首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Akimiski Strait is a wide (17–20 km), shallow, emergent (0.70 cm per century) waterway in James Bay. It is localized in a saddle of a Paleozoic reef track, which has been enhanced and molded by Pleistocene glaciers. Drumlinoid ridges form the till cores of shoals and islets of the strait. The boundary conditions of the strait change throughout the year, as it is covered by ice for six months. During spring break-up the strait remains clogged with ice at its northern approach for several weeks, and acts as a large tidal inlet. It is during this period that most of the fluvial sediments are carried to sea. Other sediments are obtained by erosion of the Pleistocene tills and Holocene subtidal clays and silts exposed in nearshore areas. Resuspension of nearshore material is achieved through the action of wind-driven, short choppy waves and ice scour. Tides are the most important process for the redistribution of sediments along the coast, both flooding onshore and flooding and ebbing into and out from the strait generating locally powerful (2 m s?1) reversing currents. Ice rafting and ice pushing are important processes in this frigid environment, particularly in upwind sides of shaols, and at/or near river mouths.Different intertidal sedimentary sequences develop as functions of sediment supply and exposure of the environments to ice, currents and waves. The eastern shores and the southern shoals of the strait develop pebble lags over till, covered by thin (5–20 cm) drapes of silty sand trapped and protected from erosion by algae. In these shores and in emerging small islands significant sedimentation (1–1.5 m thick) occurs in the marshes where the suspended load of tidal waters is trapped by vegetation. The western shores of the strait receive considerable amounts of sediment from large rivers and are affected by strong tidal longshore currents. Thick (3–4 m) and narrow tidal flats and marshes develop on the maincoast. The shoals of the northern part of the strait have characteristic sediments. Those near the western shore have thin (up to 80 cm) tidal silty sand deposits, locally heavily burrowed by Macoma balthica. Those strung across the northern approach to the strait have well-developed, thin, coarse sand dune fields, indicating a prevalent ebb flow out of the strait.  相似文献   

2.
High‐resolution chirp sonar profiling in the northeastern Skagerrak shows acoustically stratified sediments draping a rough‐surfaced substratum. A 32 metre long sediment core retrieved from the survey area encompasses the entire Holocene and latest Pleistocene. The uppermost seismo‐acoustic units in the chirp profiles represent Holocene marine sediments. The lowermost unit is interpreted as ice‐proximal glacial‐marine sediments rapidly deposited during the last deglaciation. The end of ice‐proximal sedimentation is marked by a strong reflector, interpreted to have been formed during latest Pleistocene time as a consequence of rapid ice retreat and drastically lowered sedimentation rate. The subsequent distal glacial‐marine sediments were deposited with initially high sedimentation rates caused by an isostatic rebound‐associated sea‐level fall. Based on correlation between the core and the chirp sonar profiles using measured sediment physical properties and AMS 14C dating, we propose a revised position for the Pleistocene/Holocene boundary in the seismo‐acoustic stratigraphy of the investigated area. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Borings from the barrier island/lagoon system of the Eastern Shore of Virginia penetrated an unconformity which separates Pleistocene barrier island and offshore marine sediments from the overlying Holocene tidal delta and barrier island sediments. Offshore marine sediments and deposits within the flood-tidal delta (marsh, tidal flat-bay, inlet-mouth bar complex) are recognized on the basis of sediment color, composition, grain-size changes in the vertical sequence, presence of organic matter, and faunal suite. Subsurface data, historical records, and morphology of lateral accretion on barrier islands suggest that major inlets in the vicinity of Wachapreague have been relatively stable throughout Holocene time; they appear to be located where Pleistocene stream valleys previously existed. Holocene barrier islands apparently developed on drainage divide areas following post-Wisconsin transgression of the sea.

The initial phase of tidal delta development was characterized by vertically accreting, fan-shaped, inlet-mouth bars; tidal channels stabilized after bar crests had shoaled sufficiently for marsh to form. With landward progradation across the lagoon, sand-rich deposits graded laterally away from the inlets and vertically into clayey sand and silty clay of the tidal flat-bay and marsh environments.

