首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
《Gondwana Research》2015,27(3-4):888-906
The Ongole Domain in the southern Eastern Ghats Belt of India formed during the final stages of Columbia amalgamation at ca. 1600 Ma. Yet very little is known about the protolith ages, tectonic evolution or geographic affinity of the region. We present new detrital and igneous U–Pb–Hf zircon data and in-situ monazite data to further understand the tectonic evolution of this Columbia-forming orogen.Detrital zircon patterns from the metasedimentary rocks are dominated by major populations of Palaeoproterozoic grains (ca. 2460, 2320, 2260, 2200–2100, 2080–2010, 1980–1920, 1850 and 1750 Ma), and minor Archaean grains (ca. 2850, 2740, 2600 and 2550 Ma). Combined U–Pb ages and Lu–Hf zircon isotopic data suggest that the sedimentary protoliths were not sourced from the adjacent Dharwar Craton. Instead they were likely derived from East Antarctica, possibly the same source as parts of Proterozoic Australia. Magmatism occurred episodically between 1.64 and 1.57 Ga in the Ongole Domain, forming felsic orthopyroxene-bearing granitoids. Isotopically, the granitoids are evolved, producing εHf values between − 2 and − 12. The magmatism is interpreted to have been derived from the reworking of Archaean crust with only a minor juvenile input. Metamorphism between 1.68 and 1.60 Ga resulted in the partial to complete resetting of detrital zircon grains, as well as the growth of new metamorphic zircon at 1.67 and 1.63 Ga. In-situ monazite geochronology indicates metamorphism occurred between 1.68 and 1.59 Ga.The Ongole Domain is interpreted to represent part of an exotic terrane, which was transferred to proto-India in the late Palaeoproterozoic as part of a linear accretionary orogenic belt that may also have included south-west Baltica and south-eastern Laurentia. Given the isotopic, geological and geochemical similarities, the proposed exotic terrane is interpreted to be an extension of the Napier Complex, Antarctica, and may also have been connected to Proterozoic Australia (North Australian Craton and Gawler Craton).  相似文献   

2.
The c. 570–530 Ma intraplate Petermann Orogeny of central Australia involved high temperature and pressure metamorphism, deformation, and uplift of the Mesoproterozoic Musgrave region and associated components of the Neoproterozoic Centralian Superbasin. Orogenesis was accompanied by deposition of a syn-tectonic siliciclastic sedimentary package (Supersequence 4) in adjacent depocentres such as the Amadeus Basin. Here we investigate the provenance of Supersequence 4 within the western Amadeus Basin using U–Pb age and Hf isotope data for detrital zircons. The data from eight samples are dominated by Mesoproterozoic zircons (peak at c. 1.18 Ga) matched by age and Hf isotopes to the Musgrave region. Smaller Palaeoproterozoic components match best with the Arunta region north of the Amadeus Basin. The latter zircons are likely reworked from older Amadeus Basin sediments uplifted and eroded during the Petermann Orogeny. The combined detrital zircon age signature from Supersequence 4 in the western Amadeus Basin is strongly similar to previously published data from successions of similar age in the eastern Amadeus Basin and from two metasedimentary units in the Charters Towers Province of Queensland; a K–S test indicates that these datasets are statistically identical at > 95% confidence. This suggests a sediment pathway from the Petermann Orogen to the palaeo-Pacific margin of East Gondwana via the Amadeus Basin. From existing data, a similar pathway can be inferred from the Officer Basin to the Adelaide Rift Complex on the southern side of the Petermann Orogen, although these zircon age spectra show differences in pre- and post-Mesoproterozoic components compared to the Amadeus Basin. Differences in detrital zircon age spectra and lithology between confirmed Supersequence 4 and previously inferred components of Supersequence 4 at Uluṟu (Mutitjulu Arkose) and Kata Tjuṯa (Mount Currie Conglomerate) on the southern Amadeus Basin margin raise questions about the stratigraphic position of these latter units.  相似文献   

