首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Precambrian Research》2004,128(1-2):167-188
Thirty-nine oriented block samples of iron-formation were collected at 13 sites, including opposite limbs of major folds, from the 1.88-Ga Sokoman Formation (Knob Lake Group) in the Schefferville–Knob Lake area of the central New Québec Orogen, northern Québec. The samples assayed up to 80.24% Fe2O3T (54.08% Fe), implying Fe-enrichment of the iron-formation up to ore grade. Anisotropy of magnetic susceptibility measurements on 245 standard specimens indicate a well preserved bedding-parallel fabric in the iron-formation, suggesting minimal alteration of the magnetic mineralogy since deposition and/or a mimetic secondary magnetic mineralogy. The iron-formation has not been internally deformed since the magnetic mineralogy was established. Analyses by variable-field translation balance and X-ray diffraction showed that the predominant magnetic mineral is hematite but a small amount of magnetite also is present in most samples. Following low-temperature pre-treatment as appropriate, stepwise thermal and alternating-field demagnetization of 218 specimens revealed a low-temperature, post-folding component (maximum Tub≈400 °C, D=27.1°, I=20.1°, α95=10.9°, from seven sites; pole position of 40.6°S, 257.0°E), and components carried by magnetite (maximum Tub≈580 °C, D=35.8°, I=3.9°, α95=9.1°, from 10 sites; pole position of 29.6°S, 250.9°E) and hematite (maximum Tub≈680 °C, D=40.0°, I=1.6°, α95=18.6°, from seven sites; pole position of 26.8°S, 247.0°E). The components carried by magnetite and hematite are pre-, syn- and post-folding depending on the sampling site, indicating that the magnetization was acquired continuously with deformation in the New Québec Orogen at 1.84–1.83 Ga. No evidence was found for acquisition of magnetization during the Mesozoic, when many of the iron oxide orebodies in the Schefferville–Knob Lake area are thought to have formed. Our findings imply that an episode of Fe-enrichment of iron-formation in the Sokoman Formation involved the circulation of hydrothermal fluids related to late Paleoproterozoic orogenesis. Such orogenic circulation of fluids may have contributed to the development of hematitic orebodies in the central New Québec Orogen.  相似文献   

2.
In northwestern Canada, iron-formation occurs as part of the Rapitan Group, a dominantly sedimentary succession of probable Late Precambrian age. The Rapitan Group contains abundant evidence of glaciogenic deposition. It includes massive mixtites which contain numerous faceted and striated clasts. Finely bedded and laminated sedimentary rocks of the Lower Rapitan contain many large isolated (ice-rafted?) intra- and extra-basinal clasts. The Lower and Middle Rapitan are interpreted as products of a glacial marine regime. The iron-formation is interbedded with thin mixtite beds and contains large exotic clasts which are probably indicative of the existence of floating ice at the time of deposition of at least part of the iron-formation. If the apparently low paleolatitudes are confirmed, then glacial marine interpretation of the Rapitan, and the probably correlative Toby Conglomerate of southern British Columbia, support the postulate of a very extensive Late Precambrian ice sheet in North America.Similar iron-formations of similar age are present in South America (Jacadigo Series), in South-West Africa (Damara Supergroup) and in South Australia (Yudnamutana Sub-Group). All of these iron-formations are associated with glaciogenic rocks. In addition to the iron-formations, dolostones, limestones and evaporites (?) are intimately associated with Late Precambrian mixtites, considered by many to be glaciogenic.Huronian (Early Proterozoic) and correlative sequences of North America, and rocks of similar age in South Africa also contain closely juxtaposed undoubted glaciogenic rocks, iron-formations, dolostones and aluminous quartzites. The dolostones and aluminous sedimentary rocks have been interpreted as having formed under warm climatic conditions, but might also be explained by invoking higher PCO2 levels in the Early Proterozoic atmosphere. By analogy with the Huronian succession, preservation of “warm climate” indicators in mixtite-bearing Late Precambrian sequences does not preclude a glacial origin for the mixtites.  相似文献   

