首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of lime to improve the properties of soft clays is not new. Recently the deep lime mixing technique has been extended to coastal regions for improving the behavior of weak marine clays. But lime treatment technique should be approached carefully for clay containing a high percentage of sodium sulphate. The presence of sulphate in lime-treated clays may result in high swelling due to the formation of the expansive mineral, ettringite. A limited study of lime-treated marine clays has shown a need to further explore the formation of ettringite and its stability with time. In this article, a laboratory investigation was carried out to examine the influence of sodium and calcium sulphates on the behavior of lime column treated marine clay. Scanning electron microscopy (SEM) was used to identify the formation of various reaction products, including ettringite. Test results indicate that the formation of ettringite in the lime-sodium sulphate-clay system adversely affects the engineering behavior of the marine clay, whereas the addition of calcium sulphate significantly improves the engineering characteristics of the soil.  相似文献   

2.
ABSTRACT

The use of lime to improve the properties of soft clays is not new. Recently the deep lime mixing technique has been extended to coastal regions for improving the behavior of weak marine clays. But lime treatment technique should be approached carefully for clay containing a high percentage of sodium sulphate. The presence of sulphate in lime-treated clays may result in high swelling due to the formation of the expansive mineral, ettringite. A limited study of lime-treated marine clays has shown a need to further explore the formation of ettringite and its stability with time. In this article, a laboratory investigation was carried out to examine the influence of sodium and calcium sulphates on the behavior of lime column treated marine clay. Scanning electron microscopy (SEM) was used to identify the formation of various reaction products, including ettringite. Test results indicate that the formation of ettringite in the lime-sodium sulphate-clay system adversely affects the engineering behavior of the marine clay, whereas the addition of calcium sulphate significantly improves the engineering characteristics of the soil.  相似文献   

3.
Soft marine clay deposits pose several foundation problems and such weak clay deposits have been found both along seacoasts and in offshore areas spread over many parts of the world. We suggest using some chemical injection techniques to improve the engineering behaviour of soft underwater marine clays. A test programme was carried out by injecting lime into a soft marine clay in a test tank. The penetration of lime into the soil was established by taking a number of pH measurements and calcium oxide estimation from samples taken at various radial distances. The improvement in the plasticity characteristics of the soil has been verified by indices tests. Test results indicated the improvement in the strength and reduction in the compressibility of the soil with time. The beneficial changes that occurred in the soil have been attributed to the formation of cementation compounds and these compounds have been identified by using X-ray Diffraction Technique (XRD). The test results show good promise for the use of lime grouting in the treatment of weak marine clayey deposits.  相似文献   

4.
Compressibility behaviour of lime-treated marine clay   总被引:2,自引:0,他引:2  
The necessity to tap natural marine resources from the ocean beds represents a considerable challenge for the construction of offshore structures on weak marine deposits. The use of lime to improve the behaviour of soft clays is not new. The present investigation examines lime-induced changes in the compressibility of marine clay. The test results indicate a reduction of 1/2 to 1/3 in the compressibility of the soil system within 30 to 45 days of treatment. The formation of various cementation compounds due to soil–lime reactions improves the soil characteristics with time. The results encourage the application of lime column and lime injection techniques to improve the engineering behaviour of soft marine clayey deposits. However, one has to be cautious in applying the lime technique to marine clays that contain sodium sulfate.  相似文献   

5.
Weak marine clay deposits exist all along the seacost of many parts of the world. Due to the poor engineering characteristics of these deposits, they pose several foundation problems to various coastal structures. Because of the high salt content in these deposits, the electro-osmotic technique has been effectively adopted to stabilize these deposits with some inorganic additives. In this investigation, the physico-chemical changes that occurred in a marine clay with various inorganic additives are presented and discussed. The improvement in the strength and plasticity characteristics of the soil have also been studied and reported. The newly formed reaction products arising out of the diffusion of lime are identified using X-ray diffraction technique (XRD). The present study indicates great promise regarding the use of electro-osmotic technique with inorganic additives as a quick remedial measure for the in-situ stabilization of coastal marine clay deposits.  相似文献   

