首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following recommendations by the 19th Royal Commission on Environmental Pollution, the area, causes and rates of upland soil erosion in England and Wales were investigated between 1997 and 1999. This paper describes the methods and results of the field survey of 1999 in which the extent of eroded ground was determined. 2. The area of degraded soil and the volume of eroded material were both determined from the dimensions of individual erosion features at 399 field sites located on an orthogonal grid across the uplands. Using measurements of individual erosion features, degraded soil extent in upland England and Wales was estimated at almost 25 000 ha, 2·46 per cent of the total upland area surveyed. Half this eroded area was revegetated and no longer subject to continued accelerated soil loss in 1999. The total volume of eroded material was estimated at 0·284 km3. Although deposition of eroded material occurred within 20 per cent of eroded field sites, the total volume of redeposited material was less than 1 per cent of the total volume of eroded soil. 3. Erosion was more extensive on peat soils than on dry, wet mineral or wet peaty mineral soils. In addition, the higher incidence of erosion at high altitudes and on low slopes reinforced the relationship between erosion and areas of peat formation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The soil factor is crucial in controlling and properly modeling the initiation and development of ephemeral gullies (EGs). Usually, EG initiation has been related to various soil properties (i.e. sealing, critical shear stress, moisture, texture, etc.); meanwhile, the total growth of each EG (erosion rate) has been linked with proper soil erodibility. But, despite the studies to determine the influence of soil erodibility on (ephemeral) gully erosion, a universal approach is still lacking. This is due to the complex relationship and interactions between soil properties and the erosive process. A feasible soil characterization of EG erosion prediction on a large scale should be based on simple, quick and inexpensive tests to perform. The objective of this study was to identify and assess the soil properties – easily and quickly to determine – which best reflect soil erodibility on EG erosion. Forty‐nine different physical–chemical soil properties that may participate in establishing soil erodibility were determined on agricultural soils affected by the formation of EGs in Spain and Italy. Experiments were conducted in the laboratory and in the field (in the vicinity of the erosion paths). Because of its importance in controlling EG erosion, five variables related to antecedent moisture prior to the event that generated the gullies and two properties related to landscape topography were obtained for each situation. The most relevant variables were detected using multivariate analysis. The results defined 13 key variables: water content before the initiation of EGs, organic matter content, cation exchange capacity, relative sealing index, two granulometric and organic matter indices, seal permeability, aggregates stability (three index), crust penetration resistance, shear strength and an erodibility index obtained from the Jet Test erosion apparatus. The latter is proposed as a useful technique to evaluate and predict soil loss caused by EG erosion. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
The enrichment of organic matter in interrill sediment is well documented; however, the respective roles of soil organic matter (SOM) and interrill erosion processes for the enrichment are unclear. In this study, organic matter content of sediment generated on two silts with almost identical textures, but different organic matter contents and aggregations, was tested. Artificial rainfall was applied to the soils in wet, dry and crusted initial conditions to determine the effects of soil moisture and rainfall and drying history on organic matter enrichment in interrill sediment. While erosional response of the soils varied significantly, organic matter enrichment of sediment was not sensitive to initial soil conditions. However, enrichment was higher on the silt with a lower organic matter content and lower interrill erodibility. The results show that enrichment of organic matter in interrill sediment is not directly related to either SOM content or soil interrill erodibility, but is dominated by interrill erosion processes. As a consequence of the complex interaction between soil, organic matter and interrill erosion processes, erodibility of organic matter should be treated as a separate variable in erosion models. Further research on aggregate breakdown, in particular the content and fate of the organic matter in the soil fragments, is required. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Erosion of man-made, forestry drainage channels occurs when the plough cuts through the surface peat layer into the underlying erodible mineral soil. A procedure is developed, based on hydraulic considerations, which will allow the drainage engineer to design stable drainage networks in upland forestry plantations. An example design chart is given for an erodible sandy loam type soil.  相似文献   

5.