3.
The phase relations of Al- and Fe-bearing silicates in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-CO2, in the presence of quartz and magnetite, are discussed on the basis of mineralogic and petrologic data from Precambrian iron-formations and blueschist facies meta-ironstone from the Franciscan Formation, California. These relations allow an estimation of the physiochemical conditions during low-grade metamorphism of iron-formations. Petrologic data together with available experimental and predicted thermodynamic data on the associated minerals place the upper stability limit of stilpnomelane in iron-formations at about 430–470° C and 5–6 kilobars. Fe-end member stilpnomelane can persist to a maximum temperature of 500° C and pressures up to 6–7 kilobars, although it is unlikely to occur in metamorphosed iron-formations. In iron-formation occurrences the stilpnomelane stability field is bordered by four equilibrium reactions with the assemblages stilpnomelane-zussmanite-chlorite-minnesotaite, stilpnomelane-zussmanite-chlorite-grunerite, stilpnomelane-biotite-chlorite-grunerite, and stilpnomelane-biotite-almandine-grunerite. The stability field is reduced by increasing X(CO2) and X Mg Stil , and is also a function of a(K +)/ a(H +) in the metamorphic fluid. If the value of a(K +)/ a(H +) is smaller than that defined by the above assemblages, stilpnomelane decomposes to chlorite, but if larger, it is replaced by biotite. At pressures less than 4 kilobars, the zussmanite field is restricted to a very high value of a(K +)/a(H +) (> 5.0 in log units at 1.0 kilobar) where iron-formation assemblages are not stable.  相似文献   

4.
This investigation deals with the Nigerian iron-formations and their host rocks and is based on about 560 mineral analyses (electron-microprobe) and 93 whole-rock analyses (64 iron-formations and 29 host rocks). The manganese-rich and Al-bearing iron-formations occurring in various schist belts of the northern and southern part of West-Nigeria consist of the magnetite-free silicate, the magnetite–silicate and the quartz-rich hematite facies.Iron-formations and host rocks originated from submarine-volcanogenic exhalations enriched in Fe, Mn and CO2 and from Al2O3, SiO2 and alkali (K2O and Na2O)-rich continental-derived pelitic to psammitic material. From these sources and their interaction and controlled by the volcanogenic activity, differently composed protoliths were deposited in the marine basin during the Birimian time. Subsequent metamorphism of greenschist to low amphibolite facies conditions during the Eburnian time led to the formation of the metaprotoliths of the magnetite–silicate (consisting of predominantly magnetite and quartz and subordinate of garnet and amphibole), the silicate facies (consisting of garnet, amphibole and rarely Mn-bearing ilmenite and quartz) and the metasediment phyllite. Garnets are predominantly almandine–spessartine solid solutions, whereas amphiboles are Mn and Ca-bearing grunerite–cummingtonite solid solutions. In the course of a second tectono-metamorphic event of Pan-African age, the magnetite–silicate facies iron-formation/phyllite association was transformed into the hematite facies and muscovite/biotite schists, whereas the silicate facies is characterized by extensive silicification features. The hematite facies and the silicified silicate facies are restricted to southern Nigeria where the second and heterogeneous tectono-metamorphic event is more pronounced (amphibolite facies conditions) than in northern Nigeria.The genesis, summarized as the metamorphic model, shows that the carbonate-rich (siderite, rhodochrosite and subordinate magnesite and calcite) protoliths were metamorphically transformed into the silicate and magnetite–silicate facies. The separation of Mn and Fe, leading to manganese-bearing iron-formations and iron-bearing manganese-formations was explained by varying pH-conditions, under which siderite (pH: 6.8–9.4) and rhodochrosite (pH: 9–11) precipitated.Similar to the Gunfit and Biwabik iron-formations of Minnesota, USA, the iron-formation of Bingi (Maru schist belt), now present in the form of the fayalite bearing silicate facies, was overprinted by contact metamorphism caused by a gabbro intrusion.  相似文献   