Ebb inlet-mouth bars developed asymmetrically southward in response to littoral drift. Flood tidal deltas also built preferentially toward the south as indicated by: (1) sand distribution of the inlet-mouth bar complex; and (2) greater development of marsh south of the inlets.  相似文献   


4.
The Attawapiskat River is one of the major low-gradient rivers which cross the flat wetlands of the Hudson Bay Lowland. It has a nival regime leading to strong, short-duration spring floods during which considerable amount of sediment is carried. For the remainder of the year only organic matter is transported in solution and suspension. The land is isostatically rebounding after the Pleistocene glaciations. The river downcuts through the softer Holocene estuarine basal clays and the Pleistocene tills, to the Paleozoic carbonate bedrock. The river develops an anastomosing pattern in the lower reaches and it acquires an irregular meandering character inland. It does not construct a significantly thick delta as the river-borne sediments are dispersed along the coasts by tides, longshore currents and ice rafting. The river is subjected to frequent ice jams in its lower reaches as warmer southern waters flow toward the still frozen mouth and sea. During the jams, secondary channels become active, floodings develop and sedimentation occurs on the levees. Ice scours and ice-rafted materials affect the river banks greatly.The principal sedimentary environments within the river consist of: (1) erosional shoals covered by boulder and pebble lags over till: (2) sorted coarse to medium-sized sands in junction bars downstream from islands; these sands frequently develop gas bubbles, and they contain characteristic fining-upward sequences from boulder pavements at the base, grading up into rippled sand with abundant organic matter, grading up into laminated silt and sand and organic matter; (3) secondary channels, which develop thin silty and clay drapes on eroded hard substratum and are filled eventually by thick peats; and (4) river banks which show well-developed regressive sequences from Pleistocene tills at the base, overlain by estuarine sparsely fossiliferous clays, capped by thin conglomeratic units with abundant reworked Macoma balthica shells, grading upward into upper tidal flat sand, irregularly laminated sand and silt of marshes, and regular interbedding of sand, silt and organic layers of the levees at the top.  相似文献   

5.
Southwestern Barents Sea sediments contain important information on Lateglacial and Holocene environmental development of the area, i.e. sediment provenance characteristics related to ice‐flow patterns and ice drifting from different regional sectors. In this study, we present investigations of clay, heavy minerals, and ice‐rafted debris from three sediment cores obtained from the SW Barents Sea. The sediments studied are subglacial/glaciomarine to marine in origin. The core sequences were divided into three lithostratigraphical units. The lowest, Unit 3, consists of laminated glaciomarine sediments related to regional deglaciation. The overlying Unit 2 is a diamicton, dominated by mud and oversized clasts. Unit 2 reflects a more ice‐proximal glaciomarine sedimentary environment or even a subglacial depositional environment; its deposition may indicate a glacial re‐advance or stillstand during an overall retreat. The uppermost Unit 1 consists of Holocene marine sediments and current‐reworked sedimentary material with a relatively high carbonate content. A significant proportion of the sedimentary material could be derived from Svalbard and transported by sea ice or icebergs to the Barents Sea during the late deglacial phase. The Fennoscandian sources and local Mesozoic strata from the bottom of the Barents Sea are the likely provenances of sediments deposited during the deglacial and ice re‐advance phases. Bottom currents and sea‐ice transport were the main mechanisms influencing sedimentation during the Holocene. Our results indicate that the provenance areas can be reliably related to certain ice‐flow sectors and transport mechanisms in the deglaciated Barents Sea.  相似文献   

