首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both large amplitude depression and elevation internal solitary waves (ISWs) were observed on the continental shelf of the northwest South China Sea (SCS) during the Wenchang Internal Wave Experiment. In this study, we investigate the characteristics of depression and elevation ISWs based on comparisons between observational results and internal wave theories. It is suggested that the large amplitude depression wave is better represented by the extended Korteweg-de Vries (EKdV) theory than by the KdV model, whereas the large amplitude elevation wave is in better agreement with the KdV equation than with the EKdV theory. Wave-induced forces on a supposed small-diameter cylindrical pile by depression and elevation waves are also estimated using the internal wave theory and Morison formula. The wave-induced force by elevation ISWs is rarely reported in the literature. It is found that the force induced by the elevation wave differs significantly from that by the depression wave, and the elevation wave generally produces greater force on the pile in the lower water column than the depression wave. These results show that ISWs in the study area can present a serious threat to ocean engineering structures, and should not be ignored in the design of oil platforms and ocean operations.  相似文献   

2.
Many observations show that in the Yellow Sea internal tidal waves (ITWs) possess the remarkable characteristics of internal Kelvin wave, and in the South Yellow Sea (SYS) the nonlinear evolution of internal tidal waves is one of the mechanisms producing internal solitary waves (ISWs), which is different from the generation mechanism in the case where the semidiurnal tidal current flows over topographic drops. In this paper, the model of internal Kelvin wave with continuous stratification is given, and an elementary numerical study of nonlinear evolution of ITWs is made for the SYS, using the generalized KdV model (GKdV model for short) for a continuous stratified ocean, in which the different effects of background barotropic ebb and flood currents are considered. Moreover, the parameterization of vertical turbulent mixing caused by ITWs and ISWs in the SYS is studied, using a parameterization scheme which was applied to numerical experiments on the breaking of ISWs by Vlasenko and Hutter in 2002. It is found that the vertical turbulent mixing caused by internal waves is very strong within the upper layer with depth less than about 30m, and the vertical turbulent mixing caused by ISWs is stronger than that by ITWs.  相似文献   

3.
Large amplitude internal solitary waves (ISWs) often exhibit highly nonlinear effects and may contribute significantly to mixing and energy transporting in the ocean. We observed highly nonlinear ISWs over the continental shelf of the northwestern South China Sea (19°35′N, 112°E) in May 2005 during the Wenchang Internal Wave Experiment using in-situ time series data from an array of temperature and salinity sensors, and an acoustic Doppler current profiler (ADCP). We summarized the characteristics of the ISWs and compared them with those of existing internal wave theories. Particular attention has been paid to characterizing solitons in terms of the relationship between shape and amplitude-width. Comparison between theoretical prediction and observation results shows that the high nonlinearity of these waves is better represented by the second-order extended Korteweg-de Vries (KdV) theory than the first-order KdV model. These results indicate that the northwestern South China Sea (SCS) is rich in highly nonlinear ISWs that are an indispensable part of the energy budget of the internal waves in the northern South China Sea.  相似文献   

4.
The propagation and fission process of internal solitary waves (ISWs) with amplitudes of about 170 m are simulated in the northeast of the South China Sea (NSCS) by using the generalized Korteweg-de Vries (KdV) equation under continuous stratification. More attention is paid to the effects of the ebb and flood background currents on the fission process of ISWs. This kind of background current is provided by the composed results simulated in terms of monthly mean baroclinic circulation and barotropic tidal current. It is found that the obtained relation of the number of fission solitons to the water depth and stratification is roughly in accordance with the fission law derived by Djordjevic and Redekopp in 1978; however, there exists obvious difference between the effects of the ebb and flood background currents on the wave-lengths of fission solitons (defined as the distance between two neighboring peaks of ISWs). The difference in nonlinearity coefficient α between the ebb and flood background currents is a main cause for the different wave-lengths of fission solitons.  相似文献   

