首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bacteria and phytoplankton are integral in the mobilization and transfer of organic matter to higher trophic levels. Hence, we examined their role in zooplankton diets and assessed trends in their nitrogen isotopic variability. We performed feeding experiments with natural particulate organic matter (POM) and four zooplankton groups (Daphnia, Holopedium, large calanoids and small calanoids) to (1) examine whether there are differences in consumption (presented as clearance and ingestion rates) of phytoplankton and bacteria, and (2) determine whether differences in zooplankton clearance and ingestion rates are correlated with their δ15N isotopic signatures. In general, phytoplankton and bacteria clearance rates and biomass ingested per animal varied significantly among different zooplankton groups within lakes and between lakes for a given zooplankton group. Within a given lake, Daphnia and Holopedium had the highest phytoplankton and bacteria clearance and ingestion rates, followed by large calanoids, and then small calanoids. For a given zooplankton group, bacteria and phytoplankton clearance rates varied among lakes. In contrast, phytoplankton ingestion rates were consistently highest in Dickie Lake for all taxa, whereas bacteria ingestion rates were more variable among lakes for the different zooplankton taxa. The percentage contribution of different phytoplankton taxa to the biomass of phytoplankton ingested also varied significantly among lakes for a given taxa, but there were few differences within a given lake among zooplankton. Zooplankton δ15NDOMC values were correlated with their size adjusted phytoplankton and bacteria clearance and ingestion rates. The correlations were stronger with (1) phytoplankton compared to bacteria, and (2) clearance rates compared to ingestion rates of biomass. Together our results suggest that zooplankton taxa with low phytoplankton and bacteria clearance and ingestion rates and higher δ15NDOMC are likely exploiting food sources from higher trophic levels.  相似文献   

3.
The carbon isotopic compositions of individual lip-ids can provide the genetic information about sedi-mentary lipids so that it has extensively applied pros-pects in geochemically studied field[1―8]. However, this applied research relies heavily on the accumula-tion of studied data in the genetic relationships between carbon isotopic compositions of individual lipids and their biological precursors in different sedi-mentary environments. Recently, the useful δ 13C data of individual lipids f…  相似文献   

4.
Discrimination of abiogenic and biogenic alkane gases   总被引:5,自引:0,他引:5  
We have combined the analytical data of the carbon isotope distribution pattern, R/Ra and CH4/3He values of abiogenic and biogenic (referring to the thermogenic and bacterial or microbial) alkane gases in China with those of alkane gases from USA, Russia, Germany, Australia and other countries. Four discrimination criteria are derived from this comparative study: 1) Carbon isotopic composition is generally greater than -30‰ for abiogenic methane and less than -30‰ for biogenic methane; 2) Abiogenic alkane gases have a carbon isotopic reversal trend (δ 13C1> δ 13C2> δ 13C3> δ 13C4) with δ 13C1>-30‰ in general; 3) Gases with R/Ra >0.5 and δ 13C11 δ 13C2>0 are of abiogenic origin; 4) Gases (meth- ane) with CH4/3He≤106 are of abiogenic origin, whereas gases with CH4/3He≥1011 are of biogenic origin.  相似文献   

5.
Serious interest has been directed toward natural gas hydrate as a potential energy resource; factor in global climate change, and submarine geohazard since naturally occurring gas-hydrate deposits were found in the 1960s. Hydrate Ridge, Cascadia convergent mar- gin, is characterized by abundant methane hydrates at and below the seafloor, active venting of fluids and gases, chemosynthetic communities, and some of the highest methane oxidation rates ever found in the ma-rine environment. All of…  相似文献   

6.
7.
A detailed stable isotopic study based on benthic foraminifera from 1165 samples of ODP Site 1148 (18° 50.17.3’N, 116° 33.93’E, water depth 3308.3 m), northern South China Sea, provides an excellent oxygen isotopic record with an average resolution of 30 ka. It contains the most continuous δ18O data with highest resolution for the whole Neogene sequence in the world. The δ18O curve shows a step-like increasing upwards and records 5 increases, 3 decreases and 2 stable stages during the Neogene, reflecting the general trend of global cooling. Among these events the δ18O decrease at 17.2–14.5 Ma, and two δ18O increases at 14.5-13.6 and 3.0-2.4 Ma are most marked and globally comparable. The intervals at 13.6-10.2 and 6.0-3.0 Ma with the lowest-amplitude and least fluctuation in δ18O represent the most stable bottom water periods for the South China Sea.  相似文献   

