首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Around 4370 km of new seismic reflection data, collected along the East Greenland margin between 71°30'N and 77°N in 2003, provide a first detailed view of the sediment distribution and tectonic features along the East Greenland margin. After processing and converting the data to depth, we correlated ODP-Site 913 stratigraphy into the new seismic network. Unit GB-2 shows the greatest glacial sediment deposits beneath the East Greenland continental shelf. This unit is characterized by the beginning of prograding sequences and has, according to our stratigraphic correlation, a Middle Miocene age. It might have been caused by rapid changes in sea level and/or glacial erosion by an early ice sheet or glaciers along the coast. A basement high, presumably a 360 km long basement structure at 77°N–74°54'N, prevents continuous sediment transport from the shelf into the deep sea area in times before 15 Myr. The origin of this prominent structure remains speculative since no rock sample from this structure is available. Seaward dipping reflectors at the eastern flank of this structure strongly support that it is a volcanic construction and is most likely emplaced on continental or transitional crust. The compilation of sediment thickness provide an insight into the regional sediment distribution in the Greenland Basin. An average sediment thickness of 1 km is observed. The north bordering Boreas Basin has a sediment thickness of 1.8 km close to the Greenland fracture zone (GFZ).  相似文献   

2.
Summary. The H -polarization induction problem is solved in terms of an integral equation, which in the horizontal direction is transformed into the wavenumber domain. By this transformation the usual complicated integral expressions for the Green's tensor elements are removed. By extracting asymptotic features from the system of linear equations, we reduce the number of equations considerably independent of whether the horizontal variation in the conductivity is continuous or discontinuous. Likewise we reformulate the problem so that arbitrary conductivity contrasts may be studied. The method is finally tested by comparing with analytic solutions, and good agreement is achieved. Furthermore the numerical results indicate that a small amount of wavenumbers is required.  相似文献   

3.
We have used the S wave receiver function (SRF) technique to investigate the crustal thickness beneath two seismic profiles from the CHARGE project in the southern central Andes. A previous study employing the P wave receiver function method has observed the Moho interface beneath much of the profiles. They found, however, that the amplitude of the P to S conversion was diminished in the western part of the profiles and have attributed it to a reduction of the impedance contrast at the Moho due to lower crustal ecologitization. With SRF, we have successfully detected S to P converted waves from the Moho as well as possible conversions from other lithospheric boundaries. The continental South American crust reaches its maximum thickness of ∼70 km (along 30°S between 70°W and 68.5°W) beneath the Principal Cordillera and the Famatina system and becomes thinner towards the Sierras Pampeanas with a thickness of ∼40 km. Negative phases, possibly related to the base of the continental and oceanic lithosphere, can be recognized in the summation traces at different depths. By comparing our results with data obtained from previous investigations, we are able to further constrain the thickness of the crust and lithosphere beneath the central Andes.  相似文献   

4.
We present a neural network approach to invert surface wave data for a global model of crustal thickness with corresponding uncertainties. We model the a posteriori probability distribution of Moho depth as a mixture of Gaussians and let the various parameters of the mixture model be given by the outputs of a conventional neural network. We show how such a network can be trained on a set of random samples to give a continuous approximation to the inverse relation in a compact and computationally efficient form. The trained networks are applied to real data consisting of fundamental mode Love and Rayleigh phase and group velocity maps. For each inversion, performed on a 2°× 2° grid globally, we obtain the a posteriori probability distribution of Moho depth. From this distribution any desired statistic such as mean and variance can be computed. The obtained results are compared with current knowledge of crustal structure. Generally our results are in good agreement with other crustal models. However in certain regions such as central Africa and the backarc of the Rocky Mountains we observe a thinner crust than the other models propose. We also see evidence for thickening of oceanic crust with increasing age. In applications, characterized by repeated inversion of similar data, the neural network approach proves to be very efficient. In particular, the speed of the individual inversions and the possibility of modelling the whole a posteriori probability distribution of the model parameters make neural networks a promising tool in seismic tomography.  相似文献   

