首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
By applying Birkhoff’s theorem to the problem of the general relativistic collapse of a uniform density dust, we directly show that the density of the dust ρ=0 even when its proper number density n would be assumed to be finite! The physical reason behind this exact result can be traced back to the observation of Arnowitt et al. (Phys. Rev. Lett. 4: 375, 1960) that the gravitational mass of a neutral point particle is zero: m=0. And since, a dust is a mere collection of neutral point particles, unlike a continuous hydrodynamic fluid, its density ρ=mn=0. It is nonetheless found that for k=?1, a homogeneous dust can collapse and expand special relativistically in the fashion of a Milne universe. Thus, in reality, general relativistic homogeneous dust collapse does not lead to the formation of any black hole in conformity of many previous studies (Logunov et al., Phys. Part. Nucl. 37: 317, 2006; Kiselev et al., Theor. Math. Phys. 164: 972, 2010; Mitra, J. Math. Phys. 50: 042502, 2009a; Suggett, J. Phys. A 12: 375 1979b). Interestingly, this result is in agreement with the intuition of Oppenheimer and Snyder (Phys. Rev. 56: 456, 1939) too:“Physically such a singularity would mean that the expressions used for the energy-momentum tensor does not take into account some essential physical fact which would really smooth the singularity out. Further, a star in its early stages of development would not possess a singular density or pressure, it is impossible for a singularity to develop in a finite time.”  相似文献   

2.
We present a preliminary analysis of X-ray data of quasars in the context of the 4D eigenvector 1 parameter space (Sulentic et al. 2000a, b). 4DE1 serves as a surrogate H-R diagram for representing empirical diversity among quasars and identifying the physical drivers of the diversity. The soft X-ray spectral index (Γsoft) was adopted as one of the key 4DE1 that correlates contrasting extremes in Type 1 properties. 4DE1 motivated the hypothesis of two quasar populations (A and B) divided by L/L EDD≈0.2. Pop. A is a largely radio-quiet population with FWHM H β<4000 km/s and often showing a soft X-ray excess. Pop. B is a mix of radio-quiet and a majority of RL quasars shows only a hard X-ray power-law SED. The X-ray separation was based upon earlier ROSAT and ASCA data but we now confirm this dichotomy with large samples of X-ray spectra obtained with XMM-Newton and SWIFT. One popular idea connects the soft excess in Pop. A quasars as a signature of thermal emission from a hot accretion disk in sources radiating close to the Eddington limit.  相似文献   

3.
Stark broadening parameters for nine neutral oxygen (O I) lines have been determined within the impact approximation and the semiclassical perturbation method. The atomic data have been taken from the TOPbase and NIST atomic databases. The electron and proton Stark widths and shifts and ion broadening parameter values for these O I lines have been calculated for electron density of 10 16 cm ?3 and for 4 different electron temperatures in the range of 5000 K to 40000 K. These Stark broadening parameters are compared with our previous results (Ben Nessib, N. et al. 1996, Physica Scripta, 54, 603–613), where we calculated Stark broadening parameters for only four O I spectral lines and where Stark widths and shifts were compared with experimental and theoretical data available in the literature. In the present paper, we have also compared our results with the Griem’s book (Griem, H. R. 1974, Spectral line broadening by plasmas) and VALD (Ryabchikova, T. et al. 2015, Physica Scripta, 90, 054005) values.  相似文献   

4.
The National Radio Astronomy Observatory's proposed Millimeter Array (MMA) will bring unprecedented sensitivity, angular resolution, and image dynamic range to the millimeter wavelength region of the spectrum. An obvious question is whether such an instrument could be used to detect planets orbiting nearby stars. The techniques of aperture synthesis imaging developed for centimeter wavelength radio arrays are capable of producing images whose dynamic ranges greatly exceed the brightness ratio of a solar-type star and a Jupiter-like planet at sub-millimeter or millimeter wavelengths. The angular resolution required to separate a star and planet at a few pc distance can be obtained with baselines of several km. The greatest challenge is sensitivity. At the highest possible observing frequencies ( 300 GHz for typical high, dry sites, and 900 GHz from the Antarctic plateau), the proposed MMA will be unable to detect the thermal emission from a Jupiter-like planet a few pc away. An upgraded MMA operating near 300 GHz with twice the currently proposed number of antennas, a 20% fractional bandwidth, and improved receivers could detect Jupiter at 4 pc in a few months. Building such an array on the Antarctic plateau and operating at 900 GHz would allow Jupiter at 4 pc to be detected in approximately one day of observing time.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

5.
In a previous paper (Hou et al. in Celest Mech Dyn Astron 119:119–142, 2014a), the problem of dynamical symmetry between two Jupiter triangular libration points (TLPs) with Saturn’s perturbation in the present configuration of the two planets was studied. A small short-time scale spatial asymmetry exists but gradually disappears with the time going, so the planar stable regions around the two Jupiter TLPs should be dynamically symmetric from a longtime perspective. In this paper, the symmetry problem is studied when the two planets are in migration. Several mechanisms that can cause asymmetries are discussed. Studies show that three important ones are the large short-time scale spatial asymmetry when Jupiter and Saturn are in resonance, the changing orbits of Jupiter and Saturn in the planet migration process, and the chaotic nature of Trojan orbits during the planet migration process. Their joint effects can cause an observable difference to the two Jupiter Trojan swarms. The thermal Yarkovsky effect is also found to be able to cause dynamical differences to the two TLPs, but generally they are too small to be practically observed.  相似文献   

6.
Our analysis in Papers I and II (Grechnev et al., Solar Phys. 289, 289, 2014b and Solar Phys. 289, 1279, 2014c) of the 18 November 2003 solar event responsible for the 20 November geomagnetic superstorm has revealed a complex chain of eruptions. In particular, the eruptive filament encountered a topological discontinuity located near the solar disk center at a height of about 100 Mm, bifurcated, and transformed into a large cloud, which did not leave the Sun. Concurrently, an additional CME presumably erupted close to the bifurcation region. The conjectures about the responsibility of this compact CME for the superstorm and its disconnection from the Sun are confirmed in Paper IV (Grechnev et al., Solar Phys. submitted, 2014a), which concludes about its probable spheromak-like structure. The present article confirms the presence of a magnetic null point near the bifurcation region and addresses the origin of the magnetic helicity of the interplanetary magnetic clouds and their connection to the Sun. We find that the orientation of a magnetic dipole constituted by dimmed regions with the opposite magnetic polarities away from the parent active region corresponded to the direction of the axial field in the magnetic cloud, while the pre-eruptive filament mismatched it. To combine all of the listed findings, we propose an intrinsically three-dimensional scheme, in which a spheromak-like eruption originates via the interaction of the initially unconnected magnetic fluxes of the eruptive filament and pre-existing ones in the corona. Through a chain of magnetic reconnections their positive mutual helicity was transformed into the self-helicity of the spheromak-like magnetic cloud.  相似文献   

7.
A number of studies, referring to the observed Trojan asteroids of various planets in our Solar System, or to hypothetical Trojan bodies in extrasolar planetary systems, have emphasized the importance of so-called secondary resonances in the problem of the long term stability of Trojan motions. Such resonances describe commensurabilities between the fast, synodic, and secular frequency of the Trojan body, and, possibly, additional slow frequencies produced by more than one perturbing bodies. The presence of secondary resonances sculpts the dynamical structure of the phase space. Hence, identifying their location is a relevant task for theoretical studies. In the present paper we combine the methods introduced in two recent papers (Páez and Efthymiopoulos in Celest Mech Dyn Astron 121(2):139, 2015; Páez and Locatelli in MNRAS 453(2):2177, 2015) in order to analytically predict the location of secondary resonances in the Trojan problem. In Páez and Efthymiopoulos (2015), the motion of a Trojan body was studied in the context of the planar Elliptic Restricted Three Body or the planar Restricted Multi-Planet Problem. It was shown that the Hamiltonian admits a generic decomposition \(H=H_b+H_{sec}\). The term \(H_b\), called the basic Hamiltonian, is a model of two degrees of freedom characterizing the short-period and synodic motions of a Trojan body. Also, it yields a constant ‘proper eccentricity’ allowing to define a third secular frequency connected to the body’s perihelion precession. \(H_{sec}\) contains all remaining secular perturbations due to the primary or to additional perturbing bodies. Here, we first investigate up to what extent the decomposition \(H=H_b+H_{sec}\) provides a meaningful model. To this end, we produce numerical examples of surfaces of section under \(H_b\) and compare with those of the full model. We also discuss how secular perturbations alter the dynamics under \(H_b\). Secondly, we explore the normal form approach introduced in Páez and Locatelli (2015) in order to find an ‘averaged over the fast angle’ model derived from \(H_b\), circumventing the problem of the series’ limited convergence due to the collision singularity at the 1:1 MMR. Finally, using this averaged model, we compute semi-analytically the position of the most important secondary resonances and compare the results with those found by numerical stability maps in specific examples. We find a very good agreement between semi-analytical and numerical results in a domain whose border coincides with the transition to large-scale chaotic Trojan motions.  相似文献   

