首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A one-dimensional, numerical model of time-evolving firn densification was used to simulate the response of the density profile through an ice sheet to changes in the temperature, density and accumulation rate at the surface. The equilibrium response of the model was compared with ice-core density profiles from Byrd, Antarctica and Site 2, Greenland, and the model predicted the density to within 10% of both cores. The response of the model to step-wise changes and random fluctuations in the surface boundary conditions was investigated. The standard deviation of elevation changes as a function of observation interval was computed. These changes were found to be small in comparison with the magnitude of present uncertainties in the mass balances of the Antarctic and Greenland Ice Sheets. It was concluded that, in the dry snow zones, natural variability in the densification will not prevent the geodetic determination of ice sheet mass balance from improving upon current estimates. Uncertainty in the constitutive equation for snow and firn is the dominant source of error in the calculations.  相似文献   

2.
On the longer climatic time scales, changes in the elevation and extent of the Antarctic ice sheet have an important role in modulating global atmospheric and oceanographic processes, and contribute significantly to world-wide sea levels. In this paper, a 3-D time-dependent thermomechanical model for the entire ice sheet is presented, that is subsequently used to examine the effects of glacial-interglacial shifts in environmental boundary conditions on its geometry. The model takes into account a coupled ice shelf, grounding-line dynamics, basal sliding and isostatic bed adjustment and considers the fully coupled velocity and temperature fields. Ice flow is calculated on a fine mesh (40 km horizontal grid size and 10 layers in the vertical) for grounded and floating ice and a stress transition zone in between at the grounding line, where all stress components contribute in the effective stress in the flow law. There is free interaction between ice sheet and ice shelf, so that the entire geometry is internally generated. A simulation of the present ice sheet reveals that the model is able to yield realistic results. A series of sensitivity experiments are then performed, in which lower temperatures, reduced accumulation rates and lower global sea level stands are imposed, either singly or in combination. By comparing results of pairs of experiments, the effects of each of these environmental changes can be determined. In agreement with glacial-geological evidence, we found that the most pronounced changes show up in the West Antarctic ice sheet configuration. They appear to be essentially controlled by variations in eustatic sea level, whereas typical glacial-interglacial changes in temperature and ice deposition rates tend to balance one another. These findings support the hypothesis that the Antarctic ice sheet basically follows glacial episodes in the northern hemisphere by means of sea-level teleconnections. Grounding occurs more readily in the Weddell sea than in the Ross sea and long time scales appear to be involved: it may take up to 30–40000 years for these continental shelf areas to become completely grounded after an initial stepwise perturbation in boundary conditions. According to these reconstructions, a steady state Antarctic ice sheet may contribute some 16 m to global sea level lowering at maximum glaciation.  相似文献   

3.
A simultaneous glaciochemical study of methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO4 -) has been conducted on the Antarctic plateau (South Pole, Vostok) and in more coastal regions. The objective was to investigate marine sulfur emissions in very remote areas. Firstly, our data suggest that MSA and nss-SO4 present in antarctic ice are mainly marine in origin and that DMS emissions have been significantly modulated by short term (eg. El Nino Southern Oscillation events) as well as long term climatic changes in the past. Secondly, our study of spatial variations of these two sulfur species seems to indicate that the atmosphere of coastal antarctic regions are mainly supplied by local DMS emissions whereas the atmosphere of the high plateau is also influenced by DMS emissions from more temperate marine latitudes. Thirdly, our study of the partitioning between MSA and nss-SO4 suggest that the temperature could have been an important parameter controlling the final composition of the high southern latitude atmosphere over the last climatic cycle; colder temperature favoring the formation of MSA. However, our data also support a possible role played by changes in the transport pattern of marine air to the high antarctic plateau.  相似文献   