5.
Many geophysical inverse problems derive from governing partial differential equations with unknown coefficients. Alternatively, inverse problems often arise from integral equations associated with a Green's function solution to a governing differential equation. In their discrete form such equations reduce to systems of polynomial equations, known as algebraic equations. Using techniques from computational algebra one can address questions of the existence of solutions to such equations as well as the uniqueness of the solutions. The techniques are enumerative and exhaustive, requiring a finite number of computer operations. For example, calculating a bound to the total number of solutions reduces to computing the dimension of a linear vector space. The solution set itself may be constructed through the solution of an eigenvalue problem. The techniques are applied to a set of synthetic magnetotelluric values generated by conductivity variations within a layer. We find that the estimation of the conductivity and the electric field in the subsurface, based upon single-frequency magnetotelluric field values, is equivalent to a linear inverse problem. The techniques are also illustrated by an application to a magnetotelluric data set gathered at Battle Mountain, Nevada. Surface observations of the electric ( E y ) and magnetic ( H x ) fields are used to construct a model of subsurface electrical structure. Using techniques for algebraic equations it is shown that solutions exist, and that the set of solutions is finite. The total number of solutions is bounded above at 134 217 728. A numerical solution of the algebraic equations generates a conductivity structure in accordance with the current geological model for the area.  相似文献   

6.
During May 1990 and January-February 1991, an extensive geophysical data set was collected over the Côte d'Ivoire-Ghana continental margin, located along the equatorial coast of West Africa. The Ghana margin is a transform continental margin running subparallel to the Romanche Fracture Zone and its associated marginal ridge—the Côte d'Ivoire-Ghana Ridge. From this data set, an explosive refraction line running ∼ 150 km, ENE-WSW between 3°55'N, 3°21'W and 4°23'N, 2°4'W, has been modelled together with wide-angle airgun profiles, and seismic reflection and gravity data. This study is centred on the Côte d'Ivoire Basin located just to the north of the Côte d'Ivoire-Ghana Ridge, where bathymetric data suggest that a component of normal rifting occurred, rather than the transform motion observed along the majority of the equatorial West African margin.
Traveltime and amplitude modelling of the ocean-bottom seismometer data shows that the continental Moho beneath the margin rises in an oceanward direction, from ∼ 24 km below sea level to ∼ 17 km. In the centre of the line where the crust thins most rapidly, there exists a region of anomalously high velocity at the base of the crust, reaching some 8 km in thickness. This higher-velocity region is thought to represent an area of localized underplating related to rifting. Modelling of marine gravity data, collected coincident with the seismic line, has been used to test the best-fitting seismic model. This modelling has shown that the observed free-air anomaly is dominated by the effects of crustal thickness, and that a region of higher density is required at the base of the crust to fit the observed data. This higher-density region is consistent in size and location with the high velocities required to fit the seismic data.  相似文献   

7.
The purpose of this work is to evaluate under what conditions it is feasible and with what accuracy it is possible to locate the nucleation point of a large earthquake, given the availability of aftershocks located with high precision by the deployment of a local network. We experiment with several approaches and apply them lo the location of the epicentre of the 1980 November 23 Irpinia earthquake ( M w= 6.9).
First we use local P g phases selected to optimize the azimuthal coverage, obtaining a well-constrained location with a small statistical error, which typically underestimates the true hypocentre uncertainty.
We then exploit the relative location technique, obtaining stable, almost coincident solutions under three conditions: (1) using multiple independent master events to derive an average epicentre; (2) fitting simultaneously the larger data set for all available master events, using a forward approach; (3) conducting an a priori evaluation of the statistics of station and master events to separate model uncertainties and improve the statistical accuracy of the relative locations. Moreover, only by introducing station statistics can we achieve the desired accuracy of ≅ 1 km in constraining the rupture nucleation point of this large earthquake, and we show that the application of the relative location technique to uncleaned, unweighted data for a single master event provides only a crude epicentre with a confidence ellipse deceivingly smaller than the true hypocentre uncertainty.
The revised epicentre for the 1980 November 23 Irpinia earthquake (48.803 °N-15.302°E) validates the class of multidisciplinary reconstructions of the source process such as the model of Valensise et al. (1989), based on the hypocentre of Westaway & Jackson (1987), and is shifted by almost 13 km to the NW of the epicentre recently proposed by Westaway (1992).  相似文献   

8.
Split S waves observed at Hockley, Texas from events in the Tonga–Fiji region of the southwest Pacific show predominantly vertically polarized shear-wave ( SV  ) energy arriving earlier than horizontally polarized ( SH ) energy for rays propagating horizontally through D" . After corrections are made for the effects of upper-mantle anisotropy beneath Hockley, a time lag of 1.5 to 2.0  s remains for the furthest events (93.9°–100.6° ), while the time lags of the nearer observations (90.5°–92.9° ) nearly disappear. At closer distances, the S waves from these same events do not penetrate as deeply into the lower mantle, and are not split. These observations suggest that a patch of D" beneath the central Pacific is anisotropic, while the mantle immediately above the patch is isotropic. The thickness of the anisotropic zone appears to be of the order of 100–200  km.
  Observations of shear-wave splitting have previously been made for paths that traverse D" under the Caribbean and under Alaska. SH leads SV , the reverse of the Hockley observations, but in these areas the fact that SV  leads SH in the HKT data shown here suggests a different sort of anisotropy under the central Pacific from that under Alaska and the Caribbean. The case of SH travelling faster than SV  is consistent with transverse isotropy with a vertical axis of symmetry (VTI) and does not require variations with azimuth. The case of SV  leading SH is consistent with transverse isotropy with a horizontal axis of symmetry (HTI), an azimuthally anisotropic medium, and with a VTI medium formed by a hexagonal crystal. Given that (Mg,Fe)SiO3 perovskite appears unlikely to form anisotropic fabrics on a large scale, the presence of anisotropy may point to chemical heterogeneity in the lowermost mantle, possibly due to mantle–core interactions.  相似文献   

9.
Summary. The electrical system of currents excited by a uniform electric field of arbitrary direction in an infinite plane sheet of uniform conductivity except for two non-overlapping circular areas is obtained analytically. Using the method introduced by Ashour, the magnetic field of the system is also obtained. The components of this additional field are expressed as line integrals which are suitable for computation. The results reduce, in the special case of one insertion, to those obtained earlier by Ashour & Chapman.
As an illustration, numerical results are obtained for the special case of two equal insertions of zero conductivity.
The analysis and results obtained are useful in estimating the modification of the currents flowing in an ocean and their magnetic field by two islands.  相似文献   

10.
Independent validation has to be an integral part of the 210Pb-based radiometric dating of recent sediments. The combined use of artificial fallout radionuclides leads to serious problems because only the identification of peaks and their use as time-marks is not sufficiently rigorous to ensure the accuracy of dates. Quantitative modelling of depth profiles requires reliable input functions, which can be substantially different from the atmospheric deposition records. The appropriate treatment of compaction is another source of complexity. Continuum mechanics provide a suitable framework to understand compaction in sedimentary basins with length scales of several km. Nevertheless, early compaction (with length scales of few cm at the sediment surface) takes place under hydrostatic equilibrium conditions, and it can be better understood as a transport phenomenon: a mass flow governed by spatial gradients of a compaction-potential energy, involving a conductivity function. This paper explores some analytical and numerical solutions for these equations to provide insight about the early compaction phenomenon. Given a conductivity function and a constant sedimentation rate, the system will evolve towards a steady-state profile for bulk density. The fingerprint of variable sedimentation rates, among other changes in environmental conditions, will be studied with numerical solutions. Finally, the paper explores the use of bulk density profiles for deriving information on recent sedimentation rates, which could provide independent support for the radiometric dating models.  相似文献   

11.
Summary. In the summer of 1984 an electrical survey using magnetometric off-shore electrical sounding (MOSES) was conducted at two sites in Middle Valley, part of the northern Juan de Fuca Ridge complex. MOSES has been designed to minimize the difficulties inherent in electrical surveys of the crust below the electrically conductive sea layer. Site 1, at 48°32N, 128°42W, is in the central part of the turbidite-filled basin. Using a two-layer model of conductive sediments overlying a fractured basalt basement, the sediment resistivity and thickness were found to be 0.82 ± 0.06 Ωm and 1800 ± 300 m, respectively. The basement resistivity, although not well constrained by the data is consistent with the results obtained at site 2.
Site 2, located at 48°10N, 128°50W, has a thinner sediment layer, which appears to vary with position. The sediment conductivity—thickness product is the parameter determined by the data. If the sediment resistivity were the same as at site 1, the sediment thickness would be 140 ± 30 m to the SE of site 2, and 240 ± 55 m to the NW. The fractured basalt basement has a resistivity of 8.5 ± 3.4 Ωm and is at least 1000 m thick.
Using temperature-corrected pore fluid resistivity, the calculated porosity is found to vary from 62 per cent at the top to 21 per cent at the base of the sediments and is 8 per cent in the basement. These values are in good agreement with estimates from seismic velocities for a thick turbidite sequence in a nearby sediment-filled basin and determined for layer 2A/B basalts in DSDP hole 504B, respectively.  相似文献   

