首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The development of a predictive model of behaviour of porous media during injection of miscible grout, taking into account convection, dilution and filtration of grout solution with interstitial water, as well as consolidation aspects, is presented. Model assumptions are reviewed and discussed first. During the establishment of the model, we insist on surface terms and their physical relevance in expressing adsorption effects. Constitutive laws such as Fick's law for diffusive mass transport, hydrodynamic dispersion tensor dealing with miscibility, are modified by taking into account filtration effects. A new surface term appears in mass balance equations as a consequence of filtration. According to the filtration laws used, an initial filtration rate is estimated on the basis of a one‐dimensional experimental campaign. The field equations are discretized by using Galerkin finite element and θ‐scheme standard method. For transport equation, Streamline Upwind Petrov Galerkin method is employed to prevent numerical oscillations. Lastly, confrontation of numerical results with laboratory experiments constitutes a first step to validate the model on a realistic basis. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
The theory of consolidation is extended to partly saturated clay soils, and formulated for finite element analyses. This formulation couples the effects of both stress and flow. It takes account of variations of this permeability of the soil and compressibility of the pore fluid with changes in void ratio, and the non-linear stress–strain behaviour of soil. The Cam Clay model is revised to model the stress–strain behaviour of compacted soils. The compressibility of pore fluid is derived using Boyle's Law and Henry's Law, taking into account the effect of surface tension. An empirical equation is developed for permeability of pore fluid. An example of settlement of a footing on partly saturated soil is described and discussed.  相似文献   

3.
In this paper, the gravity dam–water–foundation system including the physical and mechanical properties of the sediment at the reservoir bottom is modelled using a finite element and infinite element coupling model. The sediment at the reservoir bottom has been assumed to be a viscoelastic solid medium. The effects of thickness, elastic modulus, Poisson's ratio and material damping of the sediment on the response of the dam have been studied. The related numerical results from this study illustrated that the existence of the sediment at the bottom of the reservoir has significant effects on the response of concrete gravity dams since the soft layer of the sediment plays two main roles in the dam–water–foundation system, the energy dissipation of the system and the amplification of the incident wave on the water–sediment interface. It is the amplified acceleration on the water–sediment interface that results in different mechanisms of the effect of the sediment on the response of the dam. Therefore, apart from the incident wave, the thickness, the softness and the damping ratio of the sediment can also affect the response of the dam.  相似文献   

4.
A new constitutive formulation for simulating the behaviour of nearly saturated sands under seismic loads is presented. The formulation is based on combining the Henry's law for dissolution of gas in water, the ideal or perfect gas law and the law of conservation of mass. The effects of transient air dissolution in water on the compressibility of partially saturated soils are also taken into account. The model was calibrated based on numerical simulations of isotropically consolidated cyclic triaxial tests conducted on partially saturated samples of Toyoura sand. A multi‐yield plasticity soil constitutive model implemented in the finite element code DYNAFLOW was used for these numerical simulations. It is shown that the formulation proposed here is able to reasonably predict the soil cyclic undrained behaviour at various degrees of saturation (95% and higher). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
6.
This paper investigates the two‐dimensional flow problem through an anisotropic porous medium containing several intersecting curved fractures. First, the governing equations of steady‐state fluid flow in a fractured porous body are summarized. The flow follows Darcy's law in matrix and Poiseuille's law in fractures. An infinite transversal permeability is considered for the fractures. A multi‐region boundary element method is used to derive a general pressure solution as a function of discharge through the fractures and the pressure and the normal flux on the domain boundary. The obtained solution fully accounts for the interaction and the intersection between fractures. A numerical procedure based on collocation method is presented to compute the unknowns on the boundaries and on the fractures. The numerical solution is validated by comparing with finite element solution or the results obtained for an infinite matrix. Pressure fields in the matrix are illustrated for domains containing several interconnected fractures, and mass balance at the intersection points is also checked. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an algorithm and a fully coupled hydromechanical‐fracture formulation for the simulation of three‐dimensional nonplanar hydraulic fracture propagation. The propagation algorithm automatically estimates the magnitude of time steps such that a regularized form of Irwin's criterion is satisfied along the predicted 3‐D fracture front at every fracture propagation step. A generalized finite element method is used for the discretization of elasticity equations governing the deformation of the rock, and a finite element method is adopted for the solution of the fluid flow equation on the basis of Poiseuille's cubic law. Adaptive mesh refinement is used for discretization error control, leading to significantly fewer degrees of freedom than available nonadaptive methods. An efficient computational scheme to handle nonlinear time‐dependent problems with adaptive mesh refinement is presented. Explicit fracture surface representations are used to avoid mapping of 3‐D solutions between generalized finite element method meshes. Examples demonstrating the accuracy, robustness, and computational efficiency of the proposed formulation, regularized Irwin's criterion, and propagation algorithm are presented.  相似文献   