6.
香港及其邻近海域的表层沉积物以粘土质粉砂为主,测得的全新世沉积物最大厚度为17.8m,全新世平均沉积速率为0.81mm/a;维多利亚港因后期的潮流作用改造,全新世沉积很薄。第四纪沉积层中有5次海进及5次海退过程,体现了第四纪以来香港及其邻近海域的环境演变过程。香港海域的沉积环境与珠江密切有关,珠江不仅塑造了香港的5层陆相地层,同时为现代香港水域的潮流通道奠定了基础。  相似文献   

7.
One of the steepest depositional coasts of western James Bay is found along the west shores of Akimiski Strait, north of the mouth of the Ekwan River. This shore receives considerable amounts of sediment during the spring break-up of the rivers. The sediments are stored on the steep narrow tidal flats and marshes, and in thinner (up to 80 cm) drapes on till-cored shoals that parallel and protect the coast. The low areas between the shoals and the mainland are swept and reworked by relatively powerful (2 m s?1) reversing currents due to flooding and ebbing of tides into the strait.A series of distinct environments and sedimentary facies develop on this western coast and its antecedent longshore shoal. The outer part of the shoal is characterized by tidal bedding, Macoma balthica burrows and considerable ice scour. The inner part of the shoal has winnowed sand, the greatest abundance of Macoma, and well-developed flaser bedding. The longshore tidal channel separating the shoal from the mainland has coarse sand lags in the shallower parts and silty sand in deeper protected areas. The steep tidal flats develop laminated silty sands locally saturated and slumping toward the channel. The high saturation of the sediments inhibits colonization of the flats by Macoma. The narrow marshes have characteristic vegetation zonation, with Puccinellia phryganodes colonizing the lower marsh. The sedimentary sequence of the marsh displays irregular, bioturbated laminated sequences of silt, silty sand and organic matter.  相似文献   

8.
Abstract Cangrejo and Bulkhead Shoals are areally extensive, Holocene biodetrital mud‐mounds in northern Belize. They encompass areas of 20 km2 and 35 km2 in distal and proximal positions, respectively, on a wide and shallow‐water, microtidal carbonate shelf where storms are the major process affecting sediment dynamics. Sediments at each mound are primarily biodetrital and comprise part of a eustatically forced, dominantly subtidal cycle with a recognizable deepening‐upward transgressive systems tract, condensed section and shallowing‐upward highstand systems tract. Antecedent topographic relief on Pleistocene limestone bedrock also provided marine accommodation space for deposition of sediments that are a maximum of 7·6 m thick at Cangrejo and 4·5 m thick at Bulkhead. Despite differences in energy levels and location, facies and internal sedimentological architectures of the mud‐mounds are similar. On top of Pleistocene limestone or buried soil developed on it are mangrove peat and overlying to laterally correlative shelly gravels. Deposition of these basal transgressive, premound facies tracked the rapid rate of sea‐level rise from about 6400–6500 years BP to 4500 years BP, and the thin basal sedimentation unit of the overlying mound‐core appears to be a condensed section. Following this, the thick and complex facies mosaic comprising mound‐cores represents highstand systems tract sediments deposited in the last ≈ 4500 years during slow and decelerating sea‐level rise. Within these sections, there is an early phase of progradationally offlapping catch‐up deposition and a later (and current) phase of aggradational keep‐up deposition. The mound‐cores comprise stacked storm‐deposited autogenic sedimentation units, the upper bounding surfaces of which are mostly eroded former sediment–water interfaces below which depositional textures have largely been overprinted by biogenic processes associated with Thalassia‐colonized surfaces. Vertical stacking of these units imparts a quasi‐cyclic architecture to the section that superficially mimics metre‐scale parasequences in ancient rocks. The locations of the mud‐mounds and the tidal channels transecting them have apparently been stable over the last 50 years. Characteristics that might distinguish these mud‐mounds and those mudbanks deposited in more restricted settings such as Florida Bay are their broad areal extent, high proportion of sand‐size sediment fractions and relatively abundant biotic particles derived from adjoining open shelf areas.  相似文献   