12.
Summary. The East Pacific Rise at 12–15° S is topographically smooth with a crestal horst or linear volcanic peak marking the present axis of spreading. The Galapagos Rise at 14–17° S is topographically rough with a possible central graben marking the extinct spreading axis. The seafloor spreading magnetic anomalies on the East Pacific Rise are of low amplitude, but fracture-zone anomalies at 13–14° S have amplitudes of up to 1250 nT. Anomalies of this amplitude at the magnetic equator must be formed within the fracture zone by some combination of block reversal boundaries, anomalously-high magnetic intensities, and/or anomalously-large thicknesses of the magnetic layers within the fracture zone. Magnetization and major-element chemical analyses of basalts dredged from four locales along the fracture zone indicate that the large magnetic-anomaly amplitudes are caused by the high iron and titanium content of these ferrobasalts. The magnetic-anomaly profiles from the Galapagos Rise and its fracture-zone system are of normal amplitude and are extremely difficult to correlate internally or with the geomagnetic timescale.
Eighty-one heat-flow measurements indicate that the values measured are controlled by sediment thickness. Where the thickness of the sediment blanket is greater than 100 m, high heat flow is measured and possibly is representative of the total heat transfer at the seafloor. Where the sediment thickness is less than 100 m, seawater circulation in the oceanic crust is thought to remove most of the heat convectively; thus causing low conductive heat-flow values to be measured by the usual heat-flow apparatus. The heat loss by convective processes is probably a function also of topographic roughness and sediment permeability.  相似文献   

13.
b
In this paper, we apply the boundary element method (BEM) to the 2-D steady state heat flow problem of what would be the perturbation to the regional temperature gradient, and hence heat flow density, determined from temperatures measured in a borehole that passes close to, but does not penetrate, a body of anomalous thermal properties. This type of problem with an infinity boundary is particularly well suited to the BEM.
The results have been compared with those obtained from analytical solutions for bodies of simple shape; it is found that for the worst case of a close approach to a boundary of small radius of curvature, a numerical modelling error of less than 1 per cent can still be obtained provided the length of each element is less than the shortest distance between the calculation point and the object.  相似文献   

14.
We present a new approach of the Indirect Boundary Element Method (IBEM) for 3-D topographic problems which can be used to deal with an infinitely spread free surface owing to the introduction of a reference solution, that is the analytical solution for the half-space with a flat free surface. This approach is an efficient countermeasure for the non-physical waves owing to the domain truncation which contaminates the computed results in the ordinary approach. Theoretical consideration shows that this newly proposed approach is a higher-grade approximation than some existing ones and achieves a higher efficacy and accuracy than those of existing ones. The discretization of the resulting boundary integral equation for this formulation is carried out with triangular elements. Their contributions to the solution are calculated by Gaussian numerical integration except in the case where the wavefield is evaluated on the source element itself. For this case, we present an analytical formula based on the reasonable assumption that the elements are much smaller than the wavelengths appearing in the calculation. Several numerical examples used for validation show acceptably precise results.  相似文献   

15.
Summary. A normal mode superposition approach is used to synthesize complete seismic codas for flat layered earth models and the P-SV phases. Only modes which have real eigenwavenumbers are used so that the search for eigenvalues in the complex wavenumber plane is confined to the real axis. In order to synthesize early P -wave arrivals by summing a number of'trapped'modes, an anomalously high velocity cap layer is added to the bottom of the structure so that most of the seismic energy is contained in the upper layers as high-order surface waves. Causality arguments are used to define time windows for which the resulting synthetic seismograms are close approximations to the exact solutions without the cap layer. The traditional Thomson—Haskell matrix approach to computing the normal modes is reformulated so that numerical problems encountered at high frequencies are avoided and numerical results of the locked mode approximation are given.  相似文献   

16.
Summary. Price's thin sheet analysis for electromagnetic fields has been extended in order to model the effects of crustal resistivity and conductivity variations on magnetotelluric fields. These extensions allow for a general layered medium below the crust and also account for the vertical resistance of the crust as well as its horizontal conductance. An important parameter emerges from the analysis which determines the distance it takes for the crustal current levels to readjust to changes in the crustal conductance. This adjustment distance is given by the square root of the conductivity thickness product multiplied by the resistivity thickness product. Approximate analytical solutions were developed for two-dimensional geometries in order to demonstrate these effects as well as the modifications produced by finite source wavelengths.  相似文献   

17.
Summary . Seismograms recorded at regional distances (2°–12°) are quite complicated due to the waveguide nature of the crust. Generalized ray theory can be used to model the body waves in this distance range but a very large number of rays is required. Here I present a series of approximations to streamline generalized ray theory for the waveguide problem. If a layer over a half-space is used for the structure, then the de Hoop contour for a given ray is most strongly dependent on the fastest velocity of any leg of the ray. This results in analytic approximations to locate the contour. Each ray has two body wave arrivals (a headwave and a reflected arrival) so the displacement response of the ray need only be evaluated at a few points in time about the two arrival times and interpolated in between. A change in structure (increasing crustal thickness or Pn velocity) most strongly affects the relative timing of the headwave and the reflected arrival, so it is possible to 'stretch' or 'squeeze' the waveform of a representative model to simulate a whole suite of models.
Also discussed is the applicability of a single layer over a half-space structure for modelling the observed regional distance waveforms for shallow earthquakes. At periods greater than a few seconds crustal layering can be replaced by a single layer having the appropriate average velocities. Lateral variations in crustal thickness with scale lengths of less than about 100 km can also be modelled with a simple horizontal layer of appropriate average thickness.  相似文献   