4.
Antarctica and global change   总被引:2,自引:0,他引:2  
W. F. Budd 《Climatic change》1991,18(2-3):271-299
The Antarctic region of the globe is of special importance for a wide range of studies of global change. The IGBP research activities needing special focus for global change should be multidisciplinary, should involve both the geosphere and the biosphere, and should be of global as well as local interest. There are a number of important Antarctic research topics which fit these criteria.A decrease of Antarctic sea ice has a positive feedback on global warming. Reduction in the sea ice also impacts on deep ocean circulation and can give a positive feedback to the increase of atmospheric carbon dioxide by the reduction of a deep ocean sink. Changes in the mass balance of the Antarctic ice sheet impact on global sea level. A unique historic record of past climate and global environmental changes is being obtained from deep core drilling in the Antarctic ice sheet. Decreases of stratospheric ozone are most pronounced over the Antarctic in spring. The impact of increases in ultraviolet radiation on the biosphere can be studied in the Antarctic as a precurser to possible changes developing elsewhere around the globe. Changes in the atmosphere and ocean circulations resulting from the decrease in Antarctic sea ice cover can have important effects on ocean surface temperatures which impact on the climates of the continents.These topics are discussed briefly and a number of Antarctic research areas are highlighted which build on existing or planned international programmes and which can make critical contributions to multidisciplinary studies of global change.  相似文献   

5.
The heat budget of the upper Arctic Ocean is examined in an ensemble of coupled climate models under idealised increasing CO2 scenarios. All of the experiments show a strong amplification of surface air temperatures but a smaller increase in sea surface temperature than the rest of the world as heat is lost to the atmosphere as the sea-ice cover is reduced. We carry out a heat budget analysis of the Arctic Ocean in an ensemble of model runs to understand the changes that occur as the Arctic becomes ice free in summer. We find that as sea-ice retreats heat is lost from the ocean surface to the atmosphere contributing to the amplification of Arctic surface temperatures. Furthermore, heat is mixed upwards into the mixed layer as a result of increased upper ocean mixing and there is increased advection of heat into the Arctic as the ice edge retreats. Heat lost from the upper Arctic Ocean to the atmosphere is therefore replenished by mixing of warmer water from below and by increased advection of warm water from lower latitudes. The ocean is therefore able to contribute more to Arctic amplification.  相似文献   

6.
7.
Fourteen samples of fresh falling snow were collected at Antarctic coastal base Dumont d'Urville in 1984. The samples have been analysed for major ions (including MSA) by ion chromatography and acid titration. The results are relevant to the chemical composition of background precipitation in polar marine conditions. The seasalt aerosol contribution is dominant. All samples are found to be acidic in the range 3–16 eq/l. The calculated non-seasalt sulfate (nssSO4 2-) concentration is significantly negative for 3 of the 14 samples. NssSO4 2- is found to be relatively high in summer and fall. MSA also exhibits the same pattern probably linked to local marine biogenic activity and/or atmospheric photochemical processes. The MSA to nssSO4 2- ratio is in good agreement with values reported for coastal Antarctic ice cores and subantarctic acrosol. The background mean value for nitrate concentration is 1.1 eq/l but two very strong spikes (up to 16 eq/l) are observed. The first seems to be linked with long range transport of continental air masses while the second (in winter) is clearly due to a sudden input of nitric acid, possibly from the stratosphere.This paper represents a preliminary approach to a larger air and snow monitoring to be developped at this site.  相似文献   

8.
Several multi-century and multi-millennia simulations have been performed with a complex Earth System Model (ESM) for different anthropogenic climate change scenarios in order to study the long-term evolution of sea level and the impact of ice sheet changes on the climate system. The core of the ESM is a coupled coarse-resolution Atmosphere–Ocean General Circulation Model (AOGCM). Ocean biogeochemistry, land vegetation and ice sheets are included as components of the ESM. The Greenland Ice Sheet (GrIS) decays in all simulations, while the Antarctic ice sheet contributes negatively to sea level rise, due to enhanced storage of water caused by larger snowfall rates. Freshwater flux increases from Greenland are one order of magnitude smaller than total freshwater flux increases into the North Atlantic basin (the sum of the contribution from changes in precipitation, evaporation, run-off and Greenland meltwater) and do not play an important role in changes in the strength of the North Atlantic Meridional Overturning Circulation (NAMOC). The regional climate change associated with weakening/collapse of the NAMOC drastically reduces the decay rate of the GrIS. The dynamical changes due to GrIS topography modification driven by mass balance changes act first as a negative feedback for the decay of the ice sheet, but accelerate the decay at a later stage. The increase of surface temperature due to reduced topographic heights causes a strong acceleration of the decay of the ice sheet in the long term. Other feedbacks between ice sheet and atmosphere are not important for the mass balance of the GrIS until it is reduced to 3/4 of the original size. From then, the reduction in the albedo of Greenland strongly accelerates the decay of the ice sheet.  相似文献   

9.
Scaling analysis shows that the mean thickness of an ice sheet depends on the product of two poorly known quantities, the ice viscosity and the net snow accumulation rate. We adjust the viscosity of an ice sheet in order to get a consistent value of this product for the present-day ice sheet volume and area given the net snow accumulation rate calculated by an atmospheric general circulation model (GCM). We then hold this artificial rheology constant in further numerical experiments. We hope that in doing so we can partially compensate for systematic GCM errors in simulating the snow accumulation rate, and, therefore, thickening/thinning of ice sheets will depend mostly on the tendency in the net accumulation change rather than on its absolute value. Using this approach, the response of the Greenland and Antarctic ice sheets to doubling CO2 concentration is simulated and the horizontal distribution of possible thickening/thinning of polar ice obtained. We find that, initially, the region of thickening ice is close to the area of increased snowfall rate, but later it significantly changes under the influence of internal ice flow dynamics. The sea-level changes predicted by our experiments agree with some empirical estimates. The sensitivity experiment with assigned basal sliding does not show significant changes in the large-scale ice topography, meaning, for example, that there is no indication of a possible disintegration of the West Antarctic ice sheet. At the same time, the regional thickening/thinning of ice (and consequently the sea-level change) depends strongly on processes at the ice sheet bottom.  相似文献   

10.
The surface wind field is an important factor controlling the surface mass balance of Antarctica. This paper focuses on the observed atmospheric circulation during summer of an Antarctic blue ice area in Queen Maud Land. Blue ice areas are characterised by a negative surface mass balance and henceforth provide an interesting location to study the influence of meteorological processes on large local mass balance gradients. During lapse conditions, synoptic forcing determines the surface-layer flow. No significant horizontal temperature gradient with coastal stations could be detected along isobaric surfaces, indicating weak or absent thermal wind. Observations performed at the coastal stations Halley and Georg von Neumayer show the pronounced effects of synoptic forcing. The surface winds in the valley of the blue ice area could be divided into two distinct flow patterns, occurring with about equal frequency during the experiment. Flow type I is associated with cyclonic activity at the coast, resulting in strong easterly winds, precipitation and drifting snow. Flow characteristics inside and outside of the valley are similar during these conditions. Flow type II occurs when a high pressure system develops in the Weddell Sea, weakening the free atmosphere geostrophic winds. A local circulation is able to develop inside the valley of the blue ice area during these tranquil conditions. The transition from flow type II to flow type I is associated with front-like phenomena inside the valley. Some simple theoretical considerations show that surface-layer stability and the upper air geostrophic wind determine the surface flow direction in the valley. Finally, the influence of the observed circulation on the energy and mass balance of the blue ice area is discussed.  相似文献   