5.
The chemical composition of surface water in the photic zone of the Precambrian ocean is almost exclusively known from studies of stromatolitic carbonates, while banded iron formations (IFs) have provided information on the composition of deeper waters. Here we discuss the trace element and Nd isotope geochemistry of very shallow-water IF from the Pongola Supergroup, South Africa, to gain a better understanding of solute sources to Mesoarchean shallow coastal seawater. The Pongola Supergroup formed on the stable margin of the Kaapvaal craton ∼2.9 Ga ago and contains banded iron formations (IFs) that represent the oldest documented Superior-type iron formations. The IFs are near-shore, pure chemical sediments, and shale-normalized rare earth and yttrium distributions (REYSN) exhibit positive LaSN, GdSN, and YSN anomalies, which are typical features of marine waters throughout the Archean and Proterozoic. The marine origin of these samples is further supported by super-chondritic Y/Ho ratios (average Y/Ho = 42). Relative to older Isua IFs (3.7 Ga) from Greenland, and younger Kuruman IFs (2.5 Ga) also from South Africa, the Pongola IFs are depleted in heavy rare earth elements (HREE), and appear to record variations in solute fluxes related to sea level rise and fall. Sm-Nd isotopes were used to identify potential sediment and solute sources within pongola shales and IFs. The ?Nd(t) for Pongola shales ranges from −2.7 to −4.2, and ?Nd(t) values for the coeval iron-formation samples (range −1.9 to −4.3) are generally indistinguishable from those of the shales, although two IF samples display ?Nd(t) as low as −8.1 and −10.9. The similarity in Nd isotope signatures between the shale and iron-formation suggests that mantle-derived REY were not a significant Nd source within the Pongola depositional environment, though the presence of positive Eu anomalies in the IF samples indicates that high-T hydrothermal input did contribute to their REY signature. Isotopic mass balance calculations indicate that most (?72%) of the Nd in these seawater precipitates was derived from continental sources. If previous models of Fe-Nd distributions in Archean IFs are applied, then the Pongola IFs suggest that continental fluxes of Fe to Archean seawater were significantly greater than are generally considered.  相似文献   

6.
Seven units of carbonaceous shale or sulphide-facies iron-formation have been sampled. They are associated with Proterozoic iron-formations that range in age from ~ 1.9 to ~2.5 Ga: Sokoman and Gunflint (Canada), Riverton (United States), Penge (South Africa) and Brockman (Australia). Sulphur isotope ratios have been determined on the sulphides removed from these shales by both physical and chemical means.The mean δ34S composition of the seven units varies between ?4.9%. and +6.6%. and the sample variance is low within each unit. These distributions are more characteristic of hydrothermal sulphide than sulphide produced by biogenic reduction. This hydrothermal sulphide is believed to have originated from high temperature reduction of seawater sulphate and from magmatic sulphide. A model is suggested whereby this sulphide was exhaled into stratified anoxic/oxic basins. The sulphide and associated base metals were deposited in the reduced sediments beneath the anoxic waters, while some iron and manganese was deposited on oxygenated shelves.The data support, but do not prove, a hydrothermal exhalative origin for lower Proterozoic iron-formation.  相似文献   

7.

The process of gas exchange of CO2 in the atmosphere–water system and its relation to the daily course of variable fluorescence of phytoplankton is studied on the basis of long-term (2004–2014) measurements during the open water period for Lake Baikal. It is found that the decrease in photosynthetic activity of plankton is almost synchronous to the increase in the CO2 flux from atmosphere to water. It follows from comparison of the spring and summer data with December measurements that the daily decrease in variable fluorescence of phytoplankton is caused by the internal daily rhythm of the photosynthetic activity of plankton.

  相似文献   

8.
In the pre-3.7 Ga old Isua supracrustal belt, West Greenland, a banded iron-formation occurs. The iron-formation can be subdivided into different facies according to composition and mineralogy, and these facies resemble the facies subdivision of younger Archaean and Precambrian iron-formations. The geochemistry of the Isua iron-formation indicates that the secular variation in the contents of phosphorus, calcium and aluminium as well as the Na/K ratios of Precambrian iron-formations can be extended into the Early Archaean. A remarkable feature of the Isua iron-formation is the high chalcopyrite/iron-sulphide ratio. Field relationships and geochemical evidence indicate that the iron-formation is mainly of submarine-exhalative origin from brines of basaltic pedigree.  相似文献   

9.
ABSTRACT

The present study deals with the determination of passive earth pressure under seismic condition by following the lower bound finite elements limit analysis and modified pseudo-dynamic methodology. In accordance with the lower bound finite elements formulation, the stress field was modelled using a three-noded triangular elements, while the passive pressure was determined via linear optimisation. The parametric study was performed, for a vertical rigid retaining wall, by varying the magnitude of seismic acceleration in horizontal direction (kh) between 0 and 0.3, while the vertical seismic acceleration (kv) was kept equal to 0 or 0.5 kh. Furthermore, the damping coefficient for dry cohesionless backfill was kept ξ = 10%. The obtained results in various cases were found to be in good agreement with those found in the literature. It is expected that this method can be further used for solving other important geotechnical stability problems.  相似文献   