8.
9.
During the 22nd Chinese Antarctic Research Expedition (CHINARE-22), the atmospheric gas samples above the oceanic surface and near the surface were collected on the track for the scientific ship “Xuelong” and on Millor Peninsula of eastern Antarctica, respectively, using the Tedlar gas bags. Every day the sampling times were 10:00 and 22:00 (local time), respectively. In the laboratory, high-precision measurement of the isotopic compositions for N2O in these gas samples was conducted using Thermo Finnigan MAT-253 Isotopic Mass Spectrometer with a fully automated interface for the pre-GC concentration (PreCon) of trace gases. The temporal and spatial variations of δ 15N and δ 18O in atmospheric N2O were analyzed. The mean δ 15N and δ 18O-N2O values above the oceanic surface were (7.21±0.50)‰ and (44.52±0.52)‰, respectively. From 30°N to Antarctica, the δ 15N (6.05‰–7.88‰) linearly increased with the rate of about 0.01‰ with the latitude while the δ 18O (43.05‰–48.78‰) showed a large fluctuation. The δ 15N negatively correlated with air temperature and N2O concentration, and slightly positively correlated with δ 18O. The summertime variations of δ 15N and δ 18O-N2O appeared the same trend on Millor Peninsula of eastern Antarctica. They significantly positively correlated with each other and negatively with N2O concentration. The δ 15N and δ 18O-N2O at different sites averaged (7.42±0.35)‰ and (44.69±0.49)‰, respectively, slightly higher than those above the oceanic surface, significantly higher than those of atmospheric N2O in the low-latitude regions of Northern Hemisphere. The predominant factors affecting the spatial variations of δ 15N and δ 18O values were also discussed. The isotopic data given in this study can help to investigate the global and regional N2O budgets. Supported by the National Natural Science Foundation of China (Grant Nos. 40676005 and 40406001)  相似文献   

10.
Sediments contain abundant lipid compounds in general, which are used as biomarker compounds to study organic matter sources and reconstruct the pa-laeoenvironments[1—7]. However, lipid compounds in sediments are generally a mixture of various genetic components so that it is difficult to correctly decouple their biological sources only by the results of bio-chemical researches. Carbon isotopic studies of indi-vidual sedimentary lipid compounds can discover their genetic information, which pr…  相似文献   

11.
In 2007/08, a study was undertaken on the sediment dynamics in shallow Lake Markermeer (the Netherlands). Firstly, sediment characteristics were determined at 49 sites in the lake. Parameters such as median grain size and loss on ignition showed a spatial as well as water depth related pattern, indicating wind-induced sediment transport. Highly significant correlations were found between all sediment parameters. Lake Markermeer sediment dynamics were investigated in a sediment trap field survey at two permanent stations in the lake. Sediment yields, virtually all coming from sediment resuspension, were significantly correlated with average wind speeds, though periods of extreme winds also played a role. Sediment resuspension rates for Lake Markermeer were high, viz. on average ca. 1,000 g m−2 day−1. The highly dynamic nature of Lake Markermeer sediments must be due to the overall shallowness of the lake, together with its large surface area (dynamic ratio = [√(area)]/[average depth] = 7.5); wind-induced waves and currents will impact most of the lake’s sediment bed. Indeed, near-bed currents can easily reach values >10 cm/s. Measurements of the thickness of the settled “mud” layer, as well as 137Cs dating, showed that long-term deposition only takes place in the deeper SE area of the lake. Finally, lake sediment dynamics were investigated in preliminary laboratory experiments in a small “micro-flume”, applying increasing water currents onto five Lake Markermeer sediments. Sediment resuspension started off at 0.5–0.7 cm/s and showed a strongly exponential behaviour with respect to these currents.  相似文献   