9.
A section in a gravel quarry at Somersham, Cambridgeshire, has revealed evidence for a lake, named Lake Sparks, in Fenland during the Late Devensian substage of the Pleistocene. Varved sediments were deposited in this lake over a minimum period of ca. 65 yr. The varved clays contain red diamicton clasts, interpreted as dump, delivered to the area by icebergs or floes from the ice-front in the Wash that deposited the Hunstanton Till. The lake is therefore considered a result of impounding by the Late Devensian ice advance on the east coast. A small number of pale varves have a characteristic structure indicating increased calcite deposition in the summer. They are interpreted as a result of cooler summers with reduced gelifluction from the surrounding Jurassic (Ampthill) Clay. Such gelifluction introduced a mudflow into the varved sequence at the southern end of the section. Pollen analysis confirms the derivation of the clays from the surrounding Ampthill Clay. The varved clays are succeeded by fluviatile sediments related to a delta building into the lake from the north. The delta sediments show periodic influx of sand into the lake interrupted by quiet periods with the development of Chara meadows. A thin spread of fluviatile gravels succeed the delta sediments, indicating the development of a braided river plain as the lake drained on the melting of the Late Devensian ice. This was followed by permafrost development, with the formation of thin thermal contraction cracks and coversand deposition. Later, degradation of the permafrost was associated with the formation of diapirs and a solifluction mantle, and incision of the fluviatile and lacustrine sediments took place. Flandrian peat and marl later filled the valley so formed. A radiocarbon date of 18310 yr BP from Salix leaves in a drift mud at the top of channel sands preceding lake sediment, in a neighbouring section, confirms the relation of the lake to the Late Devensian ice advance. The significance of the Late Devensian sediments at Somersham lies in the information they give on the timing and variety of processes related to drainage and ice movement in the period before, during and after the ice advance to the Wash. A period of low deposition rate in the lake was followed by rapid delta sedimentation and lake drainage, with implications for climatic change.  相似文献   

10.
The Ouémé River estuary is located on the seasonally humid tropical coast of Benin, west Africa. A striking feature of this microtidal estuary is the presence of a large sand barrier bounding a 120 km2 circular central basin, Lake Nokoué, that is being infilled by heterogeneous fluvial deposits supplied by a relatively large catchment (50 000 km2). Borehole cores from the lower estuary show basal Pleistocene lowstand alluvial sediments overlain by Holocene transgressive–highstand lagoonal mud and by transgressive to probably early highstand tidal inlet and flood‐tidal delta sand deposited in association with non‐preserved transgressive sand barriers. The change in estuary‐mouth sedimentation from a transgressive barrier‐inlet system to a regressive highstand barrier reflects regional modifications in marine sand supply and in the cross‐barrier tidal flux associated with barrier‐inlet systems. As barrier formation west of the Ouémé River led to an increasingly rectilinear shoreline, the longshore drift cell matured, ensuring voluminous eastward transport of sand from the Volta Delta in Ghana, the major purveyor of sand, to the Ouémé embayment, 200 km east. Concomitantly, the number of tidal inlets, and the tidal flux associated with a hitherto interlinked lagoonal system on this coast, diminished. Complete sealing of Lake Nokoué has produced a large, permanently closed estuary, where tidal intrusion is assured through the interconnected coastal lagoon via an inlet located 60 km east. Since 1885, tides have entered the estuary directly through an artificial outlet cut across the sand barrier. Although precluding the seaward loss of fluvial sediments, permanent estuary‐mouth closure has especially deprived the highstand estuary of marine sand, a potentially important component in estuarine infill on wave‐dominated coasts. In spite of a significant fluvial sediment supply, estuarine infill has been moderate, because of the size of the central basin. Estuarine closure has resulted in two co‐existing highstand sediment suites, with limited admixture, the marine‐derived, estuary‐mouth barrier and upland‐derived back‐barrier sediments. This situation differs from that of mature barrier estuaries characterized by active fluvial‐marine sediment mixing and facies interfingering.  相似文献   