5.
Laboratory experiments were conducted to investigate the evolution of interfacial internal solitary waves(ISWs) incident on a triangular barrier. ISWs with different amplitudes were generated by gravitational collapse. The ISW energy dissipation and turbulence processes were calculated as waves passed over the triangular barrier. Experimental results showed that ISWs were reflecting back off the triangular barrier, and shoaling ISWs led to wave breaking and mixing when waves propagated over the obstacle. Wave instability created the dissipation of energy as it was transmitted from waves to turbulence. The rate of ISW energy dissipation, the maximum turbulent dissipation, and the buoyancy diffusivity linearly increased with the increase in the incident wave energy.  相似文献   

6.
Sun  Lina  Zhang  Jie  Meng  Junmin 《中国海洋湖沼学报》2021,39(6):2195-2208
Journal of Oceanology and Limnology - The Andaman Sea has been a classic study region for internal solitary waves (ISWs) for several decades, and extraordinarily large ISWs are characteristic of...  相似文献   

7.
A nonlinear evolution equation of 2-D short internal waves under condition of weak stratification—cubic Schrödinger equation—is derived by using the reductive perturbation method. Because αβ<0 in the Schrödinger equation, in the linear system the sideband perturbation for the harmonic wave modulation is neutrally stable. At the same time, there is also a sort of wave packet.—KdV envelope soliton. In the nonlinear system the dark soliton is obtained under condition of weak stratification. It is shown that the vertical perturbation of the Brunt-Väìsälä frequency plays a role in forming the KdV envelope soliton and dark soliton.  相似文献   

8.
Rossby waves with linear topography in barotropic fluids   总被引:1,自引:0,他引:1  
Rossby waves are the most important waves in the atmosphere and ocean, and are parts of a large-scale system in fluid. The theory and observation show that, they satisfy quasi-geostrophic and quasi-static equilibrium approximations. In this paper, solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied. In order to simplify the problem, the topography is taken as a linear function of latitude variable y, then employing a weakly nonlinear method and a perturbation method, a KdV (Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived. The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow, and extend the classical geophysical theory of fluid dynamics.  相似文献   

9.
Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using the dispersion relation of water surface waves, we derive the slope wavenumber spectrum models of capillary and capillary-gravity waves. Simultaneously, by using the slope wavenumber models, the dependence of the slope wavenumber spectrum on wind speed is analyzed using data obtained in an experiment which was performed in a laboratory wind wave tank. Generally speaking, the slope wavenumber spectra are influenced profoundly by the wind speed above water surface. The slope wavenumber spectrum increases with wind speed obviously and do not cross each other for different wind speeds. But, for the same wind speed, the slope wavenumber spectra are essentially identical, even though the capillary and capillary-gravity waves are excited at different times and locations. Furthermore, the slope wavenumber spectra obtained from the models agree quite well with experimental results as regards both the values and the shape of the curve.  相似文献   

10.
1 INTRODUCTION As an important wave phenomenon, taking place inside the ocean, the internal wave has drawn attentions of many scientists. More and more in- formation about it have been provided by both CTD and ADCP data and the images captured by the synt…  相似文献   

11.
Liang  Jianjun  Du  Tao  Huang  Weigen  He  Mingxia 《中国海洋湖沼学报》2017,35(4):967-977
The state-of-the-art OpenFOAM technology is used to develop a numerical model that can be devoted to numerically investigating wake-collapse internal waves generated by a submerged moving body.The model incorporates body geometry,propeller forcing,and stratification magnitude of seawater.The generation mechanism and wave properties are discussed based on model results.It was found that the generation of the wave and its properties depend greatly on the body speed.Only when that speed exceeds some critical value,between 1.5 and 4.5 m/s,can the moving body generate wake-collapse internal waves,and with increases of this speed,the time of generation advances and wave amplitude increases.The generated wake-collapse internal waves are confirmed to have characteristics of the second baroclinic mode.As the body speed increases,wave amplitude and length increase and its waveform tends to take on a regular sinusoidal shape.For three linearly temperature-stratified profiles examined,the weaker the stratification,the stronger the wake-collapse internal wave.  相似文献   