10.
The Imataca Complex in an area near Cerro Bolivar, Venezuela, consists of a conformable, predominantly acid, compositionally-intergradational, sequence of acid, intermediate and mafic granulites, granitic gneisses and amphibolites with minor iron-formation and other metasedimentary interlayers.Major- and trace-element compositions of granulites, granitic gneisses, and amphibolites, and compositional relations in pyroxenes and irontitanium oxides indicate an igneous protolith. Pyroxenes and oxides in the granulites appear to be relict igneous phases, and record TfO2 of original igneous crystallization, despite high-grade metamorphism. Mineral thermometers in granitic gneisses (biotite, FeTi oxides) and in metasedimentary biotite gneisses (cordieritegarnet, FeTi oxides) indicate metamorphic TPT of 625–675°C, 4–6.5 kbar.Major- and trace-element variations in meta-igneous granulites, granitic gneisses, and amphibolites are calc-alkaline in character, and the sequence, particularly in its predominantly acid composition, most closely resembles continental (i.e., “Andean”) calc-alkaline series. Mafic granulites and amphibolites, however, are tholeiitic and relatively iron-rich.The compositional similarity between the Imataca series and other granulite series raises the possibility that acidic calc-alkaline continental volcanism may be more important in the Archean than recent emphasis on greenstones and island-arc oceanic types of volcanism would suggest.  相似文献   

11.

This work presents the results of studying srilankite, a rare zirconium titanate (ZrTi2O6), associated with ilmenite, rutile, zircon, uraninite, and other minerals discovered in high-pressure garnetites of the lherzolite Mindyak massif (Southern Urals). Srilankite occurs as inclusions in ilmenite and rutile of up to several tens of microns in size. It was established for the first time that srilankite contains a significant UO2 admixture (up to 20%). The negative correlation between Zr and U is evidence of isomorphism in the srilankite–brannerite system. The association of srilankite with high-Zr rutile indicates that formation of these minerals occurred at T > 850°С.

  相似文献   

12.
Khan  Irum  Saqib  Muhammad  Hafidi  Houda 《GeoJournal》2021,86(2):663-677

The study examines the relationship between poverty and forest cover degradation in rural areas of Pakistan. The area selected for the study District Upper Dir is a rural and relatively backward region located in northwestern Pakistan, in Khyber-Pakhtunkhwa province. The study area is undergoing severe deforestation and natural disasters in the recent past. The study consists of two stages, in first stage the traditional Geographical information system image was used to analyze the spatial–temporal situation of the surroundings. In the second stage, well-designed questionnaire was used to collect the primary information from 420 randomly selected households of research areas. A multidimensional poverty index has been used to measure the poverty profile of the population. It has been found that 55% households were below the poverty line. Almost, 95% households are using wood for cooking purposes. High dependence on natural resources causes forest cover degradation while burning off too much wood causes CO2 emission and leads to environmental degradation. A major portion of population is living on steeply sloped areas with certain risks. It is found that frequency of flash flood is 53% and agricultural land (54%) is at high risk and often flows with flash floods. It is concluded that there is strong correlation between multidimensional poverty and forest cover degradation which leads to climate and environmental risks.

  相似文献   

13.
The Marda complex is a sequence of andesitic to dacitic to rhyolitic volcanic rocks filling a synformal structure in submarine basalt, banded iron-formation and siliceous sediments in the Archaean Yilgarn Block of Western Australia. The Marda volcanic rocks are in part subaerial and exhibit calc-alkaline chemistry. Their Rb/Sr age is 2635 ± 80 m.y. with an initial Sr87Sr86 ratio of 0.7029 ± 0.0015. The Marda lavas represent products of a differentiated late to syn-tectonic, anatectic magma derived from the base of the Archaean crust. Calc-alkaline volcanic complexes are uncommon in the Yilgarn Block.  相似文献   