The jet erosion test (JET) is a widely applied method for deriving the erodibility of cohesive soils and sediments. There are suggestions in the literature that further examination of the method widely used to interpret the results of these erosion tests is warranted. This paper presents an alternative approach for such interpretation based on the principle of energy conservation. This new approach recognizes that evaluation of erodibility using the jet tester should involve the mass of soil eroded, so determination of this eroded mass (or else scour volume and bulk density) is required. The theory partitions jet kinetic energy flux into that involved in eroding soil, the remainder being dissipated in a variety of mechanisms. The energy required to erode soil is defined as the product of the eroded mass and a resistance parameter which is the energy required to entrain unit mass of soil, denoted J (in J/kg), whose magnitude is sought. An effective component rate of jet energy consumption is defined which depends on depth of scour penetration by the jet, but not on soil type, or the uniformity of the soil type being investigated. Application of the theory depends on experimentally determining the spatial form of jet energy consumption displayed in erosion of a uniform body of soil, an approach of general application. The theory then allows determination of the soil resistance parameter J as a function of depth of scour penetration into any soil profile, thus evaluating such profile variation in erodibility as may exist. This parameter J has been used with the same meaning in soil and gully erosion studies for the last 25 years. Application of this approach will appear in a companion publication as part 2. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
This paper describes laboratory testing of 148 samples collected from Southern Alberta for erosion by wash and splash. Rainfall intensity was held constant during these tests. Soil aggregation was the most significant variable explaining soil loss. The significance of other soil properties, such as organic carbon and clay content is variable, depending on the interrelationships among aggregate stability, organic content, and clay content of particular soils. Variations in erodibility of the major soils examined are explained by the resistance of aggregates to compaction and dispersion. Splash detachment and wash transport are the dominant erosion mechanisms in inter-rill areas.  相似文献   

7.
The objective of this study was to examine the possibility of determining soil erodibility of loamy soils with small flumes. This was done by comparing the classification of soil erodibility obtained in the field with that obtained in the laboratory. Therefore twenty soils with a texture varying from silty loam to sandy loam were selected from the Leuven region. The erosion in the field was determined by measuring the volumetric evolution of the rill pattern. In the laboratory the soils were tested with a rainfall simulator and small flumes. The conclusion was that for loamy soils the flume experiments are a quick, simple, and reliable method for the determination of the relative soil erodibility.  相似文献   

8.
In agricultural basins of the southeastern coastal plain there are typically large disparities between upland soil erosion and sediment delivered to streams. This suggests that colluvial storage and redistribution of eroded soil within croplands is occurring, and/or that processes other than fluvial erosion are at work. This study used soil morphology and stratigraphy as an indicator of erosion and deposition processes in a watershed at Littlefield, North Carolina. Soil stratigraphy and morphology reflect the ways in which mass fluxes associated with cultivation transform the local soils. Fluvial, aeolian and tillage processes were all found to be active in the redistribution of soil. The soil transformations are of five general types. First, erosion and compaction in the cultivated area as a whole result in the thinning of Arenic and Grossarenic Paleudults and Paleaquults to form Arenic, Typic and Aquic Paleudults and Paleaquults. Second, redistribution of surficial material within the fields results in transitions between Arenic and Typic or Aquic subgroups as loamy sand A and E horizons are truncated or accreted. Third, aeolian deposition at forested field boundaries leads to the formation of compound soils with podzolized features. Fourth, sandy rill fan deposits at slope bases create cumulic soils distinct from the loamy sands of the source area or the darker, finer terrace soils buried by the fan deposits. Finally, tillage and fluvial deposition in upland depressions results in the gradual burial of Rains (poorly drained Typic Paleaquults) soils. Results confirm the importance of upland sediment storage and redistribution, and the role of tillage and aeolian processes as well as fluvial processes in the region. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Maize growth has great effects on soil properties and thus likely induces the changes in soil erosion resistance on sloping farmland. However, temporal variation of soil erosion resistance during the growth stages of maize is still unclear in the mountainous yellow soil area where maize is the dominant crop. In this study, four maize plots (MP) and four bare land plots (CK) were conducted to investigate soil erosion resistance, and multiple indicators of soil erosion resistance were measured including the total soil anti-scourability (TAS), mean weight diameter (MWD), soil erodibility K factor and soil shear strength (SH). A comprehensive soil erosion resistance index (CSERI) was employed to quantify the temporal variation of soil erosion resistance during the growth stages of maize (seedling stage, SS; jointing stage, JS; tasselling stage, TS; maturing stage, MS). The results showed that TAS, MWD, SH increased significantly with maize growth and SH decreased when at MS. But K factor decreased significantly over time. CSERI increased significantly during the growth stages of maize and the CSERI of JS, TS, MS increased on average by 74.72, 180.68 and 234.57% than that of SS. Compared to CK, CSERI of MP increased by 49.90, 66.82, 55.60 and 38.61% during the growth stages of maize. The temporal variation of soil erosion resistance was closely related to the changes in maize cover, maize roots and soil organic carbon. The findings demonstrated that it is necessary to consider the temporal variation of soil erosion resistance in the mountainous yellow soil area.  相似文献   

10.