11.
Snow precipitation is the primary mass input to the Antarctic ice sheet and is one of the most direct climatic indicators, with important implications for paleoclimatic reconstruction from ice cores. Provenance of precipitation and the dynamic conditions that force these precipitation events at four deep ice core sites (Dome C, Law Dome, Talos Dome, and Taylor Dome) in East Antarctica were analysed with air mass back trajectories calculated using the Lagrangian model and the mean composite data for precipitation, geopotential height and wind speed field data from the European Centre for Medium Range Weather Forecast from 1980 to 2001. On an annual basis, back trajectories showed that the Atlantic-Indian and Ross-Pacific Oceans were the main provenances of precipitation in Wilkes Land (80%) and Victoria Land (40%), respectively, whereas the greatest influence of the ice sheet was on the interior near the Vostok site (80%) and in the Southwest Ross Sea (50%), an effect that decreased towards the coast and along the Antarctic slope. Victoria Land received snowfall atypically with respect to other Antarctica areas in terms of pathway (eastern instead of western), seasonality (summer instead of winter) and velocity (old air age). Geopotential height patterns at 500 hPa at low (>10 days) and high (2–6 days) frequencies during snowfall cycles at two core sites showed large positive anomalies at low frequencies developing in the Tasman Sea-Eastern Indian Ocean at higher latitudes (60–70°S) than normal. This could be considered part of an atmospheric blocking event, with transient eddies acting to decelerate westerlies in a split region area and accelerate the flow on the flanks of the low-frequency positive anomalies.  相似文献   

12.
In the framework of the study of the Eemian interglacial we consider the role of the Greenland ice sheet in the rise of the mean level of the World Ocean. Its contribution estimated as 2 m confirms the newest estimates based on the model results and on the proxy data analysis. In the beginning of the Eemian interglacial (earlier than 126 thousand years ago) mass lost occurs through the marine margin of the sheet. During the next five millennia, the negative surface mass balance plays the leading role. Taking into account the contribution of Greenland ice sheet, ocean thermal expansion, and the melting of mountain glaciers and ice caps, it is very probable that the West Antarctic ice sheet was the main source of the global sea level growth equal to 6–9 m the compared to the present.  相似文献   

13.
 A simple climate model has been developed to investigate the existence of the small ice cap instability in the Southern Hemisphere. The model consists of four coupled components: an atmospheric energy balance model, a thermodynamic snow-sea ice model, an oceanic mixed layer model and a terrestrial ice model. Results from a series of experiments involving different degrees of coupling in the model show that the instability appears only in those cases when an explicit representation of the Antarctic ice sheet is not included in the model. In order to determine which physical processes in the ice sheet model lead to a stabilization of the system we have conducted several sensitivity experiments in each of which a given ice sheet process has been removed from the control formulation of the model. Results from these experiments suggest that the feedback between the elevation of the ice sheet and the snow accumulation-ice ablation balance is responsible for the disappearance of the small ice cap instability in our simulation. In the model, the mass balance of the ice sheet depends on the air temperature at sea level corrected for altitude and it is, therefore, a function of surface elevation. This altitude-mass balance feedback effectively decouples the location of the ice edge from any specific sea level isotherm, thus decreasing the model sensitivity to the albedo-temperature feedback, which is responsible for the appearance of the instability. It is also shown that the elevation-radiative cooling feedback tends to stabilize the ice sheet, although its effect does not seem to be strong enough to remove the instability. Another interesting result is that for those simulations which include the terrestrial ice model with elevation-dependent surface mass balance, hysteresis is exhibited, where for a given level of external forcing, two stable solutions with different, non-zero ice-sheet volume and area and different air and ocean temperature fields occur. However, no unstable transition between the two solutions is ever observed. Our results suggest that the small ice cap instability mechanism could be unsuitable for explaining the inception of glaciation in Antarctica. Received: 14 April 1997 / Accepted: 22 October 1997  相似文献   

14.
FGOALS_gg1.1极地气候模拟   总被引:4,自引:0,他引:4  
对中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统模式FGOALS_g1.1的极地气候模拟现状进行了较为全面的评估.结果表明,FGOALS_g1.1对南北极海冰的主要分布特征、季节变化和年代际变化趋势具有一定的模拟能力.但也注意到,与观测相比,模式存在以下几方面的问题:(1)模拟的海冰总面积北极偏多,而南极偏少.北极,北大西洋海冰全年明显偏多;夏季,西伯利亚沿海海冰偏多,而波弗特海海冰偏少.南极,威德尔海和罗斯海冬季海冰偏少.南北极海冰边缘都存在异常的较大范围密集度很小的碎冰区,夏季尤为显著.(2)海冰流速在南北极海冰边缘和南极大陆沿岸附近较大.北极,模式没能模拟出波弗特涡流,并且由于模式网格中北极点的处理问题,造成其附近错误的海冰流场及厚度分布.这些海冰偏差与模式模拟的大气和海洋状况有着密切的联系.进一步分析表明,FGOALS_g1.1模拟的冰岛低压和南极绕极西风带明显偏弱,其通过大气环流和海表面风应力影响向极地的热量输送,在很大程度上导致上述的海冰偏差.此外,耦合模式中大气-海冰-海洋的相互作用可以放大子模式中的偏差.  相似文献   