8.
A theoretical formulation and a numerical solution method are proposed for the problem of the time dependent consolidation of an elasto-plastic soil subject to finite deformations. The soil is assumed to be a two-phase material with a skeleton which may yield according to a general yield criterion with plastic flow governed by a general flow law, and whose pore fluid flows according to Darcy's Law. Governing equations are cast in a rate form and constitutive laws are expressed in a frame indifferent manner. The method of analysis is illustrated by several examples of practical interest for both a soil with an elastic skeleton and a soil with an elasto-plastic skeleton which obeys a Morh–Coulomb yield criterion and a non-associated flow law.  相似文献   

9.
A direct time-domain numerical procedure is proposed to analyse the transient dynamic response of two-dimensional reservoir–dam–soil systems. The reservoir extends to infinity and the dam is supported by an unbounded soil. The structure with either linear or non-linear material properties is modelled by the Finite Element Method (FEM). The soil is assumed to be an elastic, isotropic and homogeneous half-space represented by a boundary condition in the form of generalized impedance determined by the transient Lamb's solution due to a uniformly distributed traction imposed on the free surface, Guan and Novak.1 Moreover, a technique is developed to include the influence of the reservoir on the dam in terms of nodal accelerations along their interface at different time steps. The advantages of the proposed procedure are obvious. For example, it avoids any additional discretization of the boundaries except the soil–dam interface, and the influence matrix of the fluid is obtained explicitly using shape functions defined at the upstream face of the dam without the finite analysis of the reservoir so that it works very efficiently. Numerical results for a system consisting of reservoir, elastic dam and foundation subjected to the San Fernando, 1971 earthquake ground motion are presented.  相似文献   

10.
A constitutive model for dry metamorphosed snow is proposed, within the framework of elasto‐viscoplasticity, which is able to reproduce the most relevant features of the macroscopic behaviour of snow, particularly its time and rate dependency. The basic ideas for modelling stem from the conceptual forms proposed for bonded geomaterials, such as cemented soils or soft rocks. The high viscosity of snow is accounted for by adopting an overstress approach, suitably modified. An evolution law for the curvature‐driven process of sintering, by which intergranular ice necks form and grow, is established. The system of constitutive equations is then numerically integrated via a fully implicit time stepping scheme. Selected results from finite element simulations of laboratory tests, available in the literature, are presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A hierarchical mathematical model for analyses of coupled chemo‐thermo‐hygro‐mechanical behaviour in concretes at high temperature is presented. The concretes are modelled as unsaturated deforming reactive porous media filled with two immiscible pore fluids, i.e. the gas mixture and the liquid mixture, in immiscible–miscible levels. The thermo‐induced desalination process is particularly integrated into the model. The chemical effects of both the desalination and the dehydration processes on the material damage and the degradation of the material strength are taken into account. The mathematical model consists of a set of coupled, partial differential equations governing the mass balance of the dry air, the mass balance of the water species, the mass balance of the matrix components dissolved in the liquid phases, the enthalpy (energy) balance and momentum balance of the whole medium mixture. The governing equations, the state equations for the model and the constitutive laws used in the model are given. A mixed weak form for the finite element solution procedure is formulated for the numerical simulation of chemo‐thermo‐hygro‐mechanical behaviours. Special considerations are given to spatial discretization of hyperbolic equation with non‐self‐adjoint operator nature. Numerical results demonstrate the performance and the effectiveness of the proposed model and its numerical procedure in reproducing coupled chemo‐thermo‐hygro‐mechanical behaviour in concretes subjected to fire and thermal radiation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A new finite element program is introduced and its predictive capabilities are compared to results from two long-term, drained laboratory creep tests on a deep sea clay. The constitutive behaviour is based on Cam clay critical state plasticity theory with creep and time-dependent hardening. Creep is computed using either Singh–Mitchell's three-dimensional equation or Taylor's secondary compression relationship. The experimental creep data include a triaxial specimen subjected to two deviatoric stress increments and a one-dimensional consolidation specimen subjected to three vertical stress increments. In addition, the pore pressure behaviour following an increase in stress is examined in the triaxial sample. Predictions compare favourably to test data, which provide confidence for applying the chosen constitutive model and numerical formulation to solve seabed-related problems on the continental slope that are of interest to geologists, the oil industry and the navy, among others.  相似文献   