The suspended sediment yields of two adjacent, paired, catchments on blanket peat in mid-Wales were compared before and after preafforestation drainage works. Catchment A was ploughed whilst an adjacent catchment (B) was left unploughed. After eight months Catchment B was also ploughed. The ploughing strategy in both catchments was designed to minimize sediment loss. However, suspended sediment loss increased 2·5 times following ploughing in Catchment A, whilst no such increase occurred at this time in Catchment B. Subsequently, suspended sediment yields in Catchment B increased 4·8 times after it was ploughed. Organic sediment was lost mainly from furrow sides, and erosion pins showed maximum ground recession in summer, due to peat wastage. Summer desiccation prepared sediment for transport, and organic suspended sediment loads were highest in the autumn. Sediment loads were limited by vegetation colonization and some reduction in sediment loss was due to the presence of unploughed strips adjacent to stream courses.  相似文献   

11.
The erosion rate of cohesive streambanks is typically modelled using the excess shear stress equation, dependent on two erodibility parameters: critical shear stress and erodibility coefficient. The jet erosion test (JET) has become the most common method for estimating these erodibility parameters in situ. Typically, results from a few JETs are averaged to acquire a single set of parameters for characterizing a streambank layer; however, this may be inadequate for accurately characterizing erodibility. The research objectives were to investigate the variability of JET results from assumed homogeneous streambank layers and to estimate the number of JETs required to accurately characterize erodibility for use in predictive models. On three unique streambanks in Oklahoma and across a range of erodibility, 20 to 30 JETs were conducted over a span of three days at each site. Unique to this research, each JET was analysed using the Blaisdell, scour depth and iterative solutions. The required sample size to accurately estimate the erodibility parameters depended on the JET solution technique, the parameter being estimated, and the degrees of precision and confidence. Conducting three to five JETs per soil layer on a streambank typically provided an order of magnitude estimate of the erodibility parameters. Because the parameters were log‐normally distributed, using empirical equations to predict erosion properties based on soil characteristics will likely contain high uncertainty and thus should be used with caution. This study exemplifies the need to conduct in situ measurements using the JET to accurately characterize streambank resistance to fluvial erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Near soil surface characteristics change significantly with vegetation restoration, and thus, restoration strategies likely affect soil erodibility. However, few studies have been conducted to quantify the effects of vegetation restoration strategies on soil erodibility in regions experiencing rapid vegetation restoration. This study was conducted to evaluate the effects of vegetation restoration strategies on soil erodibility, reflected by soil cohesion (Coh), penetration resistance (PR), saturated conductivity (Ks), number of drop impacts (NDI), mean weight diameter of soil aggregates (MWD), and soil erodibility K factor on the Loess Plateau. One slope farmland and five 25-year-restored lands covered by old world bluestem, korshinsk peashrub, shrub sophora, sea-buckthorn, and black locust were selected as test sites. The old world bluestem was restored via natural succession, while the other four lands were restored by artificial planting. A comprehensive soil erodibility index (CSEI) was produced by a weighted summation method to quantify the effects of vegetation restoration strategies on soil erodibility completely. The results showed that Coh, Ks, NDI, and MWD of the five restored lands were greater than those of the slope farmland. However, the PR and K of the five restored lands were less than those of the slope farmland. CSEI varied greatly under different restoration strategies, from 1 to 0.214. Compared with the control, these indices decreased on average by 68.2%, 78.6%, 72.7%, 75.8%, and 62.8% for old world bluestem, korshinsk peashrub, shrub sophora, sea-buckthorn, and black locust, respectively. The variation in soil erodibility was significantly influenced by biological crust thickness, bulk density, organic matter content, plant litter density, and root mass density. Shrub-lands via artificial planting, especially korshinsk peashrub, were considered the most effective restoration strategies to reduce soil erodibility on the Loess Plateau. The results are helpful for selecting vegetation restoration strategies and asking their benefits in controlling soil erosion. © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
In Mediterranean mountain agroecosystems, soil erosion associated with the development of ephemeral gullies is a common environmental problem that contributes to a loss of nutrient-rich topsoil. Little is known about the influence of ephemeral gully erosion on particle size distribution and its effect on soil organic (SOC) and inorganic (SIC) carbon among different sized soil particles in agricultural soils. In this study, laboratory tests were conducted using velocity settling tube experiments to examine the effects of erosion on sediment particle size distributions from an incised ephemeral gully, associated with an extreme event (235 mm). We also consider subsequent deposition on an alluvial fan in order to assess the distribution of SOC and SIC concentrations and dissolved carbon before and after the extreme event. Soil fractionation was carried out on topsoil samples (5 cm) collected along an ephemeral gully in a cultivated field, located in the lower part of a Mediterranean mountain catchment. The results of this study showed that the sediment transported downstream by runoff plays a key role in the particle size distribution and transportability of soil particles and associated carbon distribution in carbonate rich soils. The eroding sediment is enriched in clay and silt-sized particles at upslope positions with higher SOC contents and gradually becomes coarser and enriched in SIC at the end of the ephemeral gully because the finest particles are washed-out of the study field. The extreme event was associated with an accumulation of dissolved organic carbon at the distal part of the depositional fan. Assessment of soil particle distribution using settling velocity experiments provides basic information for a better understanding of soil carbon dynamics in carbonate rich soils. Processes of soil and carbon transport and relationships between soil properties, erodibility and aggregate stability can be helpful in the development of more accurate soil erosion models. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

15.