3.
The southern Central Asian Orogenic Belt (CAOB) is characterized by multiple and linear accretionary orogenic collages, including Paleozoic arcs, ophiolites, and accretionay wedges. A complex history of subduction–accretion processes makes it difficult to distinguish the origin of these various terranes and reconstruct the tectonic evolution of the southern CAOB. In order to provide constraints on the accretionary history, we analyzed major and trace element compositions of Paleozoic graywackes from the Huangcaopo Group (HG) and Kubusu Group (KG) in East Junggar. The HG graywackes have relatively low Chemical Index of Alteration (CIA) values (50 to 66), suggesting a source that underwent relatively weak chemical weathering. The identical average Index of Compositional Variability (ICV) values (~ 1.1) for both the KG and HG samples point to an immature source for the Paleozoic graywackes in East Junggar, which is consistent with an andesitic–felsic igneous source characterized by low La/Th ratios and relatively high Hf contents. These graywackes are geochemically similar to continental island arc sediments and therefore were probably deposited at an active continental margin. U–Pb dating of detrital zircons from the lower subgroup of the HG yielded a young age peak at ~ 440 Ma, indicating a post-Early Silurian depositional age. However, the youngest populations of detrital zircons from the KG graywackes and the upper subgroup of the HG yielded 206Pb/238U ages of ~ 346 Ma and ~ 355 Ma, respectively, which suggest a post-Early Carboniferous depositional age. Because of similarities of rock assemblages, these two units should be incorporated into the Early Carboniferous Nanmingshui Formation. The detrital zircon age spectrum of the Early Paleozoic HG graywackes resembles that of the Habahe sediments in the Chinese Altai, which suggests that the ocean between East Junggar and the Chinese Altai was closed before the deposition of the sediments and that the Armantai ophiolite was emplaced prior to the Early Devonian. The differences in age spectra for detrital zircons from the post-Early Carboniferous graywackes in East Junggar and the Harlik arc indicate that the emplacement of the Kalamaili ophiolite postdates the Early Carboniferous. Therefore, a long-lasting northward subduction–accretion process is suggested for the formation of East Junggar and the reconstruction of the Early Paleozoic evolution of the southern CAOB.  相似文献   

4.
《Gondwana Research》2014,25(3):1202-1215
The South China Block, consisting of the Yangtze and the Cathaysia blocks, is one of the largest Precambrian blocks in eastern Asia. However, the early history of the Cathaysia Block is poorly understood due largely to intensive and extensive reworking by Phanerozoic polyphase orogenesis and magmatism which strongly overprinted and obscured much of the Precambrian geological record. In this paper, we use the detrital zircon U–Pb age and Hf isotope datasets as an alternative approach to delineate the early history of the Cathaysia Block. Compilation of published 4041 Precambrian detrital zircon ages from a number of (meta)sedimentary samples and river sands exhibits a broad age spectrum, with three major peaks at ~ 2485 Ma, ~ 1853 Ma and ~ 970 Ma (counting for ~ 10%, ~ 16% and ~ 24% of all analyses, respectively), and four subordinate peaks at ~ 1426 Ma, ~ 1074 Ma, ~ 780 Ma and ~ 588 Ma. Five of seven detrital zircon age peaks are broadly coincident with the crystallisation ages of ~ 1.89–1.83 Ga, ~ 1.43 Ga, ~ 1.0–0.98 Ga and ~ 0.82–0.72 Ga for known igneous rocks exposed in Cathaysia, whereas, igneous rocks with ages of ~ 2.49 Ga and ~ 0.59 Ga have not yet been found. The Hf isotopic data from 1085 detrital zircons yield Hf model ages (TDMC) between ~ 4.19 Ga and ~ 0.81 Ga, and the calculated εHf(t) values between − 40.2 and 14.4. The Archean detrital zircons are exclusively oval in shape with complicated internal textures, indicating that they were sourced by long distance transportations and strong abrasion from an exotic Archean continent. In contrast, the majority of detrital zircons in age between ~ 1.9 and ~ 0.8 Ga are euhedral to subhedral crystals, indicative of local derivation by short distance transportations from their sources. The oldest crustal basement rocks in Cathaysia were most likely formed by generation of juvenile crust and reworking of recycled Archean components in Late Paleoproterozoic at ~ 1.9–1.8 Ga, rather than in the Archean as previously speculated. Reworking and recycling of the continental crust are likely the dominant processes for the crustal evolution of Cathaysia during the Mesoproterozoic to Neoproterozoic time, with an intervenient period of significant generation of juvenile crust at ~ 1.0 Ga.Precambrian crustal evolutions of the Cathaysia Block are genetically related to the supercontinent cycles. By comparing detrital zircon data from Cathaysia with those for other continents, and integrating multiple lines of geological evidence, we interpret the Cathaysia Block as an orogenic belt located between East Antarctica, Laurentia and Australia during the assembly of supercontinent Columbia/Nuna at ~ 1.9–1.8 Ga. The Cathaysia Block amalgamated with the Yangtze Block to form the united South China Block during the Sibao Orogeny at ~ 1.0–0.89 Ga. The Laurentia–Cathaysia–Yangtze–Australia–East Antarctica connection gives the best solution to the paleo-position of Cathaysia in supercontinent Rodinia. The significant amount of ~ 0.6–0.55 Ga detrital zircons in Cathaysia and West Yangtze have exclusively high crustal incubation time of > 300 Ma, indicating crystallisation from magmas generated dominantly by crustal reworking. This detrital zircon population compares well with the similar-aged zircon populations from a number of Gondwana-derived terranes including Tethyan Himalaya, High Himalaya, Qiangtang and Indochina. The united South China–Indochina continent was likely once an integral part of Gondwanaland, connected to northern India by a “Pan-African” collisional orogen.  相似文献   