12.
重力固体潮调和分析结果无法证明引力以光速传播。首先,根据固体潮理论,进行调和分析时固体潮理论值和观测值的时间序列是同步的,不存在时差;其次,天体起潮力仅与万有引力有关,与光速无关;第三,调和分析得到的潮汐因子仅反映地球介质的物性变化,相位滞后则反映地球介质的粘滞弹性,两者与天体引力及光到达观测点的时差无关;第四,汤克云和骆鸣津在论证过程中作了过多的人为改正,有些改正使用不当;第五,万有引力与引力波是两个不同的概念,万有引力是相互作用的两个物体之间的一种空间性质,它与两个彼此相互作用的物体同在,无需时间传播,而引力波是一种时空涟漪,需要在特定条件下产生,通过波的形式从辐射源以光速向外传播,并以引力辐射的形式传输能量,两者不可混淆。汤克云与骆鸣津认为,重力固体潮理论值隐含两个假设:1)引力以光速传播;2)引力及光的时差等于重力固体潮调和分析结果的时差。这两个假设并不成立,汤克云与骆鸣津关于引力是以光速传播的论证是一个误会,引力不需要时间传播。  相似文献   

13.
Over the past few decades, an increasing number of marine activities have been conducted in the East China Sea, including the construction of various marine structures and the passage of large ships. Marine safety issues are paramount and are becoming more important with respect to the likely increase in size of ocean waves in relation to global climate change and associated typhoons. In addition, swells also can be very dangerous because they induce the resonance of floating structures, including ships. This study focuses on an investigation of swells in the East China Sea and uses hindcast data for waves over the past 5 years in a numerical model, WAVEWATCH III (WW3), together with historical climate data. The numerical calculation domain covers the entire North West Pacific. Next, swells are separated and analyzed using simulated wave fields, and both the characteristics and generation mechanisms of swells are investigated.  相似文献   

14.
Internal solitary waves(ISWs) are frequently observed in the area between Dongsha Island(DI) and Taiwan Island. However, there have been few in-situ observations southwest of DI. To improve our knowledge of ISWs in this area, we observed the ISWs over the continental shelf(115.4°E, 20.3°N) from Aug. 29 to Oct. 10, 2011 with temperature sensors and an acoustic Doppler current profiler(ADCP). The observations showed that the a fully developed ISW produced a current whose maximum westward velocity was 0.92 m/s and maximum northward velocity was 0.47 m/s. During the 41-day observation period the ISWs appeared for three periods with about 7-day gaps between each period. During each day, two types of ISWs were observed. The first type of wave arrived regularly diurnally at the same time each day, with a similar pattern to that of the type- a wave identified by Ramp et al.(2004). The second type arrived about 12 h after the first type and was delayed about 1 hour each day; this wave type was related to the type- b wave. Thus, our observations confirmed that both type- a and type- b waves can reach the area southwest of the DI. Moreover, the waves observed by the mooring propagated toward the directions of 270°–315° clockwise from true north, indicating obvious refraction from uneven topography around DI.  相似文献   

15.
A continuously stratified nonlinear model is set up to study the impact of topographical character on the generation of internal solitary waves over a sill by tidal flow. One of the reasons why almost all of the generated internal solitary waves propagate westward in the northern South China Sea is explained. The model simulations describe the generation and propagation of internal waves well. When the strength of imposed barotropic tides and the water stratification stay unchanged, the steepness of the sill slope can control both (a) whether or not the waves induced over a sill by tidal flow are linear internal waves or nonlinear internal solitary waves, and (b) the amplitude of the internal solitary waves generated. If the steepness of the sill is asymmetric, the nonlinear internal solitary waves may be induced on the steeper side of the sill. These conclusions are supported by a numerical experiment with a monthly-mean stratification and an actual seafloor topography from the Luzon Strait.  相似文献   

16.
Internal waves play a crucial role in ocean mixing, and density perturbation and energy flux are essential quantities to investigate the generation and propagation of internal waves. This paper presents a methodology for calculating density perturbation and energy flux of internal waves only using a velocity field that is based on linearized equations for internal waves. The method was tested by numerical simulations of internal waves generated by tidal flowing over a Gaussian topography in a stratified fluid. The density perturbations and energy fluxes determined using our method that only used velocity data agreed with density perturbations and energy fluxes determined by the equation of state based on temperature data. The mean relative error (MRE) and root mean square error (RMSE) between the two methods were lower than 5% and 10% respectively. In addition, an experiment was performed to exam our method using the velocity field measured by Particle Image Velocimetry (PIV), and the setup of the experiment is consistent with the numerical model. The results of the experiments calculated by the methods using PIV data were also generally equal to those of the numerical model.  相似文献   