Mechanistic models have been proposed for soil piping and internal erosion on well‐compacted levees and dams, but limited research has evaluated these models in less compacted (more erodible) soils typical of hillslopes and streambanks. This study utilized a soil box (50 cm long, 50 cm wide and 20 cm tall) to conduct constant‐head, soil pipe and internal erosion experiments for two soils (clay loam from Dry Creek and sandy loam from Cow Creek streambanks) packed at uniform bulk densities. Initial gravimetric moisture contents prior to packing were 10, 12 and 14% for Dry Creek soil and 8, 12, and 14% for Cow Creek soil. A 1‐cm diameter rod was placed horizontally along the length of the soil bed during packing and carefully removed after packing to create a continuous soil pipe. A constant head was maintained at the inflow end. Flow rates and sediment concentrations were measured from the pipe outlet. Replicate submerged jet erosion tests (JETs) were conducted to derive erodibility parameters for repacked samples at the same moisture contents. Flow rates from the box experiments were used to calibrate the mechanistic model. The influence of the initial moisture content was apparent, with some pipes (8% moisture content) expanding so fast that limited data was collected. The mechanistic model was able to estimate equivalent flow rates to those observed in the experiments, but had difficulty matching observed sediment concentrations when the pipes rapidly expanded. The JETs predicted similar erodibility coefficients compared to the mechanistic model for the more erodible cases but not for the less erodible cases (14% moisture content). Improved models are needed that better define the changing soil pipe cross‐section during supply‐ and transport‐limited internal erosion, especially for piping through lower compacted (more erodible) soils as opposed to more well‐compacted soils resulting from constructing levees and dams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Temporal variations in soil erosion resistance are often the result of decreased soil cohesion due to physical disruption followed by a regain of soil strength through a process called aging, stabilization or consolidation. The goal of this study was to quantify changes in soil cohesion due to aging and subsurface hydrologic condition using a fluidized bed method. A flume experiment was also used to verify that findings from the fluidized bed experiment translated into measurable changes in soil erodibility. Tests were performed on three different soils (a Miami soil, a Cecil soil and Crosby–Miami soil complex). Changes in soil cohesion due to aging and drainage state were successfully detected by the fluidized bed technique. For all soils tested, cohesion developed in a two‐stage process where an increase in cohesion with aging duration immediately after the soil was rewetted, was followed by a decrease in cohesion which often started after 24 h of aging. When soils were aged at field capacity, the resulting cohesion measured by the fluidized bed method was on average 3.13 times higher than that measured when aging was performed at saturation. Trends in soil rill erodibility Kr with aging duration measured in the flume experiment were consistent with the two‐stage pattern observed in soil cohesion estimates but the legacy effect of suction applied at field capacity faded after 72 h of aging. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Our understanding of hydraulic properties of peat soils is limited compared with that of mineral substrates. In this study, we aimed to deduce possible alterations of hydraulic properties of peat soils following degradation resulting from peat drainage and aeration. A data set of peat hydraulic properties (188 soil water retention curves [SWRCs], 71 unsaturated hydraulic conductivity curves [UHCs], and 256 saturated hydraulic conductivity [Ks] values) was assembled from the literature; the obtained data originated from peat samples with an organic matter (OM) content ranging from 23 to 97 wt% (weight percent; and according variation in bulk density) representing various degrees of peat degradation. The Mualem‐van Genuchten model was employed to describe the SWRCs and UHCs. The results show that the hydraulic parameters of peat soils vary over a wide range confirming the pronounced diversity of peat. Peat decomposition significantly modifies all hydraulic parameters. A bulk density of approximately 0.2 g cm?3 was identified as a critical threshold point; above and below this value, macroporosity and hydraulic parameters follow different functions with bulk density. Pedotransfer functions based on physical peat properties (e.g., bulk density and soil depth) separately computed for bog and fen peat have significantly lower mean square errors than functions obtained from the complete data set, which indicates that not only the status of peat decomposition but also the peat‐forming plants have a large effect on hydraulic properties. The SWRCs of samples with a bulk density of less than 0.2 g cm?3 could be grouped into two to five classes for each peat type (botanical composition). The remaining SWRCs originating from samples with a bulk density of larger than 0.2 g cm?3 could be classified into one group. The Mualem‐van Genuchten parameter values of α can be used to estimate Ks if no Ks data are available. In conclusion, the derived pedotransfer functions provide a solid instrument to derive hydraulic parameter values from easily measurable quantities; however, additional research is required to reduce uncertainty.  相似文献   

18.