5.
We present new U–Pb isotopic age data for detrital zircons from 16 deformed sandstones of the Ross Supergroup in north Victoria Land, Antarctica. Zircon U/Th ratios primarily point to dominantly igneous parent rocks with subordinate contributions from metamorphic sources. Comparative analysis of detrital zircon age populations indicates that inboard stratigraphic successions (Wilson Terrane) and those located outboard of the East Antarctic craton (the Bowers and Robertson Bay terranes) have similar ~ 1200–950 Ma (Mesoproterozoic–Neoproterozoic) and ~ 700–490 Ma (late Neoproterozoic–Cambrian, Furongian) age populations. The affinity of the age populations of the sandstones to each other, as well as Gondwana sources and Pacific-Gondwana marginal stratigraphic belts, challenges the notion that the outboard successions form exotic terranes that docked with Gondwana during the Ross orogeny and instead places the terranes in proximity to each other and within the peri-Gondwana realm during the late Neoproterozoic to Cambrian. The cumulative zircon age suite from north Victoria Land yields a polymodal age spectra with a younger, primary 700–480 Ma age population that peaks at ~ 580 Ma. Cumulative analysis of zircons with elevated U/Th ratios (> 20) indicating metamorphic heritage yield ~ 657–532 Ma age probability peaks, which overlap with the younger dominantly igneous zircon population. The data are interpreted to give important new evidence that is consistent with ongoing convergent arc magmatism by ~ 626 Ma, which provided the dominant zircon-rich igneous rocks and subordinate metamorphic rocks. Maximum depositional ages as young as ~ 493–481 Ma yielded by deformed sequences in the outboard Bowers and Robertson Bay terrane samples provide new support for late Cambrian to Ordovician deformation in outboard sectors of the orogen, consistent with tectonic models that call for cyclic phases of contraction along the north Victoria Land sector of the Ross–Delamerian orogen.  相似文献   

6.
The Shuangqing Fe–Pb–Zn–Cu deposit is located in the Xiangride County of Qinghai Province, China, and is a typical example of skarn deposits in the East Kunlun Mountains. Skarnization and mineralization took place along the contact zone between Carboniferous carbonates and the concealed Triassic plagiogranite. LA–ICP–MS U–Pb dating of zircons from the plagiogranite has yielded ages of 227.2 ± 1.0 and 226.54 ± 0.97 Ma, which are interpreted as the emplacement age of the plagiogranite. Molybdenites separated from ore-bearing quartz-veins yielded a Re–Os isochron age of 226.5 ± 5.1 Ma. These age data confirm that both intrusion and related skarn mineralization initiated at ~ 227 Ma. Re contents of molybdenite, zircon εHf(t) and 176Hf/177Hf values fall into the ranges 3.31 to 6.58 μg/g, − 8.6 to − 0.0, and 0.282403 to 0.28263850, respectively. The timing of the Shuangqing Fe–Pb–Zn–Cu mineralization coincided with a major change in the stress field in East Kunlun from transpression to extension, related to the partial melting of thickening crustal materials in a post-collisional tectonic setting.  相似文献   

7.
《Precambrian Research》2004,128(3-4):475-496
The Proterozoic igneous, deformation and metamorphic histories of the Palaeoproterozoic Rudall Complex in the northwestern Paterson Orogen can be linked to those of the Arunta Inlier in central Australia, and in part with the Capricorn Orogen in central Western Australia. The similarities in deformation and metamorphic histories for these widely separated regions indicate a Palaeoproterozoic continent–continent collisional event between the Palaeoproterozoic West Australian and North Australian cratons between c. 1830 and 1765 Ma. In the Paterson Orogen this Palaeoproterozoic collisional event resulted in the Yapungku Orogeny, which included thrust stacking of clastic sedimentary and volcanic rocks, deposition of the protoliths for the c. 1790 Ma siliciclastic paragneiss succession contemporaneous with granitic intrusion, and metamorphism up to granulite facies. During this 65-million-year period, the Arunta Inlier and Capricorn Orogen were deformed, metamorphosed at medium to high grades and intruded by granitoids during the Strangways Orogeny in the Arunta Inlier and the Capricorn Orogeny in the Capricorn Orogen.The Neoproterozoic Tarcunyah, Throssell and Lamil groups are clastic sedimentary sequences that were deposited after 1070 Ma in the northwestern Paterson Orogen, and deformed by the Miles Orogeny before 678 Ma. The Miles Orogeny produced a northwesterly trending fold and fault system of tight to isoclinal upright and overturned folds and thrust faults. The orogeny may have been coincident with the c. 750–720 Ma Areyonga tectonic movement affecting the Arunta Inlier and the lower Neoproterozoic part of the Amadeus Basin in central Australia. At c. 550 Ma the Paterson Orogeny, which is most likely equivalent to the Petermann Orogeny in the Musgrave Complex of central Australia, deformed the northwestern Paterson Orogen and was preceded by local intrusion of granites.The similarities of styles and timing of deformation in the northwestern Paterson Orogen, Arunta Inlier and Capricorn Orogen indicate that these three regions were probably linked during most of the Proterozoic.  相似文献   