11.
苏北海岸带潮成辐射砂脊群的形成及其古地理意义   总被引:3,自引:3,他引:3       下载免费PDF全文
南黄海潮成辐射砂脊群的面积约为20000km2,以160° 的角度从弓京港向海展开。它与以弓京港为顶点的辐聚辐散潮流场相伴而生。60余个钻孔揭示,毗邻海区辐射砂脊体系的江苏沿岸平原上存在一个面积约3000 km2潮成砂区,其顶点位于东台,同样呈扇形以130°的角度向东展开。在潮成砂区内潮成砂质沉积单元位于冰后期海侵型砂坝-湖沉积层之上,二者之间具明显的冲刷面。砂坝-湖沉积层位于晚更新世基底硬粘土层之上,二者之间有较长的沉积间断。潮成砂沉积层上覆潮坪沉积层,二者呈渐变关系。以潮成砂层底部的侵蚀面为界,其下为海侵序列,其上为海退序列。古潮流的研究揭示,潮成砂区内同样存在辐聚辐散的古潮流场,其顶点位于东台附近。由此推断,沿海平原的潮成砂区内也是辐射状潮成砂脊体系,它形成于全新世海退时期。由于长江和黄河三角洲的前展,以东台为顶点的潮成砂脊体系逐渐暴露成陆。陆上和海域潮成辐射砂脊群形成于相同的潮汐动力环境,但处在不同的发育阶段,前者形成于全新世中期,后者发育于全新世晚期。矿物分析揭示,陆上和海区的潮成辐射砂脊体系主要由长江和黄河沉积物组成,其中长江沉积物由南向北运移,且时间较早;黄河沉积物由北向南运移,时间较迟,这种泥沙的运移趋势一直延续至今。随着海平面上升趋于减缓,长江三角洲增长,江苏海岸线向外推进,苏北潮成砂区逐渐出露成陆。1128年黄河由苏北入海,大量的黄河沉积物的加入,加快了本区海岸线的推进速度。潮成辐射砂脊体系与辐聚辐散的潮流场相伴而生,全新世最大海侵以来,辐聚辐散的潮流场的位置曾经历三次变化,第一次以长江古河口湾为顶点,第二次位于现今陆上潮成砂区,第三次位于以弓京港为顶点的现代海域,代表了潮成辐射砂脊体系发育的三个阶段。只是长江古河口湾的潮成辐射砂脊体系由于河流的巨大改造作用,可能未很好保存,至今未发现典型的辐射砂脊体系。  相似文献   