8.
We summarize the results of our long-term program to study the kinematics, morphology, and physical properties of warm partially ionized interstellar gas located within 100 pc of the Sun. Using the Space Telescope Imaging Spectrograph (STIS) and other spectrographs on the Hubble Space Telescope (HST), we measure radial velocities of neutral and singly ionized atoms that identify comoving structures (clouds) of warm interstellar gas. We have identified 15 of these clouds located within 15 pc of the Sun. Each of them moves with a different velocity vector, and they have narrow ranges of temperature, turbulence, and metal depletions. We compute a three-dimensional model for the Local Interstellar Cloud (LIC), in which the Sun is likely embedded near its edge, and the locations and shapes of the other nearby clouds. These clouds are likely separated by ionized Strömgren sphere gas produced by ? CMa, Sirius B, and other hot white dwarfs. We propose that some of these partially ionized clouds are shells of the Strömgren spheres.  相似文献   

9.
Rapidly moving transient features have been detected in magnetic and Doppler images of super-active region NOAA 10486 during the X17/4B flare of 28 October 2003 and the X10/2B flare of 29 October 2003. Both these flares were extremely energetic white-light events. The transient features appeared during impulsive phases of the flares and moved with speeds ranging from 30 to 50 km?s?1. These features were located near the previously reported compact acoustic (Donea and Lindsey, Astrophys. J. 630, 1168, 2005) and seismic sources (Zharkova and Zharkov, Astrophys. J. 664, 573, 2007). We examine the origin of these features and their relationship with various aspects of the flares, viz., hard X-ray emission sources and flare kernels observed at different layers: i) photosphere (white-light continuum), ii) chromosphere (Hα 6563 Å), iii) temperature minimum region (UV 1600 Å), and iv) transition region (UV 284 Å).  相似文献   

10.
The spherical and ellipsoidal harmonic series of the external gravitational potential for a given mass distribution are equivalent in their mutual region of uniform convergence. In an instructive case, the equality of the two series on the common coordinate surface of an infinitely large sphere reveals the exact correspondence between the spherical and ellipsoidal harmonic coefficients. The transformation between the two sets of coefficients can be accomplished via the numerical methods by Walter (Celest Mech 2:389–397, 1970) and Dechambre and Scheeres (Astron Astrophys 387:1114–1122, 2002), respectively. On the other hand, the harmonic coefficients are defined by the integrals of mass density moments in terms of the respective solid harmonics. This paper presents general algebraic formulas for expressing the solid ellipsoidal harmonics as a linear combination of the corresponding solid spherical harmonics. An exact transformation from spherical to ellipsoidal harmonic coefficients is found by incorporating these connecting expressions into the density integral. A computational procedure is proposed for the transformation. Numerical results based on the nearly ellipsoidal Martian moon, Phobos, are presented for validation of the method.  相似文献   

11.
We present a new spectroscopic sample of 11 quasars at intermediate redshift observed with the Infrared Spectrometer and Array Camera (ISAAC) on the ESO Very Large Telescope (VLT), covering O i λ8446 and the Ca ii triplet 8498, 8542, 8662. The new observations – that supplement the sample presented by Martínez-Aldama et al. (2015) – allow us to confirm the constraints on physical conditions and location of the region emitting the low ionization lines, as well as the relation between Ca ii and Fe ii.  相似文献   