6.
The use of lime to improve the engineering properties of weak marine clays is a common method from the past. Recent studies indicate that the various foundation problems occurred with passage of time for offshore structures due to hostile wave conditions and adverse climatic conditions. Hence, there is an urgent need to improve the engineering properties of these soft deposits using well established ground improvement techniques. In the present investigation, an attempt has been made on two marine clays to investigate the microchanges that occurred at particulate level due to the addition of lime and sodium hydroxide chemicals. The influence of sodium hydroxide additive on the fabric of lime treated marine clays has also been studied using scanning electron microscopy (SEM) technique. The formation of various new reaction products due to soil-lime reactions and their stability in marine environment were also studied and reported using x-ray diffraction (XRD) technique. The test results indicate that lime stabilization is effective for improving the properties of marine clays and the presence of sea water increases the efficiency of lime stabilization.  相似文献   

7.
Lime migration studies in marine clays   总被引:3,自引:0,他引:3  
Weak marine clay deposits are present in several regions of the world and they are imposing severe problems for structures founded in these deposits. The use of lime to improve the properties of these soft deposits is not new. In the present investigation, a test programme was carried out to study the migration of lime into the marine clay from the installed lime columns and lime slurry injected points. The formation of various cementation compounds due to soil-lime reactions were identified by X-ray diffraction studies and the attributed changes occurring in the engineering properties of the soil systems were studied. The test results indicate that a sufficient amount of lime is diffused into the soil systems with time and the presence of excessive sodium ions in sea water does not retard the effective penetration of lime into the soil. It is suggested that both the lime-column and lime-injection techniques can be conveniently used to improve the behaviour of soft marine clayey deposits. For weak marine clays under large depths of water, the lime-injection technique is better suited.  相似文献   

8.
Permeability characteristics of lime treated marine clay   总被引:1,自引:0,他引:1  
An attempt has been made to investigate the lime induced permeability changes in the permeability and engineering behavior of different lime column treated soil systems. Lime columns treated marine clay shows an increase in permeability up to a maximum value of 15–18 times that of untreated soil with time. The shear strength of the treated soil systems show an increment up to 8–10 that of untreated soil within a period of 30–45 days curing. In the case of lime injection systems, the permeability has been increased up to 10–15 times that of untreated soil, whereas the strength of the soil has been higher by 8–10 times that of untreated soil. Further, consolidation tests show a reduction in the compressibility up to 1/2–1/3 of original values. The test results revealed that both lime column and injection techniques could be used to improve the behaviour of underwater marine clay deposits.  相似文献   

9.
In this study, research was conducted to examine the performance of the lime pile application, a deep chemical stabilization method to improve the engineering characteristics of marine soil deposits. By using a laboratory-scale model, the marine soil sample was compacted into soil blocks in circular steel test tanks, with the installation of lime piles in them. An experimental program examined the effect of lime piles on physical and engineering properties of the soil in terms of curing periods and lime pile radial distances. Test results showed that clay fines, linear shrinkage, compressibility, and swelling pressure decreased, while permeability, preconsolidation pressure, and stiffness increased significantly with an increase in curing periods and within a close distance to the lime piles. Also, the electrical resistivity of the treated soils was examined to monitor the changes in their electrical properties. Finally, the correlation between the measured electrical resistivity and swell pressure values of the tested soils at different curing periods suggested that the electrical resistivity values can be used as a monitoring technique for deep chemical treatments of the subsurface soil.  相似文献   

10.
Rapid industrial growth and increasing population has resulted in the discharge of wastes into the ocean, wastes which ultimately reach the seabed and contaminate the marine sediments. The soil-contaminants interaction, and their associated physico chemical properties with sediments control the behavior of marine clays. Marine clay deposits of low strength and high compressibility are located in many coastal and offshore areas. There are several foundation problems encountered in these weak marine clays. In this study, experimental work was carried out in the laboratory to stabilize soft marine clays using the lime column technique. Also the lime-induced effects on the physical and engineering behavior of marine clays in sulfate-contaminated marine environment was investigated. Consolidation tests indicate that compressibility of the lime-treated samples was reduced to 1/2-1/3 of the virgin soil after 45 days treatment. The test results also suggest that the lime column technique can be conveniently used to improve the behavior of contaminated marine clay deposits.  相似文献   