12.
Late Weichselian and Holocene sediment flux and sedimentation rates in a continental‐shelf trough, Andfjord, and its inshore continuation, Vågsfjord, North Norway, have been analysed. The study is based on sediment cores and high‐resolution acoustic data. Andfjord was deglaciated between 14.6 and 13 14C kyr BP (17.5 and 15.6 calibrated (cal.) kyr BP), the Vågsfjord basin before 12.5 14C kyr BP (14.7 cal. kyr BP), and the heads of the inner tributary fjords about 9.7 14C kyr BP (11.2 cal. kyr BP). In Andfjord, five seismostratigraphical units are correlated to a radiocarbon dated lithostratigraphy. Three seismostratigraphical units are recognised in Vågsfjord. A total volume of 23 km3 post‐glacial glacimarine and marine sediments was mapped in the study area, of which 80% are of Late Weichselian origin. Sedimentation rates in outer Andfjord indicate reduced sediment accumulation with increasing distance from the ice margin. The Late Weichselian sediment flux and sedimentation rates are significantly higher in Vågsfjord than Andfjord. Basin morphology, the position of the ice front and the timing of deglaciation are assumed to be the reasons for this. Late Weichselian sedimentation rates in Andfjord and Vågsfjord are comparable to modern subpolar glacimarine environments of Greenland, Baffin Island and Spitsbergen. Downwasting of the Fennoscandian Ice Sheet, and winnowing of the banks owing to the full introduction of the Norwegian Current, caused very high sedimentation rates in parts of the Andfjord trough at the Late Weichselian–Holocene boundary. Holocene sediment flux and sedimentation rates in Andfjord are about half the amount found in Vågsfjord, and about one‐tenth the amount of Late Weichselian values. A strong bottom current system, established at the Late Weichselian–Holocene boundary, caused erosion of the Late Weichselian sediments and an asymmetric Holocene sediment distribution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Organic sediments in a gravel quarry at Block Fen, Cambridgeshire, form a sheet dividing lower from upper gravels. Analyses of pollen, macroscopic plant remains and molluscs from these organic sediments are presented. They indicate the presence of temperate freshwater and slightly brackish fine floodplain sediments, which, on the basis of the palaeobotany, are correlated with the temperate Ipswichian Stage. The freshwater sediments, ascribed to Ipswichian substage IIb, occur at ca. ?3 m OD. Marine-influenced tidal sediments, ascribed to Ipswichian substage III, occur at ca. ?6 m OD. No evidence was found for the presence of more than one temperate stage in the sequence. The lower gravels are then correlated with the cold Wolstonian Stage and the upper gravels with the cold Devensian Stage. In contrast to the woodland environments indicated by the palaeobotany of the Ipswichian organic sediments, post-Ipswichian pollen diagrams and macroscopic plant remains in the upper suite of sands and gravels indicate open tree-less vegetation typical of the cold Devensian Stage. They also contain a typical cold-stage mollusc fauna. The sediments containing these floras and faunas are associated with thermal contraction cracks, indicating the presence of permafrost. The final sand and gravel aggradation in the Devensian forms the Block Fen Terrace, near 0 m OD. The evidence indicates that it is younger than the lacustrine sediments resulting from the blocking of the Fenland at the Wash by Late Devensian ice at ca. 18.5 ka BP. The sequence at Block Fen is related to nearby Ipswichian and Devensian sediments at Chatteris, March, Wimblington and Mepal, and to deposits at Wretton on the east margin of Fenland. The correlation permits an outline reconstruction of the history of the valley carrying the River Great Ouse between the Isle of Ely and the Chatteris and March ‘islands’ from the time of a gravel aggradation before the Ipswichian to the Flandrian. The reconstruction shows the time and level of the Ipswichian marine incursion into the Middle Level of Fenland and the extent of aggradation and erosion in the Devensian.  相似文献   

14.
The Flandrian sediments of the Fenland record the infilling of the Wash embayment on the east coast of England, UK. Since at least 6500 BP changes in sea level have been a major control on the rate and pattern of sediment accumulation. New data are presented from the area which together with published information allow the reconstruction of palaeoenvironments from 6500 to 2500 BP. The major environmental changes involved alternations between freshwater fen and intertidal marine sedimentation. Each episode was characterised by transitional changes as vegetation and sediment zones shifted over large areas. Marine/brackish sediments are found up to 45 km inland of the present coast. Radiocarbon dated sea-level index points, with relevant stratigraphic and micropalaeontological data, ranging from 6415 BP at ?8.17m OD to 2595 BP at +1.45m OD, are described.  相似文献   

15.
The Mesoproterozoic Lower Tombador Formation is formed of shallow braided fluvial, unconfined to poorly-channelized ephemeral sheetfloods, sand-rich floodplain, tide-dominated estuarine, and shallow marine sediments. Lowstand braided fluvial deposits are characterized by a high degree of channel amalgamation interbedded with ephemeral, intermediate sheetflood sandstones. Sand-rich floodplain sediments consist of intervals formed by distal sheetflood deposits interbedded with thin layers of eolian sandstones. Tide-dominated estuarine successions are formed of tide-influenced sand-bed braided fluvial, tidal channel, tidal sand flat and tidal bars. Shallow marine intervals are composed of heterolithic strata and tidal sand bars. Seismic scale cliffs photomosaics calibrated with vertical sections indicate high lateral continuity of sheet-like depositional geometry for fluvial–estuarine successions. These geometric characteristics associated with no evidence of incised-valley features nor significant fluvial scouring suggest that the Lower Tombador Formation registers deposition of unincised fluvial and tide-dominated systems. Such a scenario is a natural response of the interplay between sedimentation and fluctuations of relative sea level on the gentle margins of a sag basin. This case study indicates that fluvial–estuarine successions exhibit the same facies distributions, irrespective of being related to unincised or incised-valley systems. Moreover, this case study can serve as a starting point to better understand the patterns of sedimentation for Precambrian basins formed in similar tectonic settings.  相似文献   

16.
This paper presents examples of various large tidal sandbodies from the Eocene Roda Sandstone in the southern Pyrenees and the Late Pleistocene and Early Holocene in the East China Sea. An attempt is made to summarize the geometric variability of these large tidal sandbodies in relation to the sediment supply and tidal discharge of the depositional system. Transverse sand bars were developed in low-sinuosity, high-gradient channels with high influxes of coarse sediments and water from fluvial systems. Tidal point bars were formed in meandering low-gradient estuarine channel where tidal influence was stronger and sediment was finer than those of the transverse sand bar. A tidal delta complex was built up at the estuary mouth with an abundant sediment supply and an increased tidal discharge. Tidal sand ridges were formed when relict fluvial or deltaic sands were eroded and reworked by strong tidal currents during subsequent sea-level rise.

Since the sediment supply and the tidal discharge of the depositional system were closely related to the eustatic sea-level change and basin subsidence, i.e. the relative sea-level change, special attention will be given to the relationship between geometric variability of tidal sandbodies and the sequence stratigraphic framework in which various sandbodies occurred. Three orders of eustatic sea-level fluctuations can be recognized. The third-order eustatic sea-level cycle, together with basin subsidence, controlled the development of systems tracts and the occurrence of different tidal sandbodies, such as estuary and tidal flat facies during the late stage of a LSW systems tract (type 1 sequence) or a SM systems tract (type 2 sequence); tidal point bar facies, tidal delta facies or tidal sand-ridge facies during a TR systems tract; estuary facies during an early HS systems tract; and fluvial sand bar facies in a late HS systems tract and the early stage of a SM or LSW systems tract. There are also the fourth-order and fifth-order eustatic fluctuations, which are superimposed on the third-order eustatic changes and have important control on the build-up, abandonment and preservation of composite and single tidal sandbodies, respectively.

Since the deposition of tidal sandbodies is very sensitive to eustatic sea-level changes, recognition of various tidal sandbodies is important in sequence stratigraphy analyses of sedimentary basins and in the facies prediction of clastic sediments in basin modelling.  相似文献   


17.
渤海湾西岸BT113孔35ka以来的沉积环境演化与海陆作用   总被引:1,自引:0,他引:1  
根据渤海湾西岸有孔虫和介形虫与年代学(AMS14C和OSL测年)研究,将该段岩心自下而上划分为6个沉积单元(U1—U6),它们依次形成于晚更新世的河流及全新世的潮滩、浅海、前三角洲、三角洲前缘和三角洲平原沉积环境,结束于约35 ka的U1单元的陆相环境,证实晚更新世低海面时渤海湾西岸未受海水影响。U1和U2单元之间,存在历时约27 ka的沉积间断(35~8.5 ka cal BP),研究区因此缺失早全新世沉积。U2单元的潮滩环境指示全新世海侵于8.5 ka cal BP到达渤海湾西岸,当时相对海平面为-16.7 m。U3单元为浅海环境,约6 ka cal BP时相对海平面上升到-6.8~-1.8 m。8.5~6 ka cal BP期间的海面上升速率是0.4~0.6 cm/a,可能与MWP1C事件有关。U4—U5单元,转为三角洲环境,沉积速率增大,反映自3.7 ka cal BP河流输入影响加强,约1.3 ka cal BP时成陆,形成U6单元。晚更新世35 ka以来的陆海环境演化,总体上是对气候变化控制下的海面变化的响应。  相似文献   

18.
From new data on coastal and continental shelf morphology, sediments, stratigraphy and chronology, it is possible to formulate a general model of late Quaternary marine sedimentation, for New South Wales and southern Queensland. This model integrates various factors influencing deposition in coastal and shelf environments, in relation to glacio‐eustatic sea level oscillations.

