首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
ABSTRACT

The hydrological response of shallow ponds to groundwater withdrawal has been of growing concern in the Doñana National Park (southern Spain) in recent decades. This study examines the role of groundwater in maintaining the hydroperiod (i.e. the hydrological regime) in the park’s main dune ponds, by quantifying the groundwater fluxes to/from them. The hydrological characterization was performed by applying different methodologies. Daily hydrological balances registered in the ponds revealed groundwater contributions ranging from 80% of the total water inflows (i.e. groundwater discharge) to a net groundwater recharge from the ponds to the aquifer, and enabled the studied water bodies to be classified as discharge or recharge systems. The recharge systems must have been influenced by the lowering of piezometric levels due to groundwater extraction for urban supply in a nearby coastal resort.  相似文献   

2.
The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei, Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.  相似文献   

3.
Wetlands show a large decline in biodiversity. To protect and restore this biodiversity, many restoration projects are carried out. Hydrology in wetlands controls the chemical and biological processes and may be the most important factor regulating wetland function and development. Hydrological models may be used to simulate these processes and to evaluate management scenarios for restoration. HYDRUS2D, a combined saturated–unsaturated groundwater flow and transport model, is presented. This simulates near‐surface hydrological processes in an acidified floating fen, with the aim to evaluate the effect of hydrological restoration in terms of conditions for biodiversity. In the acidified floating fen in the nature reserve Ilperveld (The Netherlands), a trench system was dug for the purpose of creating a runoff channel for acid rainwater in wet periods and to enable circum‐neutral surface water to enter the fen in dry periods. The model is calibrated against measured conductivity values for a 5 year period. From the model simulations, it was found that lateral flow in the floating raft is limited. Furthermore, the model shows that the best management option is a combination of trenches and inundation, which gave the best soil water quality in the root zone. It is concluded that hydrological models can be used for the calculation of management scenarios in restoration projects. The combined saturated–unsaturated model concept used in this paper is able to incorporate the governing hydrological processes in the wetland root zones. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Hydrological effects of groundwater abstraction near a Danish river valley have been assessed by integrated hydrological modelling. The study site contains groundwater‐dependent terrestrial ecosystems in terms of fen and spring habitats that are highly dependent on regional and local scale hydrology. Fens are rare and threatened worldwide due to pressures from agriculture, to lack of appropriate management and to altered catchment hydrology. A solid foundation for hydrological modelling was established based on intensive monitoring at the site, combined with full‐scale pumping tests in the area. A regional groundwater model was used to describe the dynamics in groundwater recharge and the large‐scale discharge to streams. A local grid refinement approach was then applied in a detailed assessment of damage in order to balance the computational effort and the need for a high spatial resolution. A considerable flow reduction in the natural spring was monitored during a full‐scale pumping test while no significant effects on the water table in the fen habitats were observed. A modelled abstraction scenario predicted a lowering of 2–3 cm in the centre of the main fen area during summer periods. The predicted change in water table conditions in the fen habitat is compared to the variability found in 35 Danish fens, and the ecological response is discussed based on statistical water‐level vegetation relations. The results provide a rare quantitative foundation for decision making in relation to management of groundwater‐dependent terrestrial ecosystems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The major strategy used to prevent the discharge of highly saline groundwater to the River Murray in southeastern Australia is groundwater interception and disposal. The basic design principle assumes that the extraction of groundwater from an aquifer hydraulically connected to the river, using a line of pumps positioned close and roughly parallel to the river, will decrease piezometric heads thereby reducing the discharge of saline groundwater to the river. The paper considers one of these schemes which was designed for the Mildura area on the basis of a hydrogeological investigation. It analyses the effects on piezometric head and groundwater salinity due to the groundwater interception scheme and adjacent irrigation activity over a period of several years from January 1980. It is shown that piezometric heads have decreased significantly in the stretch close to the river. A slight reduction in groundwater salinity is also apparent in this stretch except for an area between the river and a holding basin used for disposal of the saline effluents emanating from the groundwater interception scheme. This general reduction in groundwater salinity is mainly caused by pumping from the groundwater interception scheme and recharge from irrigation. The exception in the trend in groundwater salinity is due to the movement of a highly saline body of groundwater from the holding basin towards the River Murray. Results of this Australian experience should be helpful to the designers of similar salinity mitigation schemes elsewhere.  相似文献   