15.
利用南极大陆沿岸中山站2008-2013年的地面臭氧连续观测数据和相关资料,对地面臭氧损耗事件(ODE)进行研究。结果显示,春季南极中山站常发生臭氧损耗事件。在该事件发生期间,气象要素有明显的突变过程,包括气温明显下降,风向由偏东风转变为偏北风,风速随之下降。来自海冰区的偏北风增多,风速很小,使臭氧浓度维持在较低水平。地面臭氧损耗事件主要与南极沿岸海冰区的活性溴(BrO)浓度有关。春季南极大陆沿岸海冰冻融过程中形成的冰间水道和冰间湖,在低温的作用下会再次冻结,形成薄冰和霜花。卫星资料能够观测到薄冰区释放的活化海盐溴高浓度区,活性溴与臭氧发生化学反应形成地面臭氧损耗事件。臭氧损耗现象是在未受到人为影响的自然状态下发生的,与中高纬度地区光化学反应导致臭氧消耗有所不同。   相似文献   

16.
南极地区气候系统变化: 过去、现在和将来   总被引:2,自引:0,他引:2  
 南极科学委员会(SCAR)下属的"南极与全球气候系统(AGCS)计划"专家委员会发布了"南极与南大洋气候系统(SASOCS)"白皮书,重点评估了过去50 a南极地区气候系统的变化并预估了未来100 a情景。白皮书总体认为,过去50 a南极气候系统变化表现出很强的区域特征。南极半岛地区升温明显,半岛及亚南极岛屿上的冰川均处于退缩状态;南半球环状模(SAM)转为正位相,西南极上空的暖湿气团入侵加强,南极冬季对流层有升温趋势,平流层变冷,极涡消退日期推迟;东南极外围的南极底层水变淡,Weddell海区的底层水有变暖趋势。虽有上述区域变化,整个南极地区在过去50 a中近地面气温并无明显升高,降水亦无明显增加。自20世纪80年代以来海冰面积也无明显变化,只在某些扇区变化强烈。模式预估结果为:到21世纪末南极内陆地区将增暖(3.4±1.0)℃, 海冰面积将缩小约30%。现有的冰盖模式尚不足以回答未来气候变暖情景下冰盖融化与海平面变化之间的定量关系,有待更深入研究。  相似文献   

17.
南极科学委员会(SCAR)下属的"南极与全球气候系统(AGCS)计划"专家委员会发布了"南极与南大洋气候系统(SASOCS)"白皮书,重点评估了过去50 a南极地区气候系统的变化并预估了未来100 a情景。白皮书总体认为,过去50 a南极气候系统变化表现出很强的区域特征。南极半岛地区升温明显,半岛及亚南极岛屿上的冰川均处于退缩状态;南半球环状模(SAM)转为正位相,西南极上空的暖湿气团入侵加强,南极冬季对流层有升温趋势,平流层变冷,极涡消退日期推迟;东南极外围的南极底层水变淡,Weddell海区的底层水有变暖趋势。虽有上述区域变化,整个南极地区在过去50 a中近地面气温并无明显升高,降水亦无明显增加。自20世纪80年代以来海冰面积也无明显变化,只在某些扇区变化强烈。模式预估结果为:到21世纪末南极内陆地区将增暖(3.4±1.0)℃, 海冰面积将缩小约30%。现有的冰盖模式尚不足以回答未来气候变暖情景下冰盖融化与海平面变化之间的定量关系,有待更深入研究。  相似文献   

