首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Physics‐based models have been increasingly developed in recent years and applied to simulate the braiding process and evolution of channel units in braided rivers. However, limited attention is given to lowland braided rivers where the transport of suspended sediment plays a dominant role. In the present study, a numerical model based on the basic physics laws of hydrodynamics and sediment transport is used to simulate the evolution process of a braided river dominated by suspended load transport. The model employs a fractional method to simulate the transport of graded sediments and uses a multiple‐bed‐layer approach to represent the sediment sorting process. An idealized braided river has been produced, with the hydrodynamic, sediment transport and morphological processes being analysed. In particular, the formation process of local pool–bar units in the predicted river has been investigated. A sensitivity analysis has also been undertaken to investigate the effects of grid resolution and an upstream perturbation on the model prediction. A variety of methods are applied to analyse the geometrical and topographical properties of the modelled river. Self‐organizing characteristics related to river geometry and topography are analysed by state‐space plots, which indicate a close relationship with the periodical erosion and deposition cycles of braiding. Cross‐sectional topography and slope frequency display similar geometries to natural rivers. Scaling characteristics are found by correlation analysis of bar parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Previous analyses have identified the active width of braided rivers, the bed area over which bed load flux and short‐term morphological change occurs, as an important element of braiding dynamics and predictions of bed load flux. Here we compare theoretical predictions of active width in gravel‐bed braided rivers with observations from Sunwapta River, and from a generic physical model of gravel braided rivers, to provide general observations of the variation in active width, and to develop an understanding of the causes of variation. Bed topography was surveyed daily along a 150 m reach of the pro‐glacial Sunwapta River for a total of four weeks during summer when flow was above threshold for morphological activity. In the laboratory, detailed digital elevation models (DEMs) were derived from photogrammetric survey at regular intervals during a constant discharge run. From the field and flume observations there is considerable local and circumstantial variation in active width, but also a general trend in average active width with increasing discharge. There is also a clear relationship of active width with active braiding index (number of active branches in the braided channel network), and with dimensionless stream power, which appears to be consistent across the range of data from field and physical models. Thus there is a link between active width and the river morphology and dynamics, and the possibility of a general relationship for estimating active width from channel pattern properties or reach‐scale stream power values, from which approximate bedload flux calculations may be made. The analysis also raises questions about differences between hydraulically‐based numerical model computations of instantaneous active width and observation of time‐integrated morphological active width. Understanding these differences can give insight into the nature of bedload transport in braided rivers and the relationship to morphological processes of braiding. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The morphological active width, defined as the lateral extent of bed material displacement over time, is a fundamental parameter in multi‐threaded gravel‐bed rivers, linking complex channel dynamics to bedload transport. Here, results are presented from five constant discharge experiments, and three event hydrographs, covering a range of flow strengths and channel configurations for which morphological change, bedload transport rates, and stream power were measured in a physical model. Changes in channel morphology were determined via differencing of photogrammetrically‐derived digital elevation models (DEMs) of the model surface generated at regular intervals over the course of ~115 h of experimental runs. Independent measures of total bedload output were made using downstream sediment baskets. Results indicate that the morphological active width increases with total and dimensionless stream power and is strongly and positively correlated with bulk change (total volume of bed material displaced over time) and active braiding intensity (ABI). Although there is considerable scatter due to the inherent variability in braided river morphodynamics, the active width is positively correlated with independent measurements of bedload transport rate. Active width, bulk change, and bedload transport rates were all negligible below a dimensionless stream power threshold value of ~ 0.09, above which all increase with flow strength. Therefore, the active width could be used as a general predictor of bulk change and bedload transport rates, which in turn could be approximated from total and dimensionless stream power or ABI in gravel‐bed braided rivers. Furthermore, results highlight the importance of the active width, rather than the morphological active depth, in predicting volumes of change and bedload transport rates. The results contribute to the larger goals of better understanding braided river morphodynamics, creating large high‐resolution datasets of channel change for model calibration and validation, and developing morphological methods for predicting bedload transport rates in braiding river systems. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