6.
The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei, Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.  相似文献   

7.
Mountain fens are limited in their spatial extent but are vital ecosystems for biodiversity, habitat, and carbon and water cycling. Studies of fen hydrological function in northern regions indicate the timing and magnitude of runoff is variable, with atmospheric and environmental conditions playing key roles in runoff production. How the complex ecohydrological processes of mountain fens that govern water storage and release as well as peat accumulation will respond to a warmer and less snowy future climate is unclear. To provide insight, we studied the hydrological processes and function of Sibbald fen, located at the low end of the known elevation range in the Canadian Rocky Mountains, over a dry period. We added an evapotranspiration function to the Spence hydrological function method to better account for storage loss. When frozen in spring and early summer, the fen primarily transmits water. When thawed, the fen's hydrological function switches from water transmission to water release, leading to a summertime water table decline of nearly 1 m. Rainfall events larger than 5 mm can transiently switch fen hydrological function to storage, followed by contribution, depending on antecedent conditions. The evapotranspiration function was dominant only for a brief period in late June and early July when rainfall was low and the ground was still partially frozen, even though evapotranspiration accounted for the largest loss of storage from the system. This research highlights the mechanisms by which mountain peatlands supply baseflow during drought conditions, and the importance of frozen ground and rainfall in regulating their hydrological function. The study has important implications for the sustainability of low elevation mountain fens under climate change.  相似文献   

8.
Hydrometric measurements, electrical conductivity, water isotopic and hydrochemical components of stream water were used to study summer runoff generation in a flat fen. Different processes generated runoff at low- and high-flows. At storm-flows, fen runoff was generated from overland flow, originating from upland surface water. Temporary storage of water on the fen surface attenuated and delayed flow peaks. At low-flows, runoff at the fen outlet was generated from shallow subsurface flow in the Acrotelm. During low-flow periods, water originated mainly from peat storage water while during episodic events the wetland water storage was renewed by inflowing stream water. Assessment and modeling of hydrological effects of peatlands should be performed separately for low-flows and high-flows, based on the dominating runoff generating processes. Attenuation and retardation of storm-flows in fens by temporary surface storage will depend on the geometric properties of both storage sections and sections controlling outflow. A routing reservoir model adapted for flat fens can be used for simulation of attenuation and retardation in runoff events, and it is suggested that the model concept should be tested for a broader range of peatlands.  相似文献   

9.

The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei, Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.

  相似文献   

10.
Integrated hydrological models are usually calibrated against observations of river discharge and piezometric head in groundwater aquifers. Calibration of such models against spatially distributed observations of river water level can potentially improve their reliability and predictive skill. However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, whereas spaceborne observations have limited spatial and temporal resolution. Unmanned aerial vehicles can retrieve river water level measurements, providing (a) high spatial resolution; (b) spatially continuous profiles along or across the water body, and (c) flexible timing of sampling. A semisynthetic study was conducted to analyse the value of the new unmanned aerial vehicle‐borne datatype for improving hydrological models, in particular estimates of groundwater–surface water (GW–SW) interaction. Mølleåen River (Denmark) and its catchment were simulated using an integrated hydrological model (MIKE 11–MIKE SHE). Calibration against distributed surface water levels using the Differential Evolution Adaptive Metropolis algorithm demonstrated a significant improvement in estimating spatial patterns and time series of GW–SW interaction. After water level calibration, the sharpness of the estimates of GW–SW time series improves by ~50% and root mean square error decreases by ~75% compared with those of a model calibrated against discharge only.  相似文献   