18.
A set of simple scaling formulas related to ice sheet evolution is derived from the dynamic and thermodynamic equations for ice and is used to consider two common situations: (a) when we wish to estimate potential ice sheet characteristics given the prescribed net snow accumulation over an area; and (b) when we wish to reconstruct net snow accumulation and vertical temperature difference within the ice sheet given empirical data only concerning ice sheet area and volume. The scaling formulas are applied to the present day Antarctic and Greenland ice sheets, as well as to some ancient ice sheets, and are used to estimate the potential global sea level change due to greenhouse warming.  相似文献   

19.
Two Holocene ice core records from East Antarctica (Vostok and EPICA-Dome C) were analysed for dust concentration and size distribution at a temporal resolution of 1 sample per ~50 years. A series of volcanic markers randomly distributed over the common part of the ice cores (from 9.8 to 3.5 kyear BP) ensures accurate relative dating (±33 years). Dust-size records from the two sites display oscillations structured in cycles with sub-millennial and secular scale frequencies that are apparently asynchronous. The power spectra of the composite sum (Σ) of the two dust-size records display spectral energy mostly for 150- to 500-year periodicities. On the other hand, the 200-year band is common to both records and the 200 year components of the two sites are out-of-phase (100-year lead or lag) over ~5.5 kyear, a phenomenon also reflected by a significant (>99% conf. lev.) band in the power spectra of the composite difference (Δ) of the two size records. During long-range transport, mineral dust originating from the Southern Hemisphere continents is graded to a variable extent depending on the altitude and duration of atmospheric transport. Relatively coarse dust is associated with air mass penetration from the middle–lower troposphere and conversely relatively fine dust with upper troposphere air masses or the influence of subsidence over the Antarctic plateau, a hypothesis already proposed for the changes that occurred during the Last Glacial Maximum to Holocene transition (Delmonte et al. 2004b). Moreover, we assume that the overall fluctuation of air mass advection over Antarctica depends on the meridional pressure gradient with respect to low latitudes, i.e. the Antarctic Oscillation (AAO). We therefore suggest a regional variability in atmospheric circulation over East Antarctica. The 150–500 year power spectrum of the composite (Σ) parameter represents the long term variability of the AAO, imprinted by secular internal oscillations probably related to the southern ocean-climatic system. On the other hand, the Δ dust composite parameter suggests a persistent atmospheric dipole over East Antarctica delivering coarser (finer) dust particles alternatively to Vostok and Dome C regions with a bi-centennial periodicity. Indeed, a seesaw phenomenon in dust size distribution was already observed at three East Antarctic sites during the last deglaciation (Delmonte et al. 2004b) and was interpreted as a progressive reduction of the eccentricity of the polar vortex with respect to the geographic south pole. Interestingly, the Δ parameter shows a pronounced 200-year oscillation mode, throwing new light on the unresolved question of a possible relationship between climate and solar activity.  相似文献   

20.
The total mass budget of the Antarctic ice sheet is studied with a simple axi-symmetrical model. The ice-sheet has a parabolic profile resting on a bed that slopes linearly downwards from the centre of the ice sheet into the ocean. The mean ice velocity at the grounding line is assumed to be proportional to the water depth. The accumulation rate is a linear function of the distance to the centre. Setting the total mass budget to zero yields a quadratic equation for the steady-state ice-sheet radius R. Analysis of the equilibrium states sheds light on the sensitivity of the ice-sheet radius to changes in sea level (S) and precipitation with respect to the present state (Prel). For model parameters obtained by matching the analytical model to the present state of the Antarctic ice sheet, the sensitivity values are dR/dS = -2400 and dR/dPrel = 4000 m/%. The model can also be used to study transient behaviour of the ice sheet. The characteristic relaxation time (e-folding time scale) is about 3500 years. Forcing the model with a sea-level and accumulation history over the past few hundred thousands of years yields Antarctic ice-volume curves that are similar to those obtained by comprehensive numerical modelling. The current imbalance predicted by the model corresponds to a sea-level rise of 0.25 mm yr-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号