首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Badland areas are usually regarded as impermeable zones which generate high runoff and are very vulnerable to sheetwash and rainsplash. To test those considerations sprinkling experiments using two rainfall simulators were carried out on slopes of varying aspect in the northern Negev (Israel). For one unit 1·5 m2 plots were used with rainfall of natural characteristics at 36 mm/hr intensity and 43–48 minute duration, runoff being recorded and water/sediment samples taken every 5 minutes. The second unit was used on 30–50 m2 plots but rainfall energy production was below that of natural rainfall. Results show that due to the high stability and strong flocculation of clay-rich aggregates rainsplash is ineffective in surface sealing so that infiltration capacities remain high despite intense, prolonged rainfall. Aspect differences are reflected in variation of surface properties despite homogenous bed-rock, which cause marked differences in hydrological response. North-facing slopes respond more quickly, more frequently and produce more runoff than south-facing slopes. Non-uniform runoff generation is also seen within plots of one aspect reflecting subtle variations in surface properties. Comparison of rainfall intensity and duration used during the experiments with those prevailing under natural conditions shows that under present day conditions surface flow in the Zin valley badlands must be extremely infrequent and denudation rates very low.  相似文献   

2.
Giora J. Kidron 《水文研究》1999,13(11):1665-1682
Runoff is one of the main water sources responsible for water redistribution within a given ecosystem. Water redistribution is especially important in arid regions, and may be of great importance on sandy dunes, where the likelihood of runoff is low owing to the high infiltration rates of sand. Redistribution of water may significantly affect plant and animal distribution, and may explain vegetation patterns within an ecosystem. Runoff yield over sandy dune slopes in the western Negev Desert was measured under natural conditions during 1990–1994. The magnitude of runoff yield on different slope sections and on north and south exposures was established. The results demonstrate that while slope position controlled the microbiotic crust cover, crust cover and crust biomass controlled the amounts of runoff obtained. Whereas no runoff was measured on the upper dune sections devoid of crust, only meagre quantities were measured on the midslope sections, characterized by discontinuous crust cover. Substantially larger amounts were, however, obtained at the bottoms of the slopes, characterized by continuous crust cover. North‐facing slopes, usually characterized by a chlorophyll a content of 29–41 mg m−2, yielded on average 3·2 times more runoff than south‐facing footslopes, characterized by a 17 mg m−2 chlorophyll a content. Whereas microbiotic crust was found to be responsible for runoff generation, additional water supply owing to runoff may also explain the occurrence of a high biomass crust and the dense vegetation belt at the dune–interdune interface of the northern exposure, where runoff tends to collect. Thus, whereas crust may reduce infiltration in certain habitats, runoff generated by crust may also be responsible for the promotion of crust growth in other habitats. Runoff may also be used to promote vegetation growth at the dune footslopes. The possibility of using runoff to facilitate agroforestry is discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

A digital computer model of basin regime was developed for the Negev Desert Highlands, a region which experiences a mean annual rainfall of about 100 mm. The model was based on 13 years of rainfall and runoff records. Relationships obtained from experiments were used to determine areal distribution of rainfall, infiltration rates of soils, effects of slope angle on runoff, stone cover, rainfall intensity, antecedent rainfall, basin size, soil crust, overland flow and channel losses. These relationships also explain how ancient civilizations were able to collect ample water from small basins in order to establish stable agricultural settlements.  相似文献   

4.