8.
《Gondwana Research》2013,23(3-4):855-865
The ages of detrital zircon grains from one paragneiss and inherited zircon cores from two augen gneisses from the amphibolite facies basement of the Peloritani Mountains (southern Italy) measured by SHRIMP U–Pb constrain the previously unknown deposition age of the original sediments and help to elaborate a model for their provenance and subsequent evolution. The deposition age is latest Neoproterozoic to Cambrian (~ 545 Ma), bracketed by the combined ages of the youngest detrital/inherited zircon populations and of zircon from virtually coeval granitoids that intrude the metasediments. This is consistent with the subgreenschist facies Palaeozoic volcano–sedimentary sequences exposed in the southern Peloritani Mountains being the original cover rocks of the northern Peloritani late Neoproterozoic to early Cambrian basement. The age spectra of the detrital/inherited zircon grains show that the Neoproterozoic/Cambrian sediments were derived from the erosion of sources dominated by Neoproterozoic rocks with ages in the range of 0.85–0.54 Ga, with other main components aged 1.1–0.9 and ~ 2.7–2.4 Ga, and a minor one aged ~ 1.6 Ga, as typically found in peri-Gondwanan terranes. The presence of a large amount of Grenvillian-aged zircon contradicts previous models that propose a West African affinity for the Calabria–Peloritani Terrane, and the absence of 2.2–1.9 Ga Trans Amazonian/Tapajós–Parima/Eburnean zircon rules out an Amazonian provenance. The age spectra are more consistent with the basement sediments having an East African origin, similar to that of the early Palaeozoic sandstones in southern Israel and Jordan, part of a “provenance regionality” shared with other terranes currently located in the eastern Mediterranean area.  相似文献   

9.
The geodynamic evolution of the early Paleozoic ultrahigh-pressure metamorphic belt in North Qaidam, western China, is controversial due to ambiguous interpretations concerning the nature and ages of the eclogitic protoliths. Within this framework, we present new LA-ICP-MS U–Pb zircon ages from eclogites and their country rock gneisses from the Xitieshan terrane, located in the central part of the North Qaidam UHP metamorphic belt. Xitieshan terrane contains clearly different protolith characteristics of eclogites and as such provides a natural laboratory to investigate the geodynamic evolution of the North Qaidam UHP metamorphic terrane. LA-ICP-MS U–Pb zircon dating of three phengite-bearing eclogites and two country rock gneiss samples from the Xitieshan terrane yielded 424–427 Ma and 917–920 Ma ages, respectively. The age of 424–427 Ma from eclogite probably reflects continental lithosphere subduction post-dating oceanic lithosphere subduction at ~ 440–460 Ma. The 0.91–0.92 Ga metamorphic ages from gneiss and associated metamorphic mineral assemblages are interpreted as evidence for the occurrence of a Grenville-age orogeny in the North Qaidam UHPM belt. Using internal microstructure, geochemistry and U–Pb ages of zircon in this study, combined with the petrological and geochemical investigations on the eclogites of previous literature’s data, three types of eclogitic protoliths are identified in the Xitieshan terrane i.e. 1) Subducted early Paleozoic oceanic crust (440–460 Ma), 2) Neoproterozoic oceanic crust material emplaced onto micro-continental fragments ahead of the main, early Paleozoic, collision event (440–420 Ma) and 3) Neoproterozoic mafic dikes intruded in continental fragments (rifted away from the former supercontinent Rodinia). These results demonstrate that the basement rocks of the North Qaidam terrane formed part of the former supercontinent Rodinia, attached to the Yangtze Craton and/or the Qinling microcontinent, and recorded a complex tectono-metamorphic evolution that involved Neoproterozoic and Early Paleozoic orogenies.  相似文献   

10.
We report the petrological characteristics and preliminary zircon geochronology based on laser ablation ICP mass spectrometry of the various units in an accretionary belt within the Palghat-Cauvery Shear/Suture Zone in southern India, a trace of the Cambrian Gondwana suture. Zircons extracted from a plagiogranite in association with an ophiolite suite within this suture possess internal structure that suggests magmatic crystallization, and yield mid Neoproterozoic 206Pb/238U age of 817 ± 16 Ma (error: 1σ) constraining the approximate timing of birth of the Mozambique Ocean floor. Compiled age data on zircons separated from a quartzite and metamorphosed banded iron formation within the accretionary belt yields a younger intercept age of 759 ± 41 Ma (error: 1σ) which we relate to a mid Neoproteozoic magmatic arc. Detrital zircons extracted from the quartzite yield 207Pb/206Pb age peaks of about 1.9–2.6 Ga suggesting that they were sourced from multiple protolithis of Neoarchean and Paleoproterozoic. Metamorphic overgrowths on some zircon grains record ca. 500–550 Ma ages which are in good harmony with the known ages for the timing of high-grade metamorphism in this zone during the final stage of continent collision associated with the birth of the Gondwana supercontinent in the latest Neoproterozoic-Cambrian. The preliminary geochronological results documented in our study correlate with the subduction–accretion–collision history associated with the closure of the Mozambique Ocean and the final amalgamation of the Gondwana supercontinent.  相似文献   