12.
Lake sediments are valuable natural archives to reconstruct paleoclimate and paleoenvironmental changes which consist of inorganic and organic sediment compounds of allochthonous origin from the catchment and of autochthonous production in the lake. However, for robust paleo-reconstructions it is important to develop a better understanding about sedimentation processes, the origin of inorganic and organic sediment compounds and their distribution within the lake. In this context, modern process studies provide important insights, although environmental and anthropological changes can affect the spatial distribution of sediment compounds through time. Therefore, in this study the spatial distribution of grain size and geochemical proxies in 52 surface sediment samples from Lake Khar Nuur, a small high-altitude lake in the Mongolian Altai with a small and anthropogenically used hydrological catchment, is investigated. The results show a distinct sediment focussing in the two deep basins of the lake, which therefore act as accumulation zones. In those accumulation zones, total organic carbon (TOC), total nitrogen (N) and their isotopic composition (δ13CTOC, δ15N) as well as n-alkanes indicate that organic sediment compounds are a mixture of both allochthonous and autochthonous origin. While the recent catchment vegetation consists of grasses/herbs and the shrub Betula nana (L.) with distinct differences in their n-alkane homologue patterns, those differences are not reflected in the sediment surface samples which rather indicates that grass-derived n-alkanes become preferentially incorporated in the lake. Extensive anthropogenic activity such as grazing and housing in the southern part of the catchment causes soil erosion which is well reflected by high TOC, N and sulphur (S) contents and 15N depleted δ15N values at the central southern shore, i.e. increased allochthonous sediment input by anthropogenically-induced soil erosion. Overall, the surface sediments of Lake Khar Nuur origin from allochthonous and autochthonous sources and are focussed in the accumulation zones of the lake, while their distribution is both environmentally and anthropogenically driven.  相似文献   

13.
Despite decreasing nutrient loading of Lake Constance over the past few years, annual sedimentation rates of dry matter remained nearly constant at a level of about 1000 gm–2y–1. The phosphorus content in settling material varied between 0.13 and 0.22% of dry weight. Phosphorus was transported to the lake bottom mainly by POM and by coprecipitation with authigenically formed calcite (estimated from results of laboratory studies). Adsorption to sinking particles of allochthonous origin was of minor importance. The effect of a self-cleaning mechanism is discussed with regard to continuously declining contents of dissolved phosphorus in Lake Constance since 1981, due to external sanitation measures in the drainage area.  相似文献   

14.
Two types of Hepialus larvae with different diets were distinguished in the Sejila Mountain, Tibetan Plateau based on the stable carbon isotope data of the host Hepialus larva of Cordyceps sinensis and its closely adjacent tender plant roots and humus fractions. Type I is the larva chiefly fed by soil humus, and characterized by the δ 13C values of −22.6‰ to −23.4‰, and more than −23.4‰ in its heads. Type II is the larva chiefly fed by tender plant roots, and characterized by the δ 13C values of −24.6‰ to −27.6‰, and less than −24.6‰ in its heads. Our result has exceeded the traditional understanding that their food sources only come from the tender plant roots, and may provide evidence for choosing cheap and high-quality foods and further establishing artificial habitats in their large-scale reproduction. Supported by the National Key Technology R & D Program (Grant No. 2007BAI32B05)  相似文献   

15.
The Luliang and Baoshan basins are two small ba- sins in Yunnan Province. In the recent ten years or so, there have been found a number of natural gas pools of commercial importance in the two basins. Although the gas pools are small in size, the natural …  相似文献   

16.
17.
The purposes of this study were to assess if Lake Apopka (FL, USA) was autotrophic or heterotrophic based on the partial pressure of dissolved carbon dioxide (pCO2) in the surface water and to evaluate factors that influence the long-term changes in pCO2. Monthly average pH, alkalinity and other limnological variables collected between 1987 and 2006 were used to estimate dissolved inorganic carbon (DIC), pCO2 and CO2 flux between surface water and atmosphere. Results indicated that average pCO2 in the surface water was 196 μatm, well below the atmospheric pCO2. Direct measurements of DIC concentration on three sampling dates in 2009 also supported pCO2 undersaturation in Lake Apopka. Supersaturation in CO2 occurred in this lake in only 13% of the samples from the 20-year record. The surface-water pCO2 was inversely related to Chl a concentrations. Average annual CO2 flux was 28.2 g C m−2 year−1 from the atmosphere to the lake water and correlated significantly with Chl a concentration, indicating that biological carbon sequestration led to the low dissolved CO2 concentration. Low pCO2 and high invasion rates of atmospheric CO2 in Lake Apopka indicated persistent autotrophy. High rates of nutrient loading and primary production, a high buffering capacity, a lack of allochthonous loading of organic matter, and the dominance of a planktivorous–benthivorous fish food web have supported long-term net autotrophy in this shallow subtropical eutrophic lake. Our results also showed that lake restoration by the means of nutrient reduction resulted in significantly lower total phosphorus (TP) and Chl a concentrations, and higher pCO2.  相似文献   