Although extensive data exist on runoff erosion and rates for non‐sandy hillslopes, data for arid dune slopes are scarce, owing to the widespread perception that the high infiltrability of sand will reduce runoff. However, runoff is generated on sandy dunes in the Hallamish dune field, western Negev Desert, Israel (P ≈ 95 mm) due to the presence of a thin (usually 1–3 mm) microbiotic crust. The runoff in turn produces erosion. Sediment yield was measured on ten plots (140–1640 m2) on the north‐ and south‐facing slopes of longitudinal dunes. Two plots facing north and two facing south were subdivided into three subplots. The subplots represented the crest of the active dune devoid of crust, the extensively crusted footslope of the dune, and the midslope section characterized by a patchy crust. The remaining plots extended the full length of the dune slope. No runoff and consequently no water‐eroded sediments were obtained from the crest subplots devoid of crust. However, runoff and sediment were obtained from the mid‐ and footslope crusted subplots. Sediment yield from the footslope subplots was much higher than from the midslopes, despite the higher sediment concentration that characterized the midslope subplots. The mean annual sediment yield at the Hallamish dune field was 432 g per metre width and was associated with high average annual concentrations of 32 g l?1. The data indicate that owing to the presence of a thin microbiotic crust, runoff and water erosion may occur even within arid sandy dune fields. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Biocrusts abound in southern Israel, covering the Hallamish dune field near Nizzana (NIZ) in the Negev (mean annual precipitation of 95 mm) and the coast of Nizzanim (NIM) near Ashdod (mean annual precipitation of 500 mm). While the hydrological response of the NIZ crust to natural rain events was thoroughly investigated, no data is available on the hydrological response of the NIM crust. Runoff was monitored in runoff plots during the years 2005–2008, and in addition, sprinkling experiments were carried out on NIM and NIZ crusts. For the evaluation of the possible factors that may control runoff initiation, fine content of the parent material, crust thickness, compressional strength, hydrophobicity, surface microrelief, organic matter, biomass (chlorophyll a and total carbohydrates) and the crust's species composition of NIM were studied and compared to that of NIZ. The data showed that in comparison to the NIZ crust that readily generated runoff, no runoff was produced by the NIM crust. This was so despite the fact that (1) Microculeus vaginatus predominated in both crusts, (2) the substantially higher rain intensities in NIM, (3) the greater thickness and higher chlorophyll content and (4) the lower microrelief at NIM in comparison to NIZ. The lack of runoff in NIM was explained by its low amounts of exopolysaccharides that did not suffice to affectively clog the surface and in turn to facilitate runoff initiation. The absence of runoff and its consequences on the NIM ecosystem are discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Documenting hillslope response to hydroclimatic forcing is crucial to our understanding of landscape evolution. The evolution of talus-pediment sequences (talus flatirons) in arid areas was often linked to climatic cycles, although the physical processes that may account for such a link remain obscure. Our approach is to integrate field measurements, remote sensing of rainfall and modeling to link between storm frequency, runoff, erosion and sediment transport. We present a quantitative hydrometeorological analysis of rainstorms, their geomorphic impact and their potential role in the evolution of hyperarid talus-pediment slopes in the Negev desert, Israel. Rainstorm properties were defined based on intensity–duration–frequency curves and using a rainfall simulator, artificial rainstorms were executed in the field. Then, the obtained measured experimental results were up-scaled to the entire slope length using a fully distributed hydrological model. In addition, natural storms and their hydro-geomorphic impacts were monitored using X-band radar and time-lapse cameras. These integrated analyses constrain the rainfall threshold for local runoff generation at rain intensity of 14 to 22 mm h-1 for a duration of five minutes and provide a high-resolution characterization of small-scale runoff-generating rain cells. The current frequency of such runoff-producing rainstorms is ~1–3 per year. However, extending this local value into the full extent of hillslope runoff indicates that it occurs only under rainstorms with ≥ 100-years return interval, or 1% annual exceedance probability. Sheetwash efficiency rises with downslope distance; beyond a threshold distance of ~100 m, runoff during rainstorms with such annual exceedance probability are capable of transporting surface clasts. The erosion efficiency of these discrete rare events highlights their potential importance in shaping the landscape of arid regions. Our results support the hypothesis that a shift in the properties and frequency of extreme events can trigger significant geomorphic transitions in areas that remained hyperarid during the entire Quaternary. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