11.
We present the first evidence of an early Paleozoic terrane in the southern Yanbian region, NE China. We used LA-ICP-MS zircon U–Pb and Hf isotope techniques to analyze one plagioclase gneiss and two garnet-bearing two-mica quartz schists from the early Paleozoic Jiangyu Group, as well as two tonalites that intruded the Jiangyu Group. The tonalites yield weighted mean 206Pb/238U zircon crystallization ages of 423 and 422 Ma. Zircons from the Jiangyu Group gneiss and two schist samples yield maximum depositional ages of 439 ± 4, 443 ± 2, and 443 ± 5 Ma, respectively. These constraints, together with the age of the tonalite intrusion, indicate that the Jiangyu Group was deposited between 443 and 423 Ma (i.e., Silurian). In addition, detrital zircon age spectra of the three Jiangyu Group samples exhibit prominent age peaks at 442, 473, 513, 565, 600, 635, 671, 740, 1000, and 1162 Ma, as well as secondary peaks between 1344 and 3329 Ma. The occurrence of the prominent Meso- and Neoproterozoic detrital zircon age populations for the Jiangyu Group, combined with the corresponding zircon Hf isotopic data, reveals that the Jiangyu Terrane has a tectonic affinity with northeastern Gondwana. The early Paleozoic magmatism, as suggested by the medium-K calc-alkaline I-type tonalite intrusion and Jiangyu Group detrital zircon age spectra, corresponds to coeval subduction–accretion events along the southern margin of the eastern Central Asian Orogenic Belt (CAOB). Accordingly, we propose that the Jiangyu Group is part of an exotic terrane that rifted from northeastern Gondwana, drifted northward, and ultimately became involved in the early Paleozoic tectonic evolution of the southern margin of the eastern CAOB after the Early Cambrian.  相似文献   

12.
The Bayan Obo deposit in North China contains the largest rare-earth element (REE) resources in the world, but its forming time remains controversial. Nearly one hundred carbonatite dykes occur around the Bayan Obo deposit, including dolomite, calcite and calcite–dolomite carbonatite varieties. Zircons from a REE-rich carbonatite dyke and wallrock quartz conglomerate at Bayan Obo have been analyzed for U–Pb to determine the age of the dyke. Zircon from the carbonatite dyke, analyzed by conventional isotope dilution thermal ionization mass spectrometry (ID-TIMS), yielded an upper intercept age of 1417 ± 19 Ma. This age is confirmed by SHRIMP U–Pb analysis of zircon from the same carbonatite dyke, which gave a 207Pb/206Pb weighted mean age of 1418 ± 29 Ma. In situ Nd isotope measurements of monazite collected from the carbonatite dyke gave an isochron age of 1275 ± 87 Ma. These results demonstrate that the dyke intruded ~ 1400 Ma. In view of predecessor's results, it is clarified that the REE mineralization at Bayan Obo occurred at ca. 1400 Ma, consistent with the timing of carbonatite dyke intrusion in the region. The youngest detrital zircons from the quartz conglomerate yielded a 207Pb/206Pb weighted mean age of 1941 ± 7 Ma using LA ICP-MS U–Pb method. Detrital zircons in the carbonatite dyke also gave a mean apparent age of 1932 ± 3 Ma using ID-TIMS U–Pb method and 1914 ± 14 Ma using SHRIMP U–Pb method. These ages constrain the beginning active time of the Zha'ertai–Bayan Obo rift in the northern margin of the North China Craton after ~ 1900 Ma.  相似文献   