12.
Long-lived (>20 days) sunspot groups extracted from the Greenwich Photoheliographic Results (GPR) are examined for evidence of decadal change. The problem of identifying sunspot groups that are observed on consecutive solar rotations (recurrent sunspot groups) is tackled by first constructing manually an example dataset of recurrent sunspot groups and then using machine learning to generalise this subset to the whole GPR. The resulting dataset of recurrent sunspot groups is verified against previous work by A. Maunder and other Royal Greenwich Observatory (RGO) compilers. Recurrent groups are found to exhibit a slightly larger value for the Gnevyshev?–?Waldmeier Relationship than the value found by Petrovay and van Driel-Gesztelyi (Solar Phys. 51, 25, 1977), who used recurrence data from the Debrecen Photoheliographic Results. Evidence for sunspot-group lifetime change over the previous century is observed within recurrent groups. A lifetime increase of a factor of 1.4 between 1915 and 1940 is found, which closely agrees with results from Blanter et al. (Solar Phys. 237, 329, 2006). Furthermore, this increase is found to exist over a longer period (1915 to 1950) than previously thought and provisional evidence is found for a decline between 1950 and 1965. Possible applications of machine-learning procedures to the analysis of historical sunspot observations, the determination of the magnetic topology of the solar corona and the incidence of severe space–weather events are outlined briefly.  相似文献   

13.
Magnetohydrostatic models of the solar atmosphere are often based on idealized analytic solutions because the underlying equations are too difficult to solve in full generality. Numerical approaches, too, are often limited in scope and have tended to focus on the two-dimensional problem. In this article we develop a numerical method for solving the nonlinear magnetohydrostatic equations in three dimensions. Our method is a fixed-point iteration scheme that extends the method of Grad and Rubin (Proc. 2nd Int. Conf. on Peaceful Uses of Atomic Energy 31, 190, 1958) to include a finite gravity force. We apply the method to a test case to demonstrate the method in general and our implementation in code in particular.  相似文献   

14.
We present an extension of the formalism recently proposed by Pepper and Gaudi to evaluate the yield of transit surveys in homogeneous stellar systems, incorporating the impact of correlated noise on transit time-scales on the detectability of transits, and simultaneously incorporating the magnitude limits imposed by the need for radial velocity (RV) follow-up of transit candidates. New expressions are derived for the different contributions to the noise budget on transit time-scales and the least-squares detection statistic for box-shaped transits, and their behaviour as a function of stellar mass is re-examined. Correlated noise that is constant with apparent stellar magnitude implies a steep decrease in detection probability at the high -mass end which, when considered jointly with the RV requirements, can severely limit the potential of otherwise promising surveys in star clusters. However, we find that small-aperture, wide-field surveys may detect hot Neptunes whose RV signal can be measured with present-day instrumentation in very nearby (<100 pc) clusters.  相似文献   

15.
Optical polarimetry is suggested as a new method for detecting “hot Jupiter” planets around stars. The polarimetric search method has been tested experimentally; for this purpose, the necessary astronomical observations and their processing have been performed. The results obtained allow us to assert with caution that the suggested method yields positive results and can be of use both in searching for exoplanets and in refining their masses. According to our results, a tangential transit of the planet 51 Peg b may be observed. The angle between the orbital plane of 51 Peg b and the observer’s direction must then be small, sin i ≈ 1, and the mass of 51 Peg b must be close to 0.46 M J (Jupiter mass).  相似文献   

16.
To identify temporal variations of the characteristics of Jupiter’s cloud layer, we take into account the geometric modulation caused by the rotation of the planet and planetary orbital motion. Inclination of the rotation axis to the orbital plane of Jupiter is 3.13°, and the angle between the magnetic axis and the rotation axis is β ≈ 10°. Therefore, over a Jovian year, the jovicentric magnetic declination of the Earth φ m varies from–13.13° to +13.13°, and the subsolar point on Jupiter’s magnetosphere is shifted by 26.26° per orbital period. In this connection, variations of the Earth’s jovimagnetic latitude on Jupiter will have a prevailing influence in the solar-driven changes of reflective properties of the cloud cover and overcloud haze on Jupiter. Because of the orbit eccentricity (e = 0.048450), the northern hemisphere receives 21% greater solar energy inflow to the atmosphere, because Jupiter is at perihelion near the time of the summer solstice. The results of our studies have shown that the brightness ratio A j of northern to southern tropical and temperate regions is an evident factor of photometric activity of Jupiter’s atmospheric processes. The analysis of observational data for the period from 1962 to 2015 reveals the existence of cyclic variations of the activity factor A j of the planetary hemispheres with a period of 11.86 years, which allows us to talk about the seasonal rearrangement of Jupiter’s atmosphere.  相似文献   