11.
Abstract

Rapid industrial growth and increasing population has resulted in the discharge of wastes into the ocean, wastes which ultimately reach the seabed and contaminate the marine sediments. The soil-contaminants interaction, and their associated physico chemical properties with sediments control the behavior of marine clays. Marine clay deposits of low strength and high compressibility are located in many coastal and offshore areas. There are several foundation problems encountered in these weak marine clays. In this study, experimental work was carried out in the laboratory to stabilize soft marine clays using the lime column technique. Also the lime-induced effects on the physical and engineering behavior of marine clays in sulfate-contaminated marine environment was investigated. Consolidation tests indicate that compressibility of the lime-treated samples was reduced to 1/2–1/3 of the virgin soil after 45 days treatment. The test results also suggest that the lime column technique can be conveniently used to improve the behavior of contaminated marine clay deposits.  相似文献   

12.
Weak marine clay deposits are present in several regions of the world and they are imposing severe problems for structures founded in these deposits. The use of chemicals lime to improve the properties of these soft deposits is not new. In the present investigation, a test programme was carried out to study the influence of temperature on the engineering behaviour of chemical piles treated clays in the presence of sulphate and chloride contaminated marine environment. The formation of various cementation compounds due to soil-lime reactions were identified by X-ray diffraction studies, and the attributed changes occurred in the engineering properties of the soil systems were also brought out. The test results indicated that the increase in temperature has improved the engineering properties of soil significantly.  相似文献   

13.
The change in strength and deformation behavior of a typical marine clay deposit formed under shallow water is presented and discussed for the conditions of changing water table. This is a costal marine clay deposit with moderate carbonates along the east coast of India. The soil samples were taken from tidal flats where the sea had receded some time back, and the behavior of this deposit had been studied for the conditions of 1976, with high water table, and for the conditions of 2001, with depleted water table. Undisturbed soil samples were taken from sheeted open test pits. Standard consolidation and triaxial shear tests were conducted. Consolidation tests conducted on the samples taken for 1976 conditions with high water contents indicate that cementation effect are erased out under moderate stresses. Beyond this stress range, it behaves like soft, normally consolidated clay. In contrast, the results obtained from samples taken during 2001, with depleted water table, clearly indicate that the soil behaves like an over-consolidated one, and the improvement in the system is due to the chemical bonding and desiccation.  相似文献   

14.
This paper has identified six major factors causing property changes in surrounding soils during and after installation of deep mixing columns: soil thixotropy, soil fracturing, cement penetration and diffusion, cementation, consolidation, and heating. Laboratory tests were performed to investigate the effects of soil thixotropy, soil fracturing, and cementation in a soft marine clay, Ariake clay. Laboratory tests were conducted to evaluate property changes in surrounding clays due to installation of deep mixing columns. Test results showed that an influential zone of property changes existed in surrounding clay ranging from the edge of the columns to the distance of about twice the radius of the columns. Within this influential zone, water content decreased as samples neared the columns, while pH values and electric conductivity increased. Test results also showed that undrained shear strengths of the surrounding clays decreased during mixing but regained after a 7-day curing period and continued increasing during 28 days in this study.  相似文献   

15.
This paper has identified six major factors causing property changes in surrounding soils during and after installation of deep mixing columns: soil thixotropy, soil fracturing, cement penetration and diffusion, cementation, consolidation, and heating. Laboratory tests were performed to investigate the effects of soil thixotropy, soil fracturing, and cementation in a soft marine clay, Ariake clay. Laboratory tests were conducted to evaluate property changes in surrounding clays due to installation of deep mixing columns. Test results showed that an influential zone of property changes existed in surrounding clay ranging from the edge of the columns to the distance of about twice the radius of the columns. Within this influential zone, water content decreased as samples neared the columns, while pH values and electric conductivity increased. Test results also showed that undrained shear strengths of the surrounding clays decreased during mixing but regained after a 7-day curing period and continued increasing during 28 days in this study.  相似文献   