11.
Fens, which are among the most biodiverse of wetland types in the USA, typically occur in glacial landscapes characterized by geo‐morphologic variability at multiple spatial scales. As a result, the hydrologic systems that sustain fens are complex and not well understood. Traditional approaches for characterizing such systems use simplifying assumptions that cannot adequately capture the impact of variability in geology and topography. In this study, a hierarchical, multi‐scale groundwater modelling approach coupled with a geologic model is used to understand the hydrology of a fen in Michigan. This approach uses high‐resolution data to simulate the multi‐scale topographic and hydrologic framework and lithologic data from more than 8500 boreholes in a statewide water well database to capture the complex geology. A hierarchy of dynamically linked models is developed that simulates groundwater flow at all scales of interest and to delineate the areas that contribute groundwater to the fen. The results show the fen receiving groundwater from multiple sources: an adjacent wetland, local recharge, a nearby lake and a regional groundwater mound. Water from the regional mound flows to an intermediate source before reaching the fen, forming a ‘cascading’ connection, while other sources provide water through ‘direct’ connections. The regional mound is also the source of water to other fens, streams and lakes in this area, thus creating a large, interconnected hydrologic system that sustains the entire ecosystem. In order to sustainably manage such systems, conservation efforts must include both site‐based protection and management, as well as regional protection and management of groundwater source areas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Understanding hydrological processes in wetlands may be complicated by management practices and complex groundwater/surface water interactions. This is especially true for wetlands underlain by permeable geology, such as chalk. In this study, the physically based, distributed model MIKE SHE is used to simulate hydrological processes at the Centre for Ecology and Hydrology River Lambourn Observatory, Boxford, Berkshire, UK. This comprises a 10‐ha lowland, chalk valley bottom, riparian wetland designated for its conservation value and scientific interest. Channel management and a compound geology exert important, but to date not completely understood, influences upon hydrological conditions. Model calibration and validation were based upon comparisons of observed and simulated groundwater heads and channel stages over an equally split 20‐month period. Model results are generally consistent with field observations and include short‐term responses to events as well as longer‐term seasonal trends. An intrinsic difficulty in representing compressible, anisotropic soils limited otherwise excellent performance in some areas. Hydrological processes in the wetland are dominated by the interaction between groundwater and surface water. Channel stage provides head boundaries for broad water levels across the wetland, whilst areas of groundwater upwelling control discrete head elevations. A relic surface drainage network confines flooding extents and routes seepage to the main channels. In‐channel macrophyte growth and its management have an acute effect on water levels and the proportional contribution of groundwater and surface water. The implications of model results for management of conservation species and their associated habitats are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The protection of the globally widespread lentic small water bodies (LSWB) must be based on detailed knowledge about their hydrological connectivity and water balance. The study aimed to identify and quantify water balance components as well as surface-groundwater interaction of two LSWB in a characteristic lowland region with a combination of different methods. This includes the collection of hydrological data and the use of bromide and water stable isotopes (δ2H and δ18O) as tracers. With their help, mixing models were established, and daily water balances were assessed. The results show a strong bidirectional interaction of both LSWB systems with shallow groundwater. Bromide and stable isotope tracers allowed for the identification of the most relevant in- and outflow sources and pathways. Thereby, isotope data revealed isotopic enrichment typical for open-water bodies and only minor precipitation inputs mainly relevant at the end of the dry season. Water balance calculations suggested accentuated seasonal dynamics that were strongly influenced by shallow groundwater, which represented large inputs into both LSWB. By that, different phases could be identified, with high inflow rates in winter and spring and decreasing fluxes in summer. In one LSWB, a drainage system was found to have a major impact next to the shallow groundwater interaction. The findings of this research provide detailed insights into the influence and importance of shallow groundwater for LSWB in lowland regions. This impacts the diffuse input of agricultural pollutants into these ecologically important landscape features.  相似文献   

14.
Wetlands on the Vecht river plain in the Netherlands are threatened by pollution of ground water on the adjacent ridge ‘Het Gooi’. To assess the impact of this pollution, information is needed on the present groundwater flow pattern and hydrochemical processes occurring during flow. In the determination of hydrochemical processes past changes in flow patterns must be taken into consideration.

Over the past 600 years impoldering and groundwater extraction have induced important hydrological changes in the study area. Exercises with a two-dimensional finite difference groundwater model were used to study the effects of these changes on regional groundwater flow patterns. Steady-state simulations along a vertical section were carried out for four different points in time, namely, the 14th century, 1885, 1941 and 1985. Changes in flow patterns are inferred from a comparison of the steady-state simulations. The results indicate that groundwater flow changed from a simple pattern under natural conditions to a complex flow pattern dominated by artificially man-controlled hydraulic heads at present.

The computer simulations are used to estimate the effect of changes in flow patterns on regional groundwater composition. Data on the distribution of chloride and oxygen-18 in ground water provide a verification of the estimated effects and information on the present position of the fresh-brackish groundwater interface in the study area. Isochrones calculated by the model are used to estimate the position of this front where data on water composition are absent. The future displacement of the fresh-brackish groundwater front is inferred from the position of successive isochrones, assuming that the present flow pattern will remain in steady state.

The computer simulations provide a general framework for the determination of hydrochemical processes in future studies addressing the impact of groundwater pollution on wetlands in the river plain.  相似文献   


15.
The groundwater flow path plays an important role in maintaining hydrological and ecological quality and security, which are important in the comprehensive management and use of both groundwater and surface water. In this study, an integrated multi-tracer-constrained framework was used to determine the groundwater flow path. The results show that there are shallow and deep flow paths in riverbank filtration, controlled by the different permeabilities of riverbed sediments and aquifers at different depths. The contribution of river water to shallow groundwater is less than that to deep groundwater because of the low permeability of the riverbed sediment in the dense muddy layer in the shallow slope of the river valley. This contribution decreases with increasing distance from the Liao River. The shallow groundwater quality is better than the deep groundwater quality because of its longer residence time.  相似文献   

16.
Principal components analysis (PCA) is applied to a time series of European Remote Sensing (ERS) synthetic aperture radar (SAR) scenes of the Alzette River floodplain (Grand‐Duchy of Luxembourg). These images cover markedly different hydrological conditions during several winter seasons in order to enable the examination of the decrease of the radar backscattering signal during drying‐up phases following important flood events. At the floodplain scale, with homogeneous land use and constant topography, the first principal components (PCs) are mainly dominated by the variance related to the changing areas. The PCs are thus mainly controlled by subsurface and surface water dynamics. The field observations of a densely equipped piezometric network in the floodplain are used to calculate a mean soil saturation index (SSI) continuously. A classification scheme, based on the PCs and k‐means algorithm, leads to the segmentation of the floodplain into several hydrological behaviour classes with distinctive responses versus changing moisture conditions. To validate this classification method with ground‐based estimations, the relation between the mean backscattering values of microplots within each PCA‐derived hydrological class and the water table measurements, expressed by means of the SSI, is evaluated. Results show that each class of microplots is characterized by the slope of the ‘backscattering–SSI’ function and by the SSI threshold value at which groundwater resurgence appears. The water ponding implies very low signal return due to the specular backscattering effect on the water surface. Based on established relationships between measured initial water table depths, runoff coefficients and rainfall‐induced water table rises, these results are used to discuss the potential of SAR‐derived information in flood management applications. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Calcareous fens are species‐rich peatlands that are dependent on minerotrophic water sources for wetland functioning, with current conceptual models suggesting the water source is ubiquitously groundwater upwelling. By quantifying the water balance and subsurface water flow paths and fluxes over 3 growing seasons for calcareous fens in 3 different hydrogeomorphic settings (Riparian, Trough, and Basin), we show evidence that challenges this conceptual model. The Riparian Fen received an order of magnitude more water inputs than the Trough or Basin Fens and was dominated by stream recharge inputs and groundwater outputs. Precipitation and evaporation dominated the water balance of the Trough Fen whereas only the Basin Fen received sizeable groundwater inputs. Indeed, subsurface water fluxes were low at all fens due to weak hydraulic gradients and low saturated hydraulic conductivity in some areas of each wetland, though variations in growing season precipitation led to subsurface flow reversals in all 3 fens. Our results demonstrate the importance of understanding landscape position, or hydrogeomorphic setting, on calcareous fen hydrology for improving conservation, management, and restoration efforts of these important ecosystems.  相似文献   

18.
Protection of fens–wetlands dependent on groundwater discharge–requires characterization of groundwater sources and stresses. Because instrumentation and numerical modeling of fens is labor intensive, easy-to-apply methods that model fen distribution and their vulnerability to development are desirable. Here we demonstrate that fen areas can be simulated using existing steady-state MODFLOW models when the unsaturated zone flow (UZF) package is included. In cells where the water table is near land surface, the UZF package calculates a head difference and scaled conductance at these “seepage drain” cells to generate average rates of vertical seepage to the land. This formulation, which represents an alternative to blanketing the MODFLOW domain with drains, requires very little input from the user because unsaturated flow-routing is inactive and results are primarily driven by easily obtained topographic information. Like the drain approach, it has the advantage that the distribution of seepage areas is not predetermined by the modeler, but rather emerges from simulated heads. Beyond the drain approach, it takes account of intracell land surface variation to explicitly quantify multiple surficial flows corresponding to infiltration, rejected recharge, recharge and land-surface seepage. Application of the method to a basin in southeastern Wisconsin demonstrates how it can be used as a decision-support tool to first, reproduce fen distribution and, second, forecast drawdown and reduced seepage at fens in response to shallow pumping.  相似文献   

19.
The major hydrological factors in lake-marsh systems are water level (depth), water surface area, and water volume. The key index for determining the lake-marsh pattern is water level, which leads to the variation of lake-marsh patterns under natural hydrological alternations. In addition, the vegetation structure also affects the lake-marsh pattern. With socioeconomic development and climate change, the ‘land use’ and ‘water use’ competitions appear more seriously between a lake-marsh system and its surrounding socioeconomic system, also inside the lake-marsh system. The possible optimal lake-marsh pattern could solve the contradictions mentioned above. As few studies focus on this issue, this study proposed an optimal lake-marsh pattern determination method with eco-hydrological management on relieving the land use and water use competitions. The optimal lake-marsh pattern determination method considers the protection objects (water depth demands), water supply (precipitation, surface water, and groundwater), and water demand (especially evapotranspiration) in the system at annual and monthly scales. Calculation and analysis were performed for the optimal pattern of the Wolonghu Wetlands as an example. The results mainly showed that the lake-marsh pattern of the Wolonghu Wetlands cannot be achieved on meeting both the maximum ecological services values and minimum water shortage amount under present natural condition. With artificial regulation measures, the possible optimal annual lake-marsh patterns can be obtained based on both ecological and hydrological objectives, with the area ratio of lake and marsh in the range of 0.650:0.350 and 0.726:0.274, the corresponding water level of lake body was of 86.85 to 87.0 m. This study could provide references for the Wolonghu Wetlands management, also for similar lake-marsh systems and other ecological systems.  相似文献   

20.
The contradiction between the freshwater shortage and the large demand of freshwater by irrigation was the key point in cultivated lowland area of North China Plain. Water transfer project brings fresh water from water resource‐rich area to water shortage area, which can in turn change the hydrological cycle in this region. Major ions and stable isotopes were used to study the temporal variations of interaction between surface water and groundwater in a hydrological year after a water transfer event in November 2014. Irrigation canal received transferred Yellow River, with 2.9% loss by evaporation during water transfer process. The effect of transferred water on shallow groundwater decreased with increasing distance from the irrigation canal. Pit pond without water transfer receives groundwater discharge. During dry season after water transfer event, shallow groundwater near the irrigation canal was recharged by lateral seepage and deep percolation of irrigation, whereas shallow groundwater far from irrigation canal was recharged by deep percolation of deep groundwater irrigation. Canal water lost by evaporation was 2.7–17.4%. Influence of water transfer gradually disappeared until March as the water usage of agricultural irrigation increased. In the dry season, groundwater discharged to irrigation canal and pond; 2.2–31.6% canal water and 11.3–20.0% pond water were lost by evaporation. In the rainy season (June to September), surface water was fed mainly by precipitation and surface run‐off, whereas groundwater was recharged by infiltration of precipitation. The two‐end member mix model showed that the mixing ratio of precipitation in pond and irrigation canal were 73–83.4% (except one pond with 28.1%) and 77.3–99.9%, respectively. Transferred water and precipitation were the important recharge sources for shallow groundwater, which decreased groundwater salinity in cultivated lowland area of North China Plain. With the temporary and spatial limitation of water transfer effects, increased water transfer amounts and frequency may be an effective way of mitigating regional water shortage. In addition, reducing the evaporation of surface water is also an important way to increase the utilization of transfer water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号