,其中在RCP8.5下,西南和东南部分地区的OC有所增加.不同的气溶胶物种浓度在RCP4.5和RCP2.6之间的差异以及RCP8.5和RCP2.6之间的差异具有相似的年度变化,这表明气候变化对不同物种的影响趋于一致.  相似文献   

9.
1.5和2℃升温阈值下中国温度和降水变化的预估   总被引:1,自引:0,他引:1  
基于CMIP5耦合气候模式模拟结果对1.5和2℃升温阈值时中国温度和降水变化的分析表明,1.5℃升温阈值时,中国年平均升温由南向北加强且在青藏高原地区有所放大,季节尺度上升温的空间分布与其类似,就区域平均而言,RCP2.6、RCP4.5和RCP8.5情景下中国年平均气温分别升高1.83、1.75和1.88℃,气温的季节变幅以冬季升高最为显著;除华南和西南地区外中国大部分地区年平均降水量增多,降水的季节差异明显,以夏季降水的分布模态与年平均降水量的分布最为相似,区域平均的年降水量分别增加5.03%、2.82%和3.27%,季节尺度上以冬季降水增幅最大。2℃升温阈值时,RCP4.5和RCP8.5情景下中国年平均温度的空间分布与1.5℃升温阈值基本一致,中国年平均气温分别升高2.49和2.54℃,季节尺度上气温的变化以秋、冬季增幅最大;中国范围内年平均降水量基本表现为增多趋势,其中,西北和长江中下游部分地区表现为明显的季节差异,区域平均的年降水量分别增加6.26%和5.86%。与1.5℃升温阈值相比较,2℃升温阈值时中国年平均温度在RCP4.5和RCP8.5情景下分别升高0.74和0.76℃,降水则分别增加3.44%和2.59%,空间上温度升高以东北、西北和青藏高原最为显著,降水则在东北、华北、青藏高原和华南地区增加最为明显。   相似文献   

10.
The impacts of climate change on agricultural production systems in China   总被引:7,自引:0,他引:7  
Climate change can bring positive and negative effects on Chinese agriculture, but negative impacts tend to dominate. The annual mean surface temperature has risen about 0.5–0.8 °C. The precipitation trends have not been identified during the past 100 years in China, although the frequency and intensity of extreme weather/climate events have increased, especially of drought. Water scarcity, more frequent and serious outbreaks of insects and diseases, and soil degradation caused by climate change have impacted agro-environmental conditions. However, temperature rise prolonged the crop growth seasons and cold damages have reduced in Northeast China. The projection of climate change indicates that the surface temperature will continue to increase with about 3.9 to 6.0 °C and precipitation is expected to increase by 9 to 11 % at the end of 21st century in China. Climate warming will provide more heat and as a consequence, the boundary of the triple-cropping system (TCS) will extend northwards by as much as 200 to 300 km, from the Yangtze River Valley to the Yellow River Basin, and the current double-cropping system (DCS) will move to the central part of China, into the current single cropping system (SCS) area which will decrease in SCS surface area of 23.1 % by 2050. Climate warming will also affect the optimum location for the cultivation of China’s main crop varieties. If no measures are taken to adapt to climate changes, compared with the potential yield in 1961–1990, yields of irrigated wheat, corn and rice are projected to decrease by 2.2–6.7 %, 0.4 %–11.9 % and 4.3–12.4 % respectively in the 2050s. Climate warming will enhance potential evaporation and reduce the availability of soil moisture, thus causing a greater need for agricultural irrigation, intensifying the conflict between water supply and demand, especially in arid and semi-arid areas of China. With adequate irrigation, the extent of the reduction in yield of China’s corn and wheat can be improved by 5 % to 15 %, and rice by 5 % or so than the potential yield in 1961–1990. Adaptive measures can reduce the agricultural loss under climate change. If effective measures are taken in a timely way, then climate change in the next 30–50 years will not have a significant influence on China’s food security.  相似文献   

11.
We present climate responses of Representative Concentration Pathways (RCPs) using the coupled climate model HadGEM2-AO for the Coupled Model Intercomparison Project phase 5 (CMIP5). The RCPs are selected as standard scenarios for the IPCC Fifth Assessment Report and these scenarios include time paths for emissions and concentrations of greenhouse gas and aerosols and land-use/land cover. The global average warming and precipitation increases for the last 20 years of the 21st century relative to the period 1986-2005 are +1.1°C/+2.1% for RCP2.6, +2.4°C/+4.0% for RCP4.5, +2.5°C/+3.3% for RCP6.0 and +4.1°C/+4.6% for RCP8.5, respectively. The climate response on RCP 2.6 scenario meets the UN Copenhagen Accord to limit global warming within two degrees at the end of 21st century, the mitigation effect is about 3°C between RCP2.6 and RCP8.5. The projected precipitation changes over the 21st century are expected to increase in tropical regions and at high latitudes, and decrease in subtropical regions associated with projected poleward expansions of the Hadley cell. Total soil moisture change is projected to decrease in northern hemisphere high latitudes and increase in central Africa and Asia whereas near-surface soil moisture tends to decrease in most areas according to the warming and evaporation increase. The trend and magnitude of future climate extremes are also projected to increase in proportion to radiative forcing of RCPs. For RCP 8.5, at the end of the summer season the Arctic is projected to be free of sea ice.  相似文献   