18.
The first assessment of temperature conditions in Kansas was made by geothermal gradient computations from temperature measurements in shallow boreholes, and these conditions are related to structural patterns, sedimentary cover and underlying basement properties. The area of south-central Kansas was selected for detailed study of geothermal character in relation to the geology. The aim was to quantify the relations and to determine the relationship of different variables of the temperature field. Input parameters included geothermal variables of gradient and temperature, and structure and sediment thickness. Two approaches were used: (1) the numerical computation of theoretical temperature-depth models based on conductive heat transfer, and (2) a map-comparison technique based on algebraic methods. The temperature field information usable for the map comparison is different in response to different measurements (nonequilibrium BHTs and temperatures from logged measurements in equilibrium). Derived from modelled results (plotted isotherms on cross-sections), a close relation between gradients and thermal conductivity of the sediments was confirmed. The most noticeable effect on the geothermal field, as noted quantitatively from the map-comparison study, is the relation of thickness of outcropping Permo-Pennsylvanian units because of their different thermal conductivity. The eastward increase of mean gradients is inversely related to the total sediment thickness, but this is mostly recognizable using the shallow temperature gradients. This dissimilarity gives additional evidence for a close link between gradients and thermal conductivity of the sediments in which the temperature measurements were made. The effect caused by the structure in deeper (older) units is not important and seems not to be significant, nor is the influence of the basement rock composition as indicated by the temperature modelling.  相似文献   

19.
In this paper we present revised locations and original focal mechanisms computed for intermediate and deep earthquakes that occurred within the Southern Tyrrhenian subduction zone between 1988 and 1994, in order to improve our knowledge of the state of stress for this compressional margin. In particular, we define the stress distribution within a large portion of the descending slab, between 40 and about 450 km depth. The seismicity distribution reveals a continuous 40–50 km thick slab that abruptly increases its dip from subhorizontal in the Ionian Sea to a constant 70° dip in the Tyrrhenian. We computed focal mechanisms for events with magnitudes ranging from 2.7 and 5.7, obtaining the distribution of P - and T -axes for many events for which centroid moment tensor (CMT) solutions are not available, thus enabling the sampling of a larger depth range compared to previous studies. We define three portions of the slab characterized by different distributions of P - and T -axes. A general down-dip compression is found between 165 and 370 km depth, whereas in the upper part of the slab (40–165 km depth) the fault-plane solutions are strongly heterogeneous. Below 370 km the P -axes of the few deep events located further to the north have a shallower dip and are not aligned with the 70° dipping slab, possibly suggesting that they belong to a separated piece of subducted lithosphere. There is a good correspondence between the depth range in which the P -axes plunge closer to the slab dip (∼ 70°) and the interval characterized by the highest seismic energy release (190–370 km).  相似文献   

20.
Remanence directions, measured at 2  cm intervals along a composite 88  m bore-core, enable mean palaeomagnetic poles to be defined at 13.6°S, 25.2°W and 13.6°N, 154.8°E. The directions of remanence vary very smoothly away from each palaeomagnetic pole, extending more than 90° from them. This raises doubts about the physical meaning of polarity definitions based on the distance between virtual and mean palaeomagnetic poles. For practical purposes, intermediate polarity is defined as directions whose virtual poles lie more than 25° from the mean pole, enabling at least five normal subchrons to be specified within the upper predominately reversed quarter of the core and 11 reversed subchrons within the lower predominantly normal three-quarters of the core. The stratigraphic thickness between these subchrons shows a very high linear correlation ( r >0.99) with the stratigraphic thickness of other terrestrial sequences and the distances between marine polarity sequences of comparable age. The analysed sequence contains wavelength spectra which, when transformed to the temporal realm, match periodicities determined for three marine magnetic anomaly profiles of similar age. These also match planetary orbital periodicities for the Cretaceous. These observations suggest that secular variations and polarity transitions are driven by common core processes whose surface expression is influenced by changes in the planetary orbits. Such detailed geomagnetic features enable far greater reliability in establishing magnetostratigraphic correlations and also enable them to be dated astronomically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号