13.
The East Massif Central (EMC), France, is part of the internal zone of the Variscan belt where late Carboniferous crustal melting and orogenic collapse have largely obliterated the pre- to early-Variscan geological record. Nevertheless, parts of this history can be reconstructed by using in-situ U-Th-Pb-Lu-Hf isotopic data of texturally well-defined zircon grains from different lithological units. All the main rock units commonly described in the EMC are present in the area of Tournon and include meta-sedimentary and meta-igneous rocks of the Upper Gneiss Unit (UGU) and of the Lower Gneiss Unit (LGU), as well as cross-cutting Variscan granitoid dikes and a heterogeneous granite coring the major Velay dome. Herein we demonstrate that the UGU and the LGU have markedly distinct zircon records. The results of this study are consistent with deposition of the protoliths of the paragneisses within a back-arc basin that was located adjacent to the Arabian-Nubian shield and/or the Saharan Metacraton during the late Ediacaran and collected detritus from the Gondwana continent. At ~ 545 Ma some of these sedimentary rocks were affected by a first melting event that formed the protoliths of the LGU orthogneisses, those of which subsequently remelted at ca. 308 Ma to form the Velay granite-migmatite dome. Protoliths of the UGU result mainly from a bimodal rift-related magmatism at ~ 480 Ma, corresponding to melting of the Ediacaran sediments and depleted mantle. Zircon rims from the UGU additionally provide evidence for a metamorphic/migmatitic overprint during the Lower Carboniferous (~ 350–340 Ma). Finally, several generations of granite dikes of which inherited zircons display characteristics of both the UGU and the LGU were protractedly emplaced from ~ 322 Ma to ~ 308 Ma, the youngest of which being coeval with the formation of the Velay dome. Our data further show that the vast majority of crustal material ultimately involved in the Variscan orogeny, which forms the present-day basement in the EMC, was derived from a sedimentary mixture of various components from the Gondwana continent deposited in Ediacaran times, with no evidence for the involvement of an older autochthonous crust.  相似文献   

14.
U–Pb detrital zircon studies in the Rio Fuerte Group, NW Mexico, establish its depositional tectonic setting and its exotic nature in relation to the North American craton. Two metasedimentary samples of the Rio Fuerte Formation yield major age clusters at 453–508 Ma, 547–579 Ma, 726–606 Ma, and sparse quantities of older zircons. The cumulative age plots are quite different from those arising from lower Paleozoic miogeoclinal rocks of southwestern North America and of Cordilleran Paleozoic exotic terranes such as Golconda and Robert Mountains. The relative age-probability plots are similar to some reported from the Mixteco terrane in southern Mexico and from some lower Paleozoic Gondwanan sequences, but they differ from those in the Gondwanan-affinity Oaxaca terrane. Major zircon age clusters indicate deposition in an intraoceanic basin located between a Late Ordovician magmatic arc and either a peri-Gondwanan terrane or northern Gondwanaland. The U–Pb magmatic ages of 151 ± 3 Ma from a granitic pluton and 155 ± 4 Ma from a granitic sill permit a revision of the stratigraphic and tectonic evolution of the Rio Fuerte Group. A regional metamorphism event predating the Late Jurassic magmatism is preliminarily ascribed to the Late Permian amalgamation of Laurentia and Gondwana. The Late Jurassic magmatism, deformation, and regional metamorphism are related to the Nevadan Orogeny.  相似文献   

15.
The southern North China craton hosts numerous world-class porphyry Mo and Pb-Zn-Ag vein deposits. Whether or not the Pb-Zn-Ag veins are genetically associated with the porphyry Mo system remains contentious. Here we focus on the genetic relationships between the Sanyuangou Pb-Zn-Ag vein deposit and the world-class Donggou porphyry Mo deposit, and discuss the potential implications from the spatial and temporal relationships between porphyry and vein systems in the southern North China craton.At Sanyuangou, vein-hosted sulfide mineralization mainly comprises pyrite, sphalerite, and galena, with minor chalcopyrite, pyrrhotite, bornite, tetrahedrite, covellite, polybasite and argentite. The mineralization is hosted by a quartz diorite stock, which has a zircon U-Pb age of 1756 ± 9 Ma. However, sericite from alteration selvages of Pb-Zn-Ag sulfide mineralization yields a well-defined 40Ar/39Ar plateau age of 115.9 ± 0.9 Ma. Although nominally younger, the sericite 40Ar/39Ar age is similar to the age of the nearby Donggou porphyry Mo deposit (zircon U-Pb age of 117.8 ± 0.9; molybdenite Re-Os ages of 117.5 ± 0.8 Ma and 116.4 ± 0.6 Ma). Pyrite from Donggou has elevated contents of Mo and Bi, whereas pyrite from Sanyuangou is enriched in Cu, Zn, Pb, Ag, Au, and As. This trace element pattern is consistent with metal zonation typically observed in porphyry related metallogenic systems. Pyrite grains from Sanyuangou have lead isotopes overlapping those from Donggou (17.273–17.495 vs. 17.328–17.517 for 206Pb/204Pb, 15.431–15.566 vs. 15.408–15.551 for 207Pb/204Pb, and 37.991–38.337 vs. 38.080–38.436 for 208Pb/204Pb). Collectively, the geological, geochronological, and geochemical data support a magmatic-hydrothermal origin for the Sanyuangou Pb-Zn-Ag deposit and confirm that the Pb-Zn-Ag veins and the Donggou Mo deposit form a porphyry-related magmatic-hydrothermal system.Given the widespread Pb-Zn-Ag veins and Mo mineralized porphyries in many districts of the southern North China craton, the model derived from this study has broad implications for further exploration of Mo and Pb-Zn-Ag resources in the area.  相似文献   

16.
《Gondwana Research》2014,25(3-4):1203-1222
Reactivation of cratonic basement involves a number of processes including extension, compression, and/or lithospheric delamination. The northern margin of the North China Craton (NCC), adjacent to the Inner Mongolian Orogenic Belt, was reactivated in the Late Paleozoic to Early Mesozoic. During this period, the northern margin of the NCC underwent magmatism, N–S compression, regional exhumation, and uplift, including the formation of E–W-trending thick-skinned and thin-skinned south-verging folds and south-verging ductile shear zones. zircon U–Pb SHRIMP ages for mylonite protoliths in shear zones which show ages of 310–290 Ma (mid Carboniferous–Early Permian), constraining the earliest possible age of deformation. Muscovite within carbonate and quartz–feldspar–muscovite mylonites from the Kangbao–Weichang and Fengning–Longhua shear zones defines a stretching lineation and gives 40Ar/39Ar ages of 270–250 Ma, 250–230 Ma, 230–210 Ma, and 210–190 Ma. Deformation developed progressively from north to south between the Late Paleozoic and Triassic. Exhumation of lower crustal gneisses, high-pressure granulites, and granites occurred at the cratonic margin during post-ductile shearing (~ 220–210 Ma). An undeformed Early Jurassic (190–180 Ma) conglomerate overlies the deformed rocks and provides an upper age limit for reactivation and orogenesis. Deformation was induced by convergence between the southern Mongolia and North China cratonic blocks, and the location of this convergent belt controlled later deformation in the Yanshan Tectonic Province. This province formed as older E–W-trending Archean–Proterozoic sequences were reactivated along the northern margin of the NCC. This reactivation has features typical of cratonic basement reactivation: compression, crustal thickening, remelting of the mid to lower crust, and subsequent orogenesis adjacent to the orogenic belt.  相似文献   

17.
《Lithos》2007,93(1-2):175-198
The Neoproterozoic (∼ 820 Ma) Aries micaceous kimberlite intrudes the central Kimberley Basin, northern Western Australia, and has yielded a suite of 27 serpentinised ultramafic xenoliths, including spinel-bearing and rare, metasomatised, phlogopite–biotite and rutile-bearing types, along with minor granite xenoliths. Proton-microprobe trace-element analysis of pyrope and chromian spinel grains derived from heavy mineral concentrates from the kimberlite has been used to define a ∼ 35–40 mW/m2 Proterozoic geotherm for the central Kimberley Craton. Lherzolitic chromian pyrope highly depleted in Zr and Y, and Cr-rich magnesiochromite xenocrysts (class 1), probably were derived from depleted garnet peridotite mantle at ∼ 150 km depth. Sampling of shallower levels of the lithospheric mantle by kimberlite magmas in the north and north-extension lobes entrained high-Fe chromite xenocrysts (class 2), and aluminous spinel-bearing xenoliths, where both spinel compositions are anomalously Fe-rich for spinels from mantle xenoliths. This Fe-enrichment may have resulted from Fe–Mg exchange with olivine during slow cooling of the peridotite host rocks. Fine exsolution rods of aluminous spinel in diopside and zircon in rutile grains in spinel- and rutile-bearing serpentinised ultramafic xenoliths, respectively, suggest nearly isobaric cooling of host rocks in the lithospheric mantle, and indicate that at least some aluminous spinel in spinel-facies peridotites formed through exsolution from chromian diopside. Fe–Ti-rich metasomatism in the spinel-facies Kimberley mantle probably produced high-Ti phlogopite–biotite + rutile and Ti, V, Zn, Ni-enriched aluminous spinel ± ilmenite associations in several ultramafic xenoliths. U–Pb SHRIMP 207Pb/206Pb zircon ages for one granite (1851 ± 10 Ma) and two serpentinised ultramafic xenoliths (1845 ± 30 Ma; 1861 ± 31 Ma) indicate that the granitic basement and lower crust beneath the central Kimberley Basin are at least Palaeoproterozoic in age. However, Hf-isotope analyses of the zircons in the ultramafic xenoliths suggest that the underlying lithospheric mantle is at least late Archean in age.  相似文献   