14.
《Ore Geology Reviews》2008,33(3-4):629-650
In the Raposos orogenic gold deposit, hosted by banded iron-formation (BIF) of the Archean Rio das Velhas greenstone belt, the hanging wall rocks to BIF are hydrothermally-altered ultramafic schists, whereas metamafic rocks and their hydrothermal schistose products represent the footwall. Planar and linear structures at the Raposos deposit define three ductile to brittle deformational events (D1, D2 and D3). A fourth group of structures involve spaced cleavages that are considered to be a brittle phase of D3. The orebodies constitute sulfide-bearing D1-related shear zones of BIF in association with quartz veins, and result from the sulfidation of magnetite and/or siderite. Pyrrhotite is the main sulfide mineral, followed by lesser arsenopyrite and pyrite. At level 28, the hydrothermal alteration of the mafic and ultramafic wall rocks enveloping BIF define a gross zonal pattern surrounding the ore zones. Metabasalt comprises albite, epidote, actinolite and lesser Mg/Fe–chlorite, calcite and quartz. The incipient stage includes the chlorite and chlorite-muscovite alteration zone. The least-altered ultramafic schist contains Cr-bearing Mg-chlorite, actinolite and talc, with subordinate calcite. The incipient alteration stage is subdivided into the talc–chlorite and chlorite–carbonate zone. For both mafic and ultramafic wall rocks, the carbonate–albite and carbonate–muscovite zones represent the advanced alteration stage.Rare earth and trace element analyses of metabasalt and its alteration products suggest a tholeiitic protolith for this wall rock. In the case of the ultramafic schists, the precursor may have been peridotitic komatiite. The Eu anomaly of the Raposos BIF suggests that it was formed proximal to an exhalative hydrothermal source on the ocean floor. The ore fluid composition is inferred by hydrothermal alteration reactions, indicating it to having been H2O-rich containing CO2 + Na+ and S. Since the distal alteration halos are dominated by hydrated silicate phases (mainly chlorite), with minor carbonates, fixation of H2O is indicated. The CO2 is consumed to form carbonates in the intermediate alteration stage, in halos around the chlorite-dominated zones. These characteristics suggest variations in the H2O to CO2-ratio of the sulfur-bearing, aqueous-carbonic ore fluid, which interacted at varying fluid to rock ratios with progression of the hydrothermal alteration.  相似文献   

15.
Salamate  F.  Khay  I.  Ferricha-Alami  M.  Chakir  H.  Bennai  M. 《Astronomy Reports》2019,63(12):990-997

The D-term inflation in supergravity, in the braneworld Randall Sundrum II (RSII) context, has been proposed to solve some problems related to the four-dimensional inflation model. That scenario is based on a modification of the Friedmann equation by the addition of the fifth dimension, which corresponds to an energy, called brane tension λ. Therefore, we propose the investigation of the brane effect on the reheating epoch. In this context, we have analyzed the process of reheating and focused on the variation of the temperature value Tre. We found that it depends on all parameters, and the value found is in the range Tre ∼ (7.5 × 108−8 × 1010) GeV, which is consistent with the thermal leptogenesis (Tre ≥ 108 GeV).

  相似文献   

16.
Zusammenfassung Im System KFeSi3O8–KAlSi3O8 wird eine Mischungslücke gefunden, welche den Bereich von 10–60 Mol. % K-Fe-Feldspat umfaßt. Die Mischkristalle links und rechts der Mischungslücke verhalten sich ähnlich wie ihre benachbarten Endglieder. Das Fehlen von intermediären Phasen auf der Eisenseite und die Mischungslücke machen es wahrscheinlich, daß das Verhalten des K-Fe-Feldspates nicht auf das Verhalten des K-Al-Feldspates extrapoliert werden darf.
Summary In the system KFeSi3O8–KAlSi3O8 a miscibility-gap is found from 10 to 60 Mol.% K-Fe-felspar. The mixed crystals on the right and left side of the miscibility-gap show a behaviour similar to the corresponding end-members. The lack of intermediate phases on the iron-side and the miscibility-gap make probable that one cannot extrapolate the behaviour of the K-Fe-felspar to the behaviour of the K-Al-felspar.


Mit 3 Textabbildungen

Herrn Professor Dr.F. Machatschki zum 70. Geburtstag gewidmet.  相似文献   

17.
In the Raposos orogenic gold deposit, hosted by banded iron-formation (BIF) of the Archean Rio das Velhas greenstone belt, the hanging wall rocks to BIF are hydrothermally-altered ultramafic schists, whereas metamafic rocks and their hydrothermal schistose products represent the footwall. Planar and linear structures at the Raposos deposit define three ductile to brittle deformational events (D1, D2 and D3). A fourth group of structures involve spaced cleavages that are considered to be a brittle phase of D3. The orebodies constitute sulfide-bearing D1-related shear zones of BIF in association with quartz veins, and result from the sulfidation of magnetite and/or siderite. Pyrrhotite is the main sulfide mineral, followed by lesser arsenopyrite and pyrite. At level 28, the hydrothermal alteration of the mafic and ultramafic wall rocks enveloping BIF define a gross zonal pattern surrounding the ore zones. Metabasalt comprises albite, epidote, actinolite and lesser Mg/Fe–chlorite, calcite and quartz. The incipient stage includes the chlorite and chlorite-muscovite alteration zone. The least-altered ultramafic schist contains Cr-bearing Mg-chlorite, actinolite and talc, with subordinate calcite. The incipient alteration stage is subdivided into the talc–chlorite and chlorite–carbonate zone. For both mafic and ultramafic wall rocks, the carbonate–albite and carbonate–muscovite zones represent the advanced alteration stage.Rare earth and trace element analyses of metabasalt and its alteration products suggest a tholeiitic protolith for this wall rock. In the case of the ultramafic schists, the precursor may have been peridotitic komatiite. The Eu anomaly of the Raposos BIF suggests that it was formed proximal to an exhalative hydrothermal source on the ocean floor. The ore fluid composition is inferred by hydrothermal alteration reactions, indicating it to having been H2O-rich containing CO2 + Na+ and S. Since the distal alteration halos are dominated by hydrated silicate phases (mainly chlorite), with minor carbonates, fixation of H2O is indicated. The CO2 is consumed to form carbonates in the intermediate alteration stage, in halos around the chlorite-dominated zones. These characteristics suggest variations in the H2O to CO2-ratio of the sulfur-bearing, aqueous-carbonic ore fluid, which interacted at varying fluid to rock ratios with progression of the hydrothermal alteration.  相似文献   