18.
Most terrestrial allochthonous organic matter enters river networks through headwater streams during high flow events. In headwaters, allochthonous inputs are substantial and variable, but become less important in streams and rivers with larger watersheds. As allochthonous dissolved organic matter (DOM) moves downstream, the proportion of less aromatic organic matter with autochthonous characteristics increases. How environmental factors converge to control this transformation of DOM at a continental scale is less certain. We hypothesized that the amount of time water has spent travelling through surface waters of inland systems (streams, rivers, lakes, and reservoirs) is correlated to DOM composition. To test this hypothesis, we used established river network scaling relationships to predict relative river network flow-weighted travel time (FWTT) of water for 60 stream and river sites across the contiguous United States (3090 discrete samples over 10 water years). We estimated lentic contribution to travel times with upstream in-network lake and reservoir volume. DOM composition was quantified using ultraviolet and visible absorption and fluorescence spectroscopy. A combination of FWTT and lake and reservoir volume was the best overall predictor of DOM composition among models that also incorporated discharge, specific discharge, watershed area, and upstream channel length. DOM spectral slope ratio (R2 = 0.77) and Freshness Index (R2 = 0.78) increased and specific ultraviolet absorbance at 254 nm (R2 = 0.68) and Humification Index (R2 = 0.44) decreased across sites as a function of FWTT and upstream lake volume. This indicates autochthonous-like DOM becomes continually more dominant in waters with greater FWTT. We assert that river FWTT can be used as a metric of the continuum of DOM composition from headwaters to rivers. The nature of the changes to DOM composition detected suggest this continuum is driven by a combination of photo-oxidation, biological processes, hydrologically varying terrestrial subsidies, and aged groundwater inputs.  相似文献   

19.
Nitrogen occupies a high content in crust and in atmospheric circle. It is one of the main elements in organism and an important element in sedimentary circle. Although nitrogen is little in crude oil, to a cer-tain degree, it influences the physical and chemical properties of oil, such as viscosity and density[1]. In reservoir the nitrogen-bearing compounds can form ion bonds or hydrogen bonds with substances on rock and form van der Vaals’ force among moleculae so they affect and alter the …  相似文献   

20.
This paper presents systematic studies on the C—O and Sr—Nd isotopic compositions for Cretaceous Badou carbonatites, Fangcheng basalts, and Jiaodong lamprophyres and Paleozoic Mengyin kimberlites in Shandong Province, China. Paleozoic kimberlites have normal and uniform C—O isotopic compositions with δ13C and δ18O in the range of −4.8‰—−7.6‰ and +9.9‰—+13.2‰, respectively. However, Cretaceous three different types of mantlederived rocks have quite different C—O isotopic compositions, indicating that the mantle sources are probably partially contaminated with organic carbon-bearing crustal materials. These Cretaceous rocks show uniform and EMII-like Sr—Nd isotopic compositions and also indicate that the mantle sources were affected by recycled crustal materials. Comparative studies of C—O and Sr—Nd isotopes reveal that the lithospheric mantle beneath the eastern North China Craton had different isotope characteristics in the Paleozoic, the early Cretaceous, and the Tertiary time. This demonstrates that the lithospheric mantle beneath the region underwent at least twice reconstructions since the Paleozoic. Available data imply that the first reconstruction mainly happened during the Triassic-Jurassic time with gradual changes and the second in the Cretaceous with abrupt changes. Results also show that the early Cretaceous (especially at 120-130 Ma) was perhaps the key period leading to the dramatic change of the Mesozoic geodynamics on the eastern North China Craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号