Giora J. Kidron 《水文研究》2015,29(7):1783-1792
Contrary to humid areas where runoff takes place following the saturation of the soil column, runoff in arid and semiarid zones takes place when rain intensities exceed the infiltration capability of the upper soil crust, whether physical crust or microbiotic crust (MC). This type of overland flow, known as Hortonian overland flow (HOF), is not fully understood, especially in the case of MC. In particular, little is known regarding the effect of crust thickness and its fine (silt and clay) content on runoff generation, with some scholars claiming that runoff generation is positively correlated with crust thickness and fine content. In an attempt to determine the effect of crust thickness and to assess the role played by the silt and clay on runoff generation, a set of field and lab experiments were undertaken on MCs inhabiting sand dunes in the Negev Desert (Israel). These included sprinkling experiments coupled with measurements of the physical (thickness, silt and clay) and biological (chlorophyll, protein, total carbohydrates) properties of 0.5–10‐mm‐thick crusts. The data showed that runoff generation took place on surfaces as thin as ~0.5–0.7 mm only, and was not correlated with the fine (silt and clay) content. The implications for HOF and for arid ecosystems are discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Extensive loess covered areas characterize the mildly arid areas of western Israel, where average annual rainfall is 280 mm. Hydrological data point to a peculiar hydrological behavior of the ephemeral streams. The frequency of sporadic flash floods is very high. However, even in extreme rain events peak discharges are extremely low. Hydrographs are usually characterized by very steep rising and falling limbs, representative of saturated areas, extending over a limited part of the watershed. Following this observation we advanced the hypothesis that storm channel runoff originated in the channel itself, with negligible contribution from the adjoining hillslopes. The study was based on two complementary approaches. The hydrological approach was based on the detailed analysis of rainfall–runoff relationships in a small watershed (11 km2) and on the analysis of the hydrological characteristics of the drainage network. The second approach was based on the toposequence concept. Several boreholes were dug along a hillslope 400 m long. Chemical data obtained show no significant difference in the downslope direction. Similar results were also obtained for the particle size distribution and soil moisture content. Data obtained perfectly fit the concept of ‘Partial Area Contribution’ as it presents an extreme case of hydrological discontinuity at the hillslope–channel interface. The lack of pedological trends in the downslope direction is an additional indication of the limited connectivity between the hillslopes and the adjoining channel. The limited connectivity is attributed to the prevalence of low rain intensities in the study area. The present study is also relevant to our understanding of pedological processes in dryland areas. The high frequency of intermittent low intensity rainstorms limits runoff generation and flow distances, and casts doubt on the general application of the toposequence approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Runoff generation and soil loss from slopes have been studied for decades, but the relationships among runoff, soil loss and rill development are still not well understood. In this paper, rainfall simulation experiments were conducted in two neighbouring plots (scale: 1 m by 5 m) with four varying slopes (17.6%, 26.8%, 36.4% and 46.6%) and two rainfall intensities (90 and 120 mm h?1) using two loess soils. Data on rill development were extracted from the digital elevation models by means of photogrammetry. The effects of rainfall intensity and slope gradient on runoff, soil loss and rill development were different for the two soils. The runoff and soil loss from the Anthrosol surface were generally higher than those from the Calcaric Cambisol surface. Higher rainfall intensity produced less runoff and more sediment for almost each treatment. With increasing slope gradient, the values of cumulative runoff and soil loss peaked, except for the treatments with 90 mm h?1 rainfall on the slopes with Anthrosol. With rainfall duration, runoff discharge decreased for Anthrosol and increased for Calcaric Cambisol for almost all the treatments. For both soils, sediment concentration was very high at the onset of rainfall and decreased quickly. Almost all the sediment concentrations increased on the 17.6% and 26.8% slopes and peaked on the 36.4% and 46.6% slopes. Sediment concentrations were higher on the Anthrosol slopes than on the Calcaric Cambisol slopes. At 90 mm h?1 rainfall intensity, increasingly denser rills appeared on the Anthrosol slope as the slope gradient increased, while only steep slopes (36.4% and 46.6%) developed rills for the Calcaric Cambisol soil. The contributions of rill erosion ranged from 36% to 62% of the cumulative soil losses for Anthrosol, while the maximum contribution of rill erosion to the cumulative soil loss was only 37.9% for Calcaric Cambisol. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Hortonian runoff was measured from plots with lengths of 1·25 and 12 m, and at watershed level for rainstorms during the 1996 rainy season in cental Côte d'Ivoire, Africa. A clear reduction in runoff coefficients was found with increasing slope lengths, giving order of magnitude differences between runoff measurements at point level (1 m2: 30–50% of total rain) and watershed level (130 ha: 4% of total rain). Runoff reduction from 1·25 and 12 m slopes was reproduced for each major runoff‐producing rainstorm at two different sets of plots, but the reduction was erratic for rainfall events which produced little runoff. In addition, runoff reduction varied wildly from one rainstorm to the next. In the analysis, we show that the spatial variability of runoff parameters causes the erratic behaviour during rainstorms with little runoff. During the more important, larger runoff‐producing events, which give 78% of total runoff, the temporal dynamics of the rainfall–runoff process determine the reduction of runoff coefficients from longer slopes. A simple infiltration/runoff model was used to simulate the field results, thereby confirming the importance of rainfall dynamics as an explanatory factor for measured reduction of runoff coefficients. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
David Dunkerley 《水文研究》2012,26(15):2211-2224
Small plots and a dripper rainfall simulator were used to explore the significance of the intensity fluctuations (‘event profile’) within simulated rainfall events on infiltration and runoff from bare, crusted dryland soils. Rainfall was applied at mean rain rates of 10 mm/h. Fourteen simulated rainfall events each involved more than 5000 changes of intensity and included multipeak events with a 25‐mm/h peak of intensity early in the event or late in the event and an event that included a temporary cessation of rain. These are all event profiles commonly seen in natural rain but rarely addressed in rainfall simulation. A rectangular event profile of constant intensity, as commonly used in rainfall simulation experiments, was also adopted for comparative purposes. Results demonstrate that event profile exerts an important effect on infiltration and runoff for these soils and rainfall event profiles. ‘Uniform’ events of unvarying intensity yielded the lowest total runoff, the lowest peak runoff rate and the lowest runoff ratio (0.13). These parameters increased for ‘early peak’ profiles (runoff ratio 0.24) and reached maxima for ‘late peak’ profiles (runoff ratio 0.50). Differences in runoff ratio and peak runoff rate between the ‘uniform’ event profile and those of varying intensity were all statistically significant at p ≤ 0.01. Compared with ‘uniform’ runs, the varying intensity runs yielded larger runoff ratios and peak runoff rates, exceeding those of the ‘uniform’ events by 85%–570%. These results suggest that for small‐plot studies of infiltration and erosion, the continued use of constant rainfall intensity simulations may be sacrificing important information and misrepresenting the mechanisms involved in runoff generation. The implications of these findings for the ecohydrology of the research site, an area of contour‐aligned banded vegetation in which runoff and runon are of critical importance, are highlighted. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Many remaining areas of tropical rainforest in south‐east Asia are located on landscapes dominated by deep valleys and very steep slopes. Now that logging activities are extending into these steeplands, it is essential to understand how the natural rainforest system behaves if any kind of realistic assessment of the effects of such disturbance is to be made. This paper examines the hydrological behaviour of an undisturbed rainforest system on steep topography in the Temburong District of Brunei, north‐west Borneo. The physical and hydrological properties of the regolith material are generally typical of tropical residual soils. The regolith has a clay texture and a low dry bulk density beneath a superficial litter/organic horizon. The infiltration capacity of the surface soil was several hundred mm h−1. That of the exposed mineral subsoil was an order of magnitude less, similar to the saturated hydraulic conductivity (Ksat) of around 180 mm h−1 at a depth of 150 cm. There was no indication that Ksat reduced with depth except very near the bedrock interface. Soil tensions were measured using a two‐dimensional array of tensiometers on a 30° slope. During dry season conditions, infiltrating rain‐water contributes to soil moisture, and drying of the soil is dominated by transpiration losses. During wet season conditions, perched water tables quickly develop during heavy rainfall, giving rise to the rapid production of return flow in ephemeral channels. No infiltration excess or saturation overland flow was observed on hillslopes away from channel margins. Subsurface storm flow combined with return flow produce stream flow hydrographs with high peak discharges and very short lag times. Storm event runoff coefficients are estimated to be as high as 40%. It is concluded that the most distinctive feature of the hydrology of this ‘steepland rainforest’ is the extremely ‘flashy’ nature of the catchment runoff regime produced by the combination of thin but very permeable regolith on steep slopes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Data concerning runoff and sediment yield in arid zones is of prime importance for hydrologists, geomorphologists, pedologists, ecologists and landscape engineers. For data comparison and extrapolations, runoff and sediment yield are often presented in mass per unit area. Runoff and sediment yield collected on dune slopes over a wide range of plot sizes during 1990–1994 in the Negev Desert, Israel, showed that the contributing area was mainly confined to a narrow belt at the bottom of the slopes. It was therefore hypothesized that the very short rain bursts, capable of runoff generation, may result in a scale effect (SE). Indeed, average duration of duration of consecutive medium and high rain intensities which are potentially above the surface infiltration rate ranged between 2.2 and 3.0 minutes, implying that flow connectivity is largely limited. Based on the intermittent character of the rain spells capable of runoff generation it is argued that SE is an inherent outcome of the rain properties. Yet, it is further argued that the magnitude of the SE is surface‐dependent. As a result, it is argued that the conventional way for runoff and sediment yield presentation as mass per unit area implies theoretical misconceptions and may cause gross overestimation in extrapolation and the presentation of runoff and sediment yield in mass per unit width of the slope is suggested. The accuracy of the two extrapolation methods are compared to the actual runoff and sediment yield collected in the field. The data show that extrapolation based on runoff (or sediment) yield per plot width deviates from the actual amounts collected by a factor of 1·1 to 1·3 only while deviating by a factor of 4·2 to 5·6 and 10·7 to 11·8 if the extrapolation is based on large and small plots, respectively. Theoretical and practical reasons for presentation of runoff and sediment yield as mass per unit width are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The objective of this study is to investigate the effect of rainfall intensity and slope gradient on the performance ofvetiver grass mulch (VGM) in soil and water conservation.The study involved field ...  相似文献   

16.
To evaluate the effects of hillslope topography on storm runoff in a weathered granite mountain, discharge rate, soil pore water pressures, and water chemistry were observed on two types of hillslope: a valley‐head (a concave hillslope) and a side slope (a planar hillslope). Hydrological responses on the valley‐head and side slope reflected their respective topographic characteristics and varied with the rainfall magnitude. During small rainfall events (<35 mm), runoff from the side slope occurred rapidly relative to the valley‐head. The valley‐head showed little response in storm runoff. As rainfall amounts increased (35–60 mm), the valley‐head yielded a higher flow relative to the side slope. For large rainfall events (>60 mm), runoff from both hillslopes increased with rainfall, although that from the valley‐head was larger than that from the side slope. The differences in the runoff responses were caused by differences in the roles of lower‐slope soils and the convergence of the hillslope. During small rainfall events, the side slope could store little water; in contrast, all rainwater could be stored in the soils at the valley‐head hollow. As the amount of rainfall increased, the subsurface saturated area of the valley‐head extended from the bottom to the upper portion of the slope, with the contributions of transient groundwater via lateral preferential flowpaths due to the high concentration of subsurface water. Conversely, saturated subsurface flow did not contribute to runoff responses, and the subsurface saturated area at the side slope did not extend to the upper slope for the same storm size. During large rainfall events, expansion of the subsurface saturated area was observed in both hillslopes. Thus, differences in the concentration of subsurface water, reflecting hillslope topography, may create differences in the extension of the subsurface saturated area, as well as variability in runoff responses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The aim of this study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean–continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable—at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities (I30, I60) explain runoff at the interrill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. Runoff connectivity, defined as the ratio between runoff rates recorded at the rill network scale and those recorded at the interrill area scale in every rainfall event, was also greater on the rilled overburden slope, and in the most developed rill network. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Rills drain overland flow from interrill‐sealed areas, reducing the opportunity of reinfiltration in areas not affected by siltation. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
A. Cerd 《水文研究》1998,12(4):661-671
Soil erosion and runoff rates are assumed to be highly dependent on slope position. However, little knowledge exists about the hydrogeomorphological processes at the pedon scale that support this idea. In order to assess the hydrological and erosional behaviour of soils at different slope positions, simulated rainfall experiments (55 mm was applied during one hour) were carried out on a south-facing slope with underlying limestone in south-east Spain. In the mean terms, the erosion rates (9 g m2 hr−1) and the runoff coefficients (12%) were very low at the scale of measurement (0·25 m2). The slope position does not affect erosion rates when the measurements are carried out under extreme dry conditions during summer. The low runoff rates found in summer under thunderstorms of high intensity (5 year return period) and the runon into surfaces with higher infiltration rates resulted in no detectable direct surface runoff (Hortonian) at the slope scale. This implies that erosion as a consequence of surface overland flow will only take place during events of high magnitude (55 mm hr−1) and low frequency (>5 years). Vegetation is the most important factor determining the soil erosion and runoff rates within the slope. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Situated at the foot of the Pichincha volcano, the city of Quito is frequently subjected to hydroclimatic hazards. In 1995 an 11·2 km2 watershed, located in the vicinity of the city, was equipped with eight rain gauges and two flow gauges to better understand the local rainfall/runoff transformation processes. Rainfall simulation experiments were carried out on more than 40 one‐square‐metre plots to measure infiltration point‐processes. The high density of measurement devices allowed us to identify the origin and nature of the various contributions to runoff for the different physiographic units of the watershed: urban area from an altitude of 2800 to 3200 m; farmland, pasture and forested land, and finally páramo above 3900 m. Runoff occurs mainly in the lower part of the basin and is caused by urbanization; however, the natural soils of this area can also produce Hortonian runoff, which is predominant in a few events. This contribution can be studied through rainfall simulation experiments. In the upper natural zone, the younger and more permeable soils generate less runoff on the slopes. However, almost permanently saturated contributing areas, which are located in the bottom of the quebradas, may generate flood events, the size of which depends on the extent of the area concerned. Variations in the runoff coefficients are related first to the baseflow and second to the amount of rainfall in the previous 24 h. This analysis, which underlines the complexity of a small, peri‐urban, volcanic catchment, is a necessary preliminary to runoff modelling in an area where very few experiments have been carried out on small catchments. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Subsurface lateral flow has previously been identified in dune areas where the average annual rainfall exceeds 200 mm. Very little is known about subsurface flow in sandy deserts with less than 100 mm of rainfall per year. The present study deals with the water regime in a system of longitudinal dunes in the Negev desert. Sixteen boreholes were dug, down to a depth of 6 m, across a sandy ridge and the adjacent corridor. Soil moisture and water movement were monitored with a neutron probe during two consecutive years. The first year had been relatively wet and in the following year the rainfall was slightly lower than the long-term average. The data obtained show that in an average year water percolation is limited to 60 cm with no lateral water movement. Deeper percolation, in the range 180–400 cm, occurs in response to rainy spells with about 100 mm of cumulative rain within two months. The process involves subsurface lateral flow and water movement by the piston effect. The lateral flow, on the flanks of the dune, is explained by differences in hydraulic conductivities within the sloping layers. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号