High mountainous areas are geomorphologically active environments which are strongly shaped by redistribution of sediments and soils. With the projected climate warming in the twenty-first century and the continued retreat of glaciers, the area of newly exposed, highly erodible sediments and soils will increase. This presents a need to better understand and quantify erosion processes in young mountainous soils, as an increase in erodibility could threaten human infrastructure (i.e. hydroelectric power, tourist installations and settlements). While soil development is increasingly well understood and quantified, a coupling to soil erosion rates is still missing. The aim of this study was, therefore, to assess how soil erosion rates change with surface age. We investigated two moraine chronosequences in the Swiss Alps: one in the siliceous periglacial area of Steingletscher (Sustenpass), with soils ranging from 30 a to 10 ka, and the other in the calcareous periglacial area of Griessgletscher (Klausenpass) with surfaces ranging from age of 110 a to 13.5 ka. We quantified the erosion rates using the 239+240Pu fallout radionuclides and compared them to physical and chemical soil properties and the vegetation coverage. We found no significant differences between the two parent materials. At both chronosequences, the erosion rates were highest in the young soils (on average 5−10 t ha-1 a-1 soil loss). Erosion rates decreased markedly after 3−5 ka of soil development (on average 1−2.5 t ha-1 a-1 soil loss) to reach a more or less stable situation after 10−14 ka (on average 0.3–2 t ha-1 a-1). Climate change not only causes glacier retreat, but also increased sediment dynamics. Depending on the relief and vegetational development, it takes up to at least 10 ka to reach soil stability. The establishment of a closed vegetation cover with dense root networks seems to be the controlling factor in the reduction of soil erodibility. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
P. I. A. Kinnell 《水文研究》2005,19(14):2815-2844
Raindrop‐impact‐induced erosion is initiated when detachment of soil particles from the surface of the soil results from an expenditure of raindrop energy. Once detachment by raindrop impact has taken place, particles are transported away from the site of the impact by one or more of the following transport processes: drop splash, raindrop‐induced flow transport, or transport by flow without stimulation by drop impact. These transport processes exhibit varying efficiencies. Particles that fall back to the surface as a result of gravity produce a layer of pre‐detached particles that provides a degree of protection against the detachment of particles from the underlying soil. This, in turn, influences the erodibility of the eroding surface. Good understanding of rainfall erosion processes is necessary if the results of erosion experiments are to be properly interpreted. Current process‐based erosion prediction models do not deal with the issue of temporal variations in erodibility during a rainfall event or variabilities in erodibility associated with spatial changes in dominance of the transport processes that follow detachment by drop impact. Although more complex erosion models may deal with issues like this, their complexity and high data requirement may make them unsuitable for use as general prediction tools. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
太湖丘陵地区典型坡面土壤侵蚀与养分流失   总被引:20,自引:1,他引:19  
曹慧  杨浩  赵其国 《湖泊科学》2002,14(3):242-246
建立了基于137Cs技术的土壤侵蚀的定量模型,采用有关土壤养分流失方程,对太湖地区典型坡面的土壤侵蚀和土壤养分流失进行初步估算.结果表明,研究地区的典型坡面存在着一定的土壤侵蚀,林地各个剖面点的土壤侵蚀模数平均为1313.6 t/(km2 @a),而菜地所在的微地貌部位土壤侵蚀更达5185.68 t/(km2 @a).土壤侵蚀主要受植被覆盖和人为耕作的影响,侵蚀量的大小排序为坡麓菜地>坡中马尾松林地>竹林地>坡顶马尾松林地.选择的典型坡面存在着一定的土壤养分流失,林地有机质、全氮、全磷与全钾的平均流失量亦分别高达28.29,1.38,0.35和16.76 t/(km2 @a),养分流失量大的地貌部位的土壤有机质、全氮、全磷和全钾含量低,而土壤侵蚀微弱的坡顶林地土壤养分含量较高.菜地土壤养分流失量最大,但由于施肥作用,土壤养分含最高.太湖丘陵地区的土壤侵蚀与养分流失不仅关系到本地区土壤肥力的退化,并对太湖水体环境质量的产生影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号