12.
气候系统模式FGOALS-s2对南半球气候的模拟和预估   总被引:1,自引:0,他引:1  
周天军  孙丹  薛峰 《大气科学》2013,37(2):499-517
针对参加“国际耦合模式比较计划”(CMIP5)的IAP/LASG气候系统模式FGOALS-s2,评估了其对南半球气候平均态的模拟能力,在此基础上,预估了未来不同“典型浓度路径”(RCPs)情景下南半球气候的变化特征.对20世纪历史气候模拟结果的分析表明,模式能够合理再现南半球大气环流气候态分布特征,包括6~8月平均(JJA)南半球双西风急流现象,只是模拟的北支急流偏弱、南支急流偏强.未来气候预估试验中,不同RCPs情景下南半球温度变化以增暖为主要特征,陆地增温大于海洋,只有南大西洋—印度洋海盆存在局部变冷.综合四种不同情景,未来随着温室气体浓度的增加,南半球中纬度高压带将显著加强,绕极低压带将加深.降水呈现出增多的特征,12月到来年2月平均(DJF)强于JJA,海洋强于陆地,只有南印度洋和南太平洋中部局部降水减少.未来不同RCPs情景下,马斯克林高压表现出先减弱后增强的特征,而澳大利亚高压则呈现出先增强后减弱的特征.南极涛动(AAO)的变化表现为:RCP2.6和RCP4.5情景下AAO都表现为先增强后减弱,RCP6.0和RCP8.5情景下都为一致的增强趋势,这主要与四种情景中模拟的未来温度变化结构不同有关.例如在RCP6.0和RCP8.5情景下,南半球高纬高层温度增暖趋势小于中纬地区,使得经向温度梯度增大,中纬度西风加强,60°S以南位势高度减小,最终令AAO增强.  相似文献   

13.
Temperature is the principal factor that determines rice growth, development and ultimately grain yield. In this study, normal growing-degree-days (NGDD) and killing growing-degree-days (KGDD) were used to capture the different effects of normal and extreme temperatures on rice yields, respectively. Based on these indexes, we assessed the contributions of temperature variations to county-level rice yields across China during the historical period (1980–2008), and estimated the potential exposure of rice to extreme temperature stress in the near future (2021–2050). The results showed that historical temperature variations had measurable impacts on rice yields with a distinct spatial pattern: for different regions, such variations had contributed much to the increased rice yields in Northeast China (Region I) (0.59 % yield year?1) and some portions of the Yunnan-Guizhou Plateau (Region II) (0.34 % yield year?1), but seriously hindered the improvements of rice yields in the Sichuan Basin (SB) (?0.29 % yield year?1) and the southern cultivation areas (Region IV) (?0.17 % yield year?1); for the entire country, half of the contributions were positive and the other half were negative, resulting in a balance pattern with an average of 0.01 % yield year?1. Under the RCP8.5 scenario, climate warming during 2021–2050 would substantially reduce cold stress but increase heat stress in the rice planting areas across China. For the future period, Region I, II and eastern China would be continually exposed to more severe cold stress than the other regions; Region III (including SB and the mid-lower reaches of Yangtze River (MLRYR)) would be the hot spot of heat stress.  相似文献   