18.
The iron ore deposits of Cuadrilatero Ferrifero de San Isidro represent the largest iron ore reserves in Venezuela. The district is a part of the iron metallogenic province of northern Guayana, one of the richest iron-bearing regions of the world. All presently known iron ore deposits of Venezuela are situated within this province: Cerro Bolivar, Altamira, Rondon, San Isidro, María Luisa, El Pao and others. Their total ore reserves amount to 2,000 million tons (disregarding the unenriched or slightly enriched iron-formation). The Imataca belt to which the iron ore deposits are confined consists of metamorphosed sedimentary and igneous rocks of Early Precambrian age, the oldest rocks presently known in South America. This belt extends some 450 km from the Orinoco delta southwesterly to the Cauro River. Iron ore is formed from banded iron-formation, a member of the Imataca complex, by removal of silica. The process of supergene enrichment is controlled to a certain degree by structural elements. There are five ore bodies in the San Isidro district, extremely varied in shape and size. Single bodies extend up to 3–4 km in length, approximately parallel to the regional structure pattern, and a few hundred meters in width. The morphology of the bottom of the ore bodies is rather irregular, particularly in transversal sections. Contacts between ore and the unaltered iron-formation beneath are gradational. Maximum vertical section through ore is 260 m; the average is 60 m approximately. The stratigraphic thickness of iron formation has been magnified by structural deformations. The primary stratigraphic thickness is estimated to be some 50–150 m. The iron ore is classified into two main types: a) hard, crustal ore, b) soft, friable ore. Hematite grains which remained after the leaching of silica, and goethite (as cement) are the two main constituents of crustal ore. Hematite and magnetite and a minor amount of quartz are almost the only constituents of friable ore. The crustal ore forms a 15–60 m thick mantle covering friable ore. The overall volume ratio between the friable and the crustal ore is about 2:1. However, it varies in different zones. The mean composition of iron ore on the basis of 10,800 chemical analyses is 64.41% Fe, 2.62% SiO2, 0.6% Al2O3. The ore contains a minor amount of Mn, P, Ti (no S, As, Ba). The ore reserves amount to 750 million tons; in addition, 180–300 million tons of possible ore reserves are estimated.
Zusammenfassung Die Eisenerzlagerstätten der Cuadrilatero Ferrifero de San Isidro beinhalten die größten Eisenerzreserven in Venezuela. Der Erzbezirk ist ein Teil der reichsten Eisenerzregionen der Welt. Alle bekannten Eisenerzvorkommen Venezuelas befinden sich in dieser Provinz (Cerro Bolivar, Altamira, Rondon, San Isidro, Maria Luisa, El Pao und andere). Die Gesamtvorräte werden auf etwa zwei Milliarden Tonnen geschätzt (ohne die nichtangereicherten oder nur wenig angereicherten Eisenquarzite). Die Imataca-Zone, an die die Eisenerzvorkommen angrenzen, besteht aus metamorphosierten sedimentären und magmatischen Gesteine des Archaikums, die ältesten bisher in Südamerika bekannten Gesteine. Die Imataca-Zone erstreckt sich ungefähr 450 km vom Delta des Orinoco in südwestlicher Richtung bis Rio Cauro. Die Eisenerze entstanden aus feingeschichteten (gebänderten) Eisenquarziten (Itabirite). Die Prozesse der deszendenten Anreicherung werden teilweise durch strukturelle Elemente bedingt. Fünf Erzkörper des San Isidro-Bezirks sind bekannt. Die Lagerstätten sind 3 bis 4 km lang und einige Hunderte Meter breit. Sie sind den regionalen Strukturen vorwiegend parallel gelagert. Die Morphologie der Erzkörperunterlage ist ziemlich unregelmäßig, besonders senkrecht zum Streichen. Der Kontakt zwischen dem Erz und den unterliegenden unveränderten Eisenquarziten ist stufenförmig. Das Erz ist durchschnittlich etwa 60 m mächtig, mit maximalen vertikalen Mächtigkeiten von 260 m. Die primäre stratigraphische Mächtigkeit des Eisenquarzites wurde durch strukturelle Deformationen vergrößert. Man kann die primäre Mächtigkeit auf 50–150 m schätzen. Das Eisenerz wird in zwei Typen klassifiziert: a) hartes Krustenerz, b) weiches, bröckeliges Erz. Die Hämatitkörner, die nach der Entfernung der Kieselsäure übrig blieben nebst Goethit (als Zement), sind die zwei wichtigsten Komponenten des Krustenerzes. Das weiche Erz enthält Hämatit, Magnetit und etwas Quarz. Das Krustenerz bildet eine 15–60 m mächtige Decke über dem bröckeligen, weichen Erz. Das Gesamtvolumenverhältnis zwischen dem weichen und harten Erz ist ungefähr 2:1. In anderen Zonen ist es jedoch unterschiedlich. Die durchschnittliche Zusammensetzung des Eisenerzes ist: Fe 64,41%, SiO2 2,62%, Al2O3 0,6%; das Erz enthält auch etwas Mn, P, Ti (kein S, As, Ba). Die Eisenerzvorräte wurden auf 750 Millionen Tonnen berechnet, wozu wahrscheinlich weitere 180–300 Millionen Tonnen kommen.
  相似文献   

19.
Spontaneous and induced fission tracks in apatite were revealed by etching with HNO3 and used for fission track dating. The fission track age of specimens known as Durango-Apatite was found to be (36.3±3.5) · 106 a.

Die Untersuchungen wurden mit Mitteln des Österreichischen Fonds zur Förderung der wissenschaftlichen Forschung durchgeführt.

Den Herrn Prof. Dr. M. Higatsberger und Dipl.-Ing. A. Burtscher von der Studiengesellschaft für Atomenergie in Seibersdorf verdanken wir die sorgfältige Durchführung der Bestrahlung der Proben.  相似文献   

20.
Zusammenfassung Es wurde eine Bestimmung der Kristallstruktur des Bismuthinits Bi2S3, die bisher nur als Analogie der Antimonitstruktur bekannt war, durchgeführt. Es zeigte sich, daß die Kristallstruktur des Bismuthinits weitgehend mit der von Antimonit übereinstimmt. Die Koordinationspolyeder sind allerdings regelmäßiger als beim Sb2S3 und bei einem der beiden kristallographisch unabhängigen Bi-Atome zeigt sich bei genauer Betrachtung ein deutlicher Unterschied, so daß die Koordination von diesem als 3+3+1 gegenüber 3+2+1 beim Antimonit bezeichnet werden kann.
The crystal structure of bismuthinite
Summary The crystal structure of bismuthinite Bi2S3 was determined. It showed that the analogy to the structure of stibnite is correct in general. The coordination polyhedra are more regular compared to those in Sb2S3. One of the crystallographic independent Bi-atoms shows a distinct difference in coordination, 3+3+1, compared to the equivalent atom in antimonite, 3+2+1.


Mit 1 Abbildung  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号