13.
This paper presents a non‐linear interface element to compute soil–structure interaction (SSI) based on the macro‐element concept. The particularity of this approach lies in the fact that the foundation is supposed to be infinitely rigid and its movement is entirely described by a system of global variables (forces and displacements) defined in the foundation's centre. The non‐linear behaviour of the soil is reproduced using the classical theory of plasticity. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. The macro‐element is appropriate for modelling the cyclic or dynamic response of structures subjected to seismic action. More specifically, the element is able to simulate the behaviour of a circular rigid shallow foundation considering the plasticity of the soil under monotonic static or cyclic loading applied in three directions. It is implemented into FedeasLab, a finite element Matlab toolbox. Comparisons with experimental monotonic static and cyclic results show the good performance of the approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A numerical method of analysis is proposed for computation of the elastic settlement of raft foundations using a FEM–BEM coupling technique. The structural model adopted for the raft is based on an isoparametric plate bending finite element and the raft–soil interface is idealized by boundary elements. Mindlin's half-space solution is used as a fundamental solution to find the soil flexibility matrix and consequently the soil stiffness matrix. Transformation of boundary element matrices are carried out to make it compatible for coupling with plate stiffness matrix obtained from the finite element method. This method is very efficient and attractive in the sense that it can be used for rafts of any geometry in terms of thickness as well as shape and loading. Depth of embedment of the raft can also be considered in the analysis. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Liu Jun 《岩土力学》1980,2(3):51-62
The whole deformation curve of rock represents important mechanical behaviour in the deformation and failure of rock .The problem has been deeply studied by numerous scientists .The author intends to deal with the whole deformation curve of rock .As the first step of study .the analogous calculation has been considered with the whole deformation curve of rock under uniaxial pressure in this paper .The mathematical expressions are developed piecewise ,and the constitutive law is given .Then ,the stress state of a rock specimen is computed for loading and unloading cycles step by step under the uniaxial pressure ,using the finite element method .A satisfactory result is obtained .The author will consider the problem about the deformation and failure of rock under the different confining pressure in another related paper .  相似文献   

16.
刘钧 《岩土力学》1980,2(3):51-62
一、问题的提出在实验室内,利用刚性加压设备对于岩石标本进行压缩试验,可以得到岩石标本的全变形曲线.该全变形曲线反映出岩石很多重要的力学属性,诸如压密过程、比例极限、应变强化、强度值、应变软化等等.这些力学属性无论是对于分析岩体的破坏机制,还是评价岩体的稳定性问题都是必需的第一手贫料.但实际上,直接用这些资料进行分析计算确不多.  相似文献   

17.
A finite element study is presented of the short-term effects that develop when a tunnel is driven in a ground showing viscous behaviour associated with the deviatoric deformations. Axisymmetric conditions around the tunnel centreline are assumed and the process of excavation is simulated by means of a step-by-step time incremental technique. The Kelvin's model is used to approximate the medium creep behaviour and a simple procedure is presented that allows the determination of the creep model constants from the laboratory test data. Various rates of advancing, the presence of an unsupported zone close to the tunnel face and the temporary interruption of the excavation process are considered. For the viscous model and the analytical technique used, simple, approximate relationships are presented for the displacements around the tunnel and the overexcavation volume as functions of the rate of excavation advancing.  相似文献   

18.
A method is presented for coupling cubic‐order quadrilateral finite elements with the finite side of a new coordinate ascent hierarchical infinite element. At a common side shared by a hierarchical infinite element and an arbitrary number of finite elements, the displacements are minimized in the least square sense with respect to the degrees‐of‐freedom of the finite elements. This leads to a set of equations that relate the degrees‐of‐freedom of the finite and hierarchical infinite elements on the shared side. The method is applied to a non‐homogeneous cross‐anisotropic half‐space subjected to a non‐uniform circular loading with Young's and shear moduli varying with depth according to the power law. A constant mesh constructed from coupled finite and hierarchical infinite elements is used and convergence is sought simply by increasing the degree of the interpolating polynomial. The displacements and stresses produced by conical and parabolic circular loads applied on the surface are obtained. The efficiency of the proposed method is demonstrated through convergence and comparison studies. New results produced by a frusto‐conical circular load applied on the surface of a half‐space made up of heavily consolidated London clay are provided. The non‐homogeneity parameter and degree of anisotropy are shown to influence the soil response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A numerical technique, based on a mathematical programming algorithm, is presented for the solution of geotechnical problems where elastic-plastic material behaviour is considered. The proposed approach can be adopted for geotechnical media characterized by any suitable yield condition, accounting, if necessary, for workhardening behaviour. The loading process is subdivided into a series of steps applied to a finite element mesh with geometry and material properties constant along each step, but with possible changes between subsequent steps. As an application some typical geotechnical problems are analysed by means of the proposed algorithm and a comparison is made between the available in situ measurements and the numerical results.  相似文献   

20.
This paper presents results from a finite element study on the behaviour of a single pile in elastic–plastic soils. Pile behaviour in uniform sand and clay soils as well as cases with sand layer in clay deposit and clay layer in sand deposit were analysed and cross compared to investigate layering effects. Finite element results were used to generate p–y curves and then compared with those obtained from methods commonly used in practice. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号