The model involves several components, including (i) very slow to negligible continental margin subsidence during the Quaternary, (ii) an inherited geomorphic framework; (iii) oscillations of sea level of c 100 m amplitude every 100 000 years, with interglacial high sea levels being close to present and only the Last Interglacial being significantly higher; and (iv) a wave climate that induces a potential south to north littoral sand transport at all sea level positions.

Terrigenous sediment that is moved from the hinterland through embayments to the shelf is either stored as barrier, estuarine or inner shelf deposits, or lost to depositional sinks on the continental slope or into coastal dune fields. Over many glacial‐interglacial cycles, sand has been progressively moved northward and has accumulated in vast aeolian sand deposits in southern Queensland. Littoral sand transport was especially effective during sea levels lower than present. The relatively shallow and lower gradient shelf north of Newcastle (33°S) has encouraged preservation at the coast of a wide range of depositional morphologies, including Pleistocene barriers, whereas the steeper southern shelf has induced net sediment loss seawards and shoreline erosion, excpt in the Holocene. To account for Holocene barrier development in the southern region, the model invokes reworking of sand deposits stranded high on the inner shelf at the end of the Pleistocene Epoch. These were in disequilibrium with Postglacial marine processes that operated at a lower level of the sea than did those during the Last Interglacial maximum.  相似文献   

19.
Major part of the Holocene Ganges-Brahmaputra delta occupies the southern and southwestern part of Bangladesh with a smaller part extending beyond the international boundary in the west. Five facies assemblages are documented in the lower deltaic plain in five different depositional environments: levee or levee complex, bil or depression, abandoned meander belt, interdistributary plain and estuarine plain. The thickness of the Holocene sediments ranges from 30 m to 70 m in the deltaic plain, usually floored by the Pleistocene stiff clays, with the exception of the abandoned meander belt deposit where Holocene channel sand deposited directly on the Pleistocene sand. Radiocarbon dates indicate that low-rate sedimentation has occurred in the northern part, where 4-6 m thick sediments were deposited since the mid-Holocene, whereas 10-30 mthick sediments were deposited in the southern part during the same span of time. In addition, significant coastal subsidence (3 mm/a on average), added by sea-level rise (1.5 mm/a, conservative rate) occurs in the study area, which serves as a negative factor in degrading the coastal plain of Bangladesh in the future, while taking into consideration the weaker sedimentation in the area.  相似文献   

20.
Lower Pleistocene sediments recovered in boreholes from the Aberdeen Ground Formation in the central North Sea indicate that the unit was deposited in a delta front to prodelta/shallow, open shelf marine setting. Possible estuarine and clastic nearshore marine deposits have been identified on the western margin of the basin. The delta front sediments consist of interbedded, structureless to laminated sands and muds with organic debris, ferruginous nodules and common soft sediment deformation structures. Sporadic rippled and graded beds, basal scours to beds and starved ripples suggest periodic wave–current reworking. Prodelta/shelf marine sediments are predominantly argillaceous with only occasional thin sand beds and rare phosphatic bands. One exceptionally thick sand body or submarine channel-fill although this remains uncertain. The estuarine/clastic nearshore marine sediments include coarse channel-lag deposits and rippled and laminated subtidal sands. A rich microfossil assemblage recovered from the prodelta/shelf marine sequence indicates that deposition occurred under fluctuating climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号