18.
We present detrital zircon UPb SHRIMP age patterns for the central segment (34–42°S) of an extensive accretionary complex along coastal Chile together with ages for some relevant igneous rocks. The complex consists of a basally accreted high pressure/low temperature Western Series outboard of a frontally accreted Eastern Series that was overprinted by high temperature/low pressure metamorphism. Eleven new SHRIMP detrital zircon age patterns have been obtained for meta-turbidites from the central (34–42°S) segment of the accretionary complex, four from previously undated metamorphic complexes and associated intrusive rocks from the main Andean cordillera, and three from igneous rocks in Argentina that were considered as possible sediment source areas. There are no Mesozoic detrital zircons in the accretionary rocks. Early Paleozoic zircons are an essential component of the provenance, and Grenville-age zircons and isolated grains as old as 3 Ga occur in most rocks, although much less commonly in the Western Series of the southern sector. In the northernmost sector (34–38°30′S) Proterozoic zircon grains constitute more than 50% of the detrital spectra, in contrast with less than 10% in the southern sector (39–42°S). The youngest igneous detrital zircons in both the northern Western (307 Ma) and Eastern Series (345 Ma) are considered to closely date sedimentation of the protoliths. Both oxygen and LuHf isotopic analyses of a selection of Permian to Neoproterozoic detrital zircon grains indicate that the respective igneous source rocks had significant crustal contributions. The results suggest that Early Paleozoic orogenic belts (Pampean and Famatinian) containing material recycled from cratonic areas of South America supplied detritus to this part of the paleo-Pacific coast. In contrast, in the southern exposures of the Western Series studied here, Permian detrital zircons (253–295 Ma) dominate, indicating much younger deposition. The northern sector has scarce Early to Middle Devonian detrital zircons, prominent south of 39°S. The sedimentary protolith of the northern sector was probably deposited in a passive margin setting starved of Devonian (Achalian) detritus by a topographic barrier formed by the Precordillera, and possibly Chilenia, terranes. Devonian subduction-related metamorphic and plutonic rocks developed south of 39°S, beyond the possible southern limit of Chilenia, where sedimentation of accretionary rocks continued until Permian times.  相似文献   

19.
In the Caozhuang complex in eastern Hebei, North China Craton, the Paleo- to Eoarchean crustal evolution was earlier revealed by the preservation of detrital zircon grains older than (or as old as) 3.8 Ga in fuchsite-quartzite. In order to test if the Eoarchean antiquity is also preserved in rocks other than the fuchsite quartzite, we collected two paragneisses, a hornblende gneiss and a garnet–biotite gneiss, from Huangbaiyu village and dated their detrital zircon grains. The zircon dating of the hornblende gneiss yielded concordant 207Pb/206Pb ages ranging from 3684 to 3354 Ma. However, an older date of 3782 Ma with 18% discordancy was also obtained. Detrital zircon grains from the garnet–biotite gneiss gave a similar 207Pb/206Pb age range, from 3838 to 3342 Ma. The metamorphic domains of the zircon grains from both samples, including the strongly recrystallized cores and rims, recorded an overprinting metamorphism at ca. 2.5 Ga, which correlates with the most widespread tectono-thermal event in the North China Craton. In situ zircon Hf-isotope analyses on the dated zircon grains yielded a wide range of model ages (TDM1) from 4.0 to 3.3 Ga with corresponding εHf(T) from −36.0 to +4.8. This suggests that the evolution of the crustal segment in this area has involved multiple phases of juvenile crustal addition as well as recycling of older crustal rocks. The new geochronological results imply the presence of a significant amount of Eoarchean crustal fragments in the eastern Hebei area. The sedimentary protoliths of the paragneisses and other high-grade metamorphic rocks in the Caozhuang complex were probably deposited between 3.4 and 2.5 Ga.  相似文献   

20.
The Gawler Craton forms the bulk of the South Australian Craton and occupies a pivotal location that links rock systems in Antarctica to those in northern Australia. The western Gawler Craton is a virtually unexposed region where the timing of basin development and metamorphism is largely unknown, making the region ambiguous in the context of models seeking to reconstruct the Australian Proterozoic.Detrital zircon data from metasedimentary rocks in the central Fowler Domain in the western Gawler Craton provide maximum depositional ages between 1760 and 1700 Ma, with rare older detrital components ranging in age up to 3130 Ma. In the bulk of samples, ?Nd(1700 Ma) values range between ?4.3 and ?3.8. The combination of these data suggest on average, comparatively evolved but age-restricted source regions. Lu–Hf isotopic data from the ca 1700 Ma aged zircons provide a wide range of values (?Hf(1700 Ma) +6 to ?6). Monazite U–Pb data from granulite-grade metasedimentary rocks yield metamorphic ages of 1690–1670 Ma. This range overlaps with and extends the timing of the widespread Kimban Orogeny in the Gawler Craton, and provides minimum depositional age constraints, indicating that basin development immediately preceded medium to high grade metamorphism.The timing of Paleoproterozoic basin development and metamorphism in the western Gawler Craton coincides with that in the northern and eastern Gawler Craton, and also in the adjacent Curnamona Province, suggesting protoliths to the rocks within the Fowler Domain may have originally formed part of a large ca 1760–1700 Ma basin system in the southern Australian Proterozoic. Provenance characteristics between these basins are remarkably similar and point to the Arunta Region in the North Australian Craton as a potential source. In this context there is little support for tectonic reconstruction models that: (1) suggest components of the Gawler Craton accreted together at different stages in the interval ca 1760–1680 Ma; and (2) that the North Australian Craton and the southern Australian Proterozoic were separate continental fragments between 1760 and 1700 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号