17.
We analyze the encounters of the neutron star (pulsar) Geminga with open star clusters in the OB association Ori OB1a through the integration of epicyclic orbits into the past by taking into account the errors in the data. The open cluster ASCC21 is shown to be the most probable birthplace of either a single progenitor star for the Geminga pulsar or a binary progenitor system that subsequently broke up. Monte Carlo simulations of Geminga-ASCC21 encounters with the pulsar radial velocity V r = ?100±50 km s?1 have shown that close encounters could occur between them within ≤10 pc at about t = ?0.52 Myr. In addition, the trajectory of the neutron star Geminga passes at a distance of ≈25 pc from the center of the compact OB association λ Ori at about t = ?0.39 Myr, which is close to the age of the pulsar estimated from its timing.  相似文献   

18.
A search has been carried out for the presence of rotational lines of two bands of the (0, 0) and (1, 1) A 1Π?–?X 1Σ+ system of the AlH molecule in the high resolution Fourier Transform Spectra of sunspots observed at the National Solar Observatory at Kitt Peak. Though the presence of the AlH molecule in sunspots was confirmed by Wallace, Hinkle, and Livingston (An Atlas of Sunspot Umbral Spectra in the Visible from 15?000 to 25?000 cm?1 (3920 to 6664 Å), Tech. Rep. 00-001, National Solar Observatory, Tucson, AZ, 2000), there is no report on the rotational temperature in the literature by identifying AlH molecular lines. The results obtained in this new search using a suitable identification technique are compared with the results reported by Wallace, Hinkle, and Livingston (2000). In view of the fact that the rotational temperatures of the molecules could be used to test photospheric and sunspot models, the effective rotational temperature for the (0, 0) band of the A?–?X system of AlH molecule is estimated by measuring the equivalent widths of well resolved spectral lines and its value justifies the existence of the AlH molecule in sunspots.  相似文献   

19.
The gravitational interaction between two objects on similar orbits can effect noticeable changes in the orbital evolution even if the ratio of their masses to that of the central body is vanishingly small. Christou (Icarus 174:215–229, 2005) observed an occasional resonant lock in the differential node \(\varDelta \varOmega \) between two members in the Himalia irregular satellite group of Jupiter in the N-body simulations (corresponding mass ratio \(\sim 10^{-9}\)). Using a semianalytical approach, we have reproduced this phenomenon. We also demonstrate the existence of two additional types of resonance, involving angle differences \(\varDelta \omega \) and \(\varDelta (\varOmega +\varpi )\) between two group members. These resonances cause secular oscillations in eccentricity and/or inclination on timescales \(\sim \)1 Myr. We locate these resonances in (aei) space and analyse their topological structure. In subsequent N-body simulations, we confirm these three resonances and find a fourth one involving \(\varDelta \varpi \). In addition, we study the occurrence rates and the stability of the four resonances from a statistical perspective by integrating 1000 test particles for 100 Myr. We find \(\sim \)10 to 30 librators for each of the resonances. Particularly, the nodal resonance found by Christou is the most stable: 2 particles are observed to stay in libration for the entire integration.  相似文献   

20.
The Generalized Uncertainty Principle (or GUP) affects the dynamics in Plank scale. So the known equations of physics are expected to get modified at that very high energy regime. Very recently authors in Ali et al. (Phys. Lett. B 678:497, 2009) proposed a new Generalized Uncertainty Principle (or GUP) with a linear term in Plank length. In this article, the proposed GUP is expressed in a more general form and the effect is studied for the modification of the Friedmann equations of the FRW universe. In the midway the known entropy-area relation get some new correction terms, the leading order term being proportional to \(\sqrt{\mathrm{Area}}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号