14.
The regional air quality modeling system RAMS-CMAQ was applied to simulate the aerosol concentration for the period 2045–2050 over China based on the downscaled meteorological field of three RCP scenarios from CESM (NCAR's Community Earth System Model) in CMIP5. The downscaling simulation of the meteorological field of the three RCP scenarios showed that, compared with that under RCP2.6, the difference in near-surface temperature between North and South China is weakened and the wind speed increases over North and South China and decreases over central China under RCP4.5 and RCP8.5. Under RCP2.6, from 2045 to 2050, the modeled average PM2.5 concentration is highest, with a value of 40–50 µg m−3, over the North China Plain, part of the Yangtze River Delta, and the Sichuan Basin. Meanwhile, it is 30–40 µg m−3 over central China and part of the Pearl River Delta. Compared with RCP2.6, PM2.5 increases by 4–12 µg m−3 under both RCP4.5 and RCP8.5, of which the SO42− and NH4+ concentration increases under both RCP4.5 and RCP8.5; the NO3 concentration decreases under RCP4.5 and increases under RCP8.5; and the black carbon concentration changes very slightly, and organic carbon concentration decreases, under RCP4.5 and RCP8.5, with some increase over part of Southwest and Southeast China under RCP8.5. The difference between RCP4.5 and RCP2.6 and the difference between RCP8.5 and RCP2.6 have similar annual variation for different aerosol species, indicating that the impact of climate change on different species tends to be consistent.摘要基于来自于 CMIP5 中 CESM 模式的三种 RCP 情景下的气象场的降尺度模拟, 应用区域空气质量模式系统 RAMS-CMAQ 模拟 2045-2050 年中国地区气溶胶浓度.三种 RCP 情景下气象场的降尺度模拟表明, 与 RCP2.6 相比, 在 RCP4.5 和 RCP8.5 下, 华北和华南的近地表温度差减小, 风速在华北和华南地区增加, 在中部地区下降. RCP2.6 情景下, 模拟的 2045 年到 2050 年平均的 PM 2.5浓度在华北平原, 长三角的部分地区和四川盆地最高, 约为 40-50 µg m–3, 在中国中部和珠三角的部分地区约为 30-40 µg m–3. 与 RCP2.6 相比, 在 RCP4.5 和 RCP8.5 下, PM2.5增加了 4-12 µg m–3, 其中在 RCP4.5 和 RCP8.5 下, SO42–和 NH4+的浓度增加, 在 RCP4.5 下, NO3–浓度降低, 在 RCP8.5 下, NO3–浓度升高, 在 RCP4.5 和 RCP8.5 下, BC 浓度变化很小, 而 OC 浓度下降, 其中在 RCP8.5 下, 西南和东南部分地区的 OC 有所增加.不同的气溶胶物种浓度在 RCP4.5 和 RCP2.6 之间的差异以及 RCP8.5 和 RCP2.6 之间的差异具有相似的年度变化, 这表明气候变化对不同物种的影响趋于一致.  相似文献   

15.
A suggestion for mapping the SRES illustrative scenarios onto the new scenarios framework of representative concentration pathways (RCPs) and shared socio-economic pathways (SSPs) is presented. The mapping first compares storylines describing future socio-economic developments for SRES and SSPs. Next, it compares projected atmospheric composition, radiative forcing and climate characteristics for SRES and RCPs. Finally, it uses the new scenarios matrix architecture to match SRES scenarios to combinations of RCPs and SSPs, resulting in four suggestions of suitable combinations, mapping: (i) an A2 world onto RCP 8.5 and SSP3, (ii) a B2 (or A1B) world onto RCP 6.0 and SSP2, (iii) a B1 world onto RCP 4.5 and SSP1, and (iv) an A1FI world onto RCP 8.5 and SSP5. A few other variants are also explored. These mappings, though approximate, may assist analysts in reconciling earlier scenarios with the new scenario framework.  相似文献   

16.
It is well-known that global warming due to anthropogenic atmospheric greenhouse effects advanced the start of the vegetation growing season(SOS) across the globe during the 20 th century. Projections of further changes in the SOS for the 21 st century under certain emissions scenarios(Representative Concentration Pathways, RCPs) are useful for improving understanding of the consequences of global warming. In this study, we first evaluate a linear relationship between the SOS(defined using the normalized difference vegetation index) and the April temperature for most land areas of the Northern Hemisphere for 1982–2008. Based on this relationship and the ensemble projection of April temperature under RCPs from the latest state-of-the-art global coupled climate models, we show the possible changes in the SOS for most of the land areas of the Northern Hemisphere during the 21 st century. By around 2040–59, the SOS will have advanced by-4.7 days under RCP2.6,-8.4 days under RCP4.5, and-10.1 days under RCP8.5, relative to 1985–2004. By 2080–99, it will have advanced by-4.3 days under RCP2.6,-11.3 days under RCP4.5, and-21.6 days under RCP8.5. The geographic pattern of SOS advance is considerably dependent on that of the temperature sensitivity of the SOS. The larger the temperature sensitivity,the larger the date-shift-rate of the SOS.  相似文献   