17.
A two-dimensional, depth-integrated model proposed by Lynett and Liu (2002) was checked carefully, and several misprints in the model were corrected after detailed examination on both the theory and the numerical program. Several comparisons were made on wave profile, system energy and maximum wave amplitude. It is noted that the modified model can simulate the propagation of the internal solitary waves over variable bathymetry more reasonably to a certain degree, and the wave profiles obtained based on the modified model can better fit the experiment data reported by Helfrich (1992) than those from original model.  相似文献   

18.
从正压涡度方程出发,在弱非线性和弱基流切变条件下,导得了描述非线性大气长波活动的推广的Kdv方程,并得到了方程的孤立波解及其色散关系。取近似于实际大气运动的物理参数作数值计算,得到了振荡型Rosby孤立波的水平结构和移动特征,其结果较之寻常的Kdv孤立波更接近于实际大气中的阻塞流型。  相似文献   

19.
Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flows from large scales to small are non-turbulent, even if they supply energy to turbulence. Turbulent flows are rotational and cascade from small scales to large, with feedback. Viscous forces limit the smallest turbulent eddy size to the Kolmogorov scale. In stratified fluids, buoyancy forces limit large vertical overturns to the Ozmidov scale and convert the largest turbulent eddies into a unique class of saturated, non-propagating, internal waves, termed fossil-vorticity-turbulence. These waves have the same energy but different properties and spectral forms than the original turbulence patch. The Gibson (1980, 1986) theory of fossil turbulence applies universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as its growth is constrained and fossilized by buoyancy forces. Quantitative hydrodynamic-phase-diagrams (HPDs) from the theory are used to classify microstructure patches according to their hydrodynamic states. When analyzed in HPD space, previously published oceanic datasets showed their dominant microstructure patches are fossilized at large scales in all layers. Laboratory and field measurements suggested phytoplankton species with different swimming abilities adjust their growth strategies by pattern recognition of tur-bulence-fossil-turbulence dissipation and persistence times that predict survival-relevant surface layer sea changes. New data collected near a Honolulu waste-water outfall showed the small-to-large evolution of oceanic turbulence microstructure from active to fossil states, and revealed the ability of fossil-density-turbulence patches to absorb, and vertically radiate, internal wave energy, information, and enhanced turbulent-mixing-rates toward the sea surface so that the submerged waste-field could be detected from a space satellite (Bondur and Filatov, 2003).  相似文献   

20.
Surface waves comprise an important aspect of the interaction between the atmosphere and the ocean, so a dynamically consistent framework for modelling atmosphere-ocean interaction must take account of surface waves, either implicitly or explicitly. In order to calculate the effect of wind forcing on waves and currents, and vice versa, it is necessary to employ a consistent formula- tion of the energy and momentum balance within the airflow, wave field, and water column. It is very advantageous to apply sur- face-following coordinate systems, whereby the steep gradients in mean flow properties near the air-water interface in the cross-interface direction may be resolved over distances which are much smaller than the height of the waves themselves. We may account for the waves explicitly by employing a numerical spectral wave model, and applying a suitable theory of wave–mean flow interaction. If the mean flow is small compared with the wave phase speed, perturbation expansions of the hydrodynamic equations in a Lagrangian or generalized Lagrangian mean framework are useful: for stronger flows, such as for wind blowing over waves, the presence of critical levels where the mean flow velocity is equal to the wave phase speed necessitates the application of more general types of surface-following coordinate system. The interaction of the flow of air and water and associated differences in temperature and the concentration of various substances (such as gas species) gives rise to a complex boundary-layer structure at a wide range of vertical scales, from the sub-millimetre scales of gaseous diffusion, to several tens of metres for the turbulent Ekman layer. The bal- ance of momentum, heat, and mass is also affected significantly by breaking waves, which act to increase the effective area of the surface for mass transfer, and increase turbulent diffusive fluxes via the conversion of wave energy to turbulent kinetic energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号