16.
Abstract

Cement soil mixing piles are an effective treatment method for marine soft clay. To investigate the static and dynamic characteristics of the composite soil with cemented soil core, a series of experiments are carried out by using the cyclic simple shear test. The result shows that, the static shear strain showed strain hardening, cemented soil core can improve static shear strength of composite soil, vertical stress can enlarge reinforcement of cemented soil core. The tendency of strain development of composite soil with different area replacement ratios under cyclic loading is the same as that of pure clay, existing critical cyclic stress ratios corresponding to different area replacement ratios. In addition, improving area replacement ratio can increase cyclic strength. At same time, adding of cemented soil core does not change shape of hysteresis curve compared with it for clay either. Moreover, cemented soil core can also obstruct stiffness softening. Through regression analysis of the experimental data, relationship between cyclic number and soil softening index is proved to be linear. The results can give a reference for the dynamic characters of the marine soft clay foundation with cement soil mixing piles.  相似文献   

17.
The purpose of this article is to investigate a possible use of lime for the stabilization of base soils underlying salt evaporation ponds in Çamalt? Solar Marine Salt Plant. The plant is located on the old Gediz River Delta, on the north shore of the Izmir Bay-Turkey, where alluvial deltaic soft marine sediments constitute the local soil condition. The low bearing capacity of the pond base soils results in some problems on the mechanical harvest of the solar salt. Therefore, stabilization was taken into consideration for improving the productivity of the salt plant. For this purpose, bench-scale laboratory tests were performed on the specimens that had been sampled from the bases of the salt evaporation pond to investigate the influence of lime on the unconfined compressive strength (UCS) of these marine sediments. By interpreting the pH test results and consistency limits of the lime stabilized soils, optimum lime content was determined as 8%. The verification of the long-term pozzolanic reactions for the optimum lime content was conducted by performing UCS tests with up to six months curing periods, along with the microstructural analysis through X-ray diffraction analysis (XRD) and a scanning electron microscope (SEM). Long-term tests revealed that the optimum lime content successfully sustained the required pozzolanic reactions, and a strength gain of 500% was achieved for a six-month curing period.  相似文献   

18.
Behaviour of rigid piles in marine clays under lateral cyclic loading   总被引:1,自引:0,他引:1  
In the field of ocean engineering, pile foundations are extensively used in supporting several structures. In many cases, piles are subjected to significant lateral loads. The environment prevalent in the ocean necessitates the piles to be designed for cyclic wave loading. In this investigation, the behaviour of rigid piles under cyclic lateral loading has been studied through an experimental programme carried out on model piles embedded in a soft marine clay. Static tests were also conducted on piles embedded in a clay bed prepared at different consistencies suitable to field situations. Cyclic load was applied by using a specially designed pneumatic controlled loading system. Tests were conducted on model piles made of mild steel (MS), aluminium and PVC with wide variation in pile soil relative stiffness. For cyclic load levels less than 50% of static lateral capacity, the deflections are observed to increase with number of cycles and cyclic load level and stabilise after a certain number of cycles. For cyclic load levels greater than 50% of static lateral capacity, the deflections are observed to increase enormously with number of cycles. The results of post-cyclic load tests indicate that the behaviour under static load can improve for cyclic load levels less than 40% of the static lateral capacity. The variations in the load capacity due to cyclic loading are explained in terms of the changes in strength behaviour of soil.  相似文献   

19.
The obstruction to flow around a pile placed in an erodible seabed causes scour leading to changes in the bed elevation in the vicinity of the pile. In the present investigation, scour around piles induced by the seabed current has been studied in a wave flume using model piles of diameters 50, 90 and 110 mm embedded in a silty clay soil bed. The particulate movement due to scour is time dependent and in case of sediments with particle sizes ranging upto clay fractions, the measurement of scour becomes extremely difficult. This paper presents a simplified experimental technique for the measurement of scour depth with time around a pile foundation in a silty clay soil.  相似文献   

20.
Dredged or excavated soft marine clay can be improved by mixing it with cement or lime. However, these treatments are usually expensive. It is shown in this paper that soft marine clay can be strengthened through a bioencapsulation method in which the shear strength of clay aggregates can be substantially increased after the aggregates are treated with urease-producing bacteria, calcium chloride, and urea. We found that the bioencapsulation had increased the unconfined compressive strength of marine clay aggregates with a size of 5 mm from almost zero to more than 2 MPa. The strength of the bioencapsulated clay aggregates decreases with the increase in the size of the aggregate when the size is greater than 5 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号