17.
There is considerable research interest in future agro-drought risk assessment, since the increasing severity of climate change-related hazards poses a great threat to global food security. Wheat is the most important staple crop in the world, and China’s wheat production has long been impacted by drought. The frequency, intensity, and duration of droughts may increase due to climate change and stressing the need for robust assessment methods for drought risk, as well as adaptation and mitigation strategies. This paper investigates a method for assessing future wheat drought risk using climate scenarios and a crop model. We illustrate the utility of such an approach by assessing the risk of wheat drought under climate change scenarios in China using the Environmental Policy Integrated Climate model. Results show that the risk level of wheat drought is highest under scenario RCP8.5, followed by RCP4.5, RCP6.0, and RCP2.6, in descending order. If current climate change trends continue, wheat drought risk in China will be at risk levels between RCP6.0 and RCP8.5 by the end of the twenty-first century. The wheat drought risk assessment shows a “low-risk, high-risk, low-risk” spatial pattern starting in the spring wheat-planting regions in northern China and progressing to the winter wheat-planting regions in southern China. Significant differences were observed across regions, but in all RCP scenarios, the relative high-risk zones are the Huang-Huai Winter Wheat Region and the North Winter Wheat Region. In addition, wheat drought risk mitigation and adaptation strategies in China are proposed.  相似文献   

18.
Vapor pressure deficit (VPD) is a widely used measure of atmospheric water demand. It is closely related to crop evapotranspiration and consequently has major impacts on crop growth and yields. Most previous studies have focused on the impacts of temperature, precipitation, and solar radiation on crop yields, but the impact of VPD is poorly understood. Here, we investigated the spatial and temporal changes in VPD and their impacts on yields of major crops in China from 1980 to 2008. The results showed that VPD during the growing period of rice, maize, and soybean increased by more than 0.10 kPa (10 yr)–1 in northeastern and southeastern China, although it increased the least during the wheat growing period. Increases in VPD had different impacts on yields for different crops and in different regions. Crop yields generally decreased due to increased VPD, except for wheat in southeastern China. Maize yield was sensitive to VPD in more counties than other crops. Soybean was the most sensitive and rice was the least sensitive to VPD among the major crops. In the past three decades, due to the rising trend in VPD, wheat, maize, and soybean yields declined by more than 10.0% in parts of northeastern China and the North China Plain, while rice yields were little affected. For China as a whole, the trend in VPD during 1980–2008 increased rice yields by 1.32%, but reduced wheat, maize, and soybean yields by 6.02%, 3.19%, and 7.07%, respectively. Maize and soybean in the arid and semi-arid regions in northern China were more sensitive to the increase in VPD. These findings highlight that climate change can affect crop growth and yield through increasing VPD, and water-saving technologies and agronomic management need to be strongly encouraged to adapt to ongoing climate change.  相似文献   

19.
利用CMIP5耦合气候模式的模拟结果,分析了不同排放情景下1.5℃和2℃升温阈值出现的时间。多模式集合平均结果表明:RCP2.6、RCP4.5和RCP8.5排放情景下,全球地表温度将分别在2029年、2028年和2025年达到1.5℃升温阈值;RCP2.6情景下直至21世纪末期都未达到2℃升温阈值,RCP4.5和RCP8.5排放情景下达到2℃升温阈值的时间分别为2048年和2040年。伴随着排放情景的升高,完成从1.5℃升温阈值到2℃升温阈值所需要的时间缩短。区域尺度上,达到同一升温阈值的时间主要表现为陆地比海洋早,且陆地对排放情景差异的敏感性相对较差,而海洋达到升温阈值的时间则随着排放情景的升高而明显提前。中国达到相应升温阈值的时间要早于全球,且以东北和西北地区出现的时间最早。  相似文献   

20.
Wu  Yi  Miao  Chiyuan  Duan  Qingyun  Shen  Chenwei  Fan  Xuewei 《Climate Dynamics》2020,55(9-10):2615-2629

A new bias-corrected, statistically downscaled product, the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset, has been developed and released to help in understanding climate change at local to regional scales. Here, we evaluate the performance of the NEX-GDDP data in simulating daily maximum temperature (TX) and daily minimum temperature (TN) in the historical period 1961–2005 over China at national and regional scales. Projected future changes in TX and TN are assessed under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 emissions scenarios. Results show that the NEX-GDDP data can capture the basic spatial patterns of TX and TN, but these results underestimate the warming trends of TX and TN from 1961 to 2005 over China. The largest biases are found in western China due to its complex terrain conditions; these biases are 2.33 and 2.21 times larger than those found in eastern China for TX and TN, respectively. The climate projections show that the difference in uncertainties is small between the east and the west, and higher warming changes correspond to greater uncertainties. The increasing trends under the RCP8.5 are 2.22 and 2.31 times the size found under the RCP4.5 by the end of the twenty-first century for TX and TN, respectively. The Tibetan plateau has the fastest warming trend under the two scenarios.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号