4.
Haiyan Yang 《水文研究》2020,34(17):3702-3717
Gravel-bed braided rivers are highly energetic fluvial systems characterized by frequent in-channel avulsions, which govern the morphodynamics of such rivers and are essential for them to maintain a braided planform. However, the avulsion mechanisms within natural braided rivers remain unclear due to their complicated hydraulic and morphodynamic processes. Influenced by neighbouring channels, avulsions in braided rivers may differ from those of bifurcations in single-thread rivers, suggesting that avulsions should be studied within the context of the entire braid network. In this study, braiding evolution processes in gravel-bed rivers were simulated using a physics-based numerical model that considers graded bed-load transport by dividing sediment particles into multiple size fractions and vertical sediment sorting by dividing the riverbed into several vertical layers. The numerical model successfully produced braiding processes and avulsion activities similar to those observed in a laboratory river. Results show that bend evolution of the main channel was the fundamental process controlling the occurrence of avulsions in the numerical model, with a cyclic process of channel meandering by lateral migration that transitioned to a straight channel pattern by avulsion. The radius of bend curvature for triggering avulsions in the numerical model was measured and it was found that the highest probability for a channel bend to generate an avulsion occurs when its radius of curvature is approximately 2.0–3.3 times the average anabranch width. Other types of avulsion were also observed that did not occur specifically at meander bends, but upstream meander evolution indirectly influenced such avulsions by altering channel pattern and discharge to those locations. This study explored the processes and mechanisms of several types of avulsion, and proposed factors controlling their occurrence, namely increasing channel curvature, high shear stress, tributary discharge, riverbed gradient and upstream channel pattern, with high shear stress being a direct indicator. Furthermore, avulsions in a typical gravel-bed braided river, the Waimakariri River in New Zealand, were analysed using sequential Google Earth maps, which confirmed the conclusions derived from the numerical simulation.  相似文献   

5.
A. B. Murray and C. Paola (1994, Nature, vol. 371, pp. 54–57; 1997, Earth Surface Processes and Landforms, vol. 22, pp. 1001–1025) proposed a cellular model for braided river dynamics as an exploratory device for investigating the conditions necessary for the occurrence of braiding. The model reproduces a number of the general morphological and dynamic features of braided rivers in a simplified form. Here we test the representation of braided channel morphodynamics in the Murray–Paola model against the known characteristics (mainly from a sequence of high resolution digital elevation models) of a physical model of a braided stream. The overall aim is to further the goals of the exploratory modelling approach by first investigating the capabilities and limitations of the existing model and then by proposing modifications and alternative approaches to modelling of the essential features of braiding. The model confirms the general inferences of Murray and Paola (1997) about model performance. However, the modelled evolution shows little resemblance to the real evolution of the small‐scale laboratory river, although this depends to some extent on the coarseness of the grid used in the model relative to the scale of the topography. The model does not reproduce the bar‐scale topography and dynamics even when the grid scale and amplitude of topography are adapted to be equivalent to the original Murray–Paola results. Strong dependence of the modelled processes on local bed slopes and the tendency for the model to adopt its own intrinsic scale, rather than adapt to the scale of the pre‐existing topography, appear to be the main causes of the differences between numerical model results and the physical model morphology and dynamics. The model performance can be improved by modification of the model equations to more closely represent the water surface but as an exploratory approach hierarchical modelling promises greater success in overcoming the identified shortcomings. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Bed load transport rate was measured in ten self-formed small-scale gravel braided streams developed in a laboratory flume at several different values of steady discharge and flume gradient. The streams are approximate Froude models of typical prototype braided streams but of no particular river. Slight viscous effects may be present in the models because particle Reynolds numbers are close to 70. Total bed load discharge was measured every fifteen minutes throughout each 60 hour run. In addition, 80 channel cross-sections were measured in each run to establish the average channel geometry. Total bed load transport rate correlates well with total discharge and total stream power, although at a given stream power bed load discharge is greater when braiding is less intense and the width/depth ratio is lower. Analysis using unit stream power and cross-section average bed shear stress reveals that the laboratory data conform to existing empirical bed load transport relationships. However, comparison with field data from gravel-bed rivers shows discrepancies that may be due to differences in bed material size gradation and bed sediment structure. At constant discharge, wide fluctuations in bed load discharge occur with some regularity. Periods range from 2 to 10 hours in the models, which is equivalent to several tens of hours in a prototype. The presence of these long-period fluctuations compounds the problems of field measurement of bed load in braided streams.  相似文献   

7.
Our objective is to understand general causes of different river channel patterns. In this paper we compare an empirical stream power‐based classification and a physics‐based bar pattern predictor. We present a careful selection of data from the literature that contains rivers with discharge and median bed particle size ranging over several orders of magnitude with various channel patterns and bar types, but no obvious eroding or aggrading tendency. Empirically a continuum is found for increasing specific stream power, here calculated with pattern‐independent variables: mean annual flood, valley gradient and channel width predicted with a hydraulic geometry relation. ‘Thresholds’, above which certain patterns emerge, were identified as a function of bed sediment size. Bar theory predicts nature and presence of bars and bar mode, here converted to active braiding index (Bi). The most important variables are actual width–depth ratio and nonlinearity of bed sediment transport. Results agree reasonably well with data. Empirical predictions are somewhat better than bar theory predictions, because the bank strength is indirectly included in the empirical prediction. In combination, empirical and theoretical prediction provide partial explanations for bar and channel patterns. Increasing potential‐specific stream power implies more energy to erode banks and indeed correlates to channels with high width–depth ratio. Bar theory predicts that such rivers develop more bars across the width (higher Bi). At the transition from meandering to braiding, weakly braided rivers and meandering rivers with chutes are found. Rivers with extremely low stream power and width–depth ratios hardly develop bars or dynamic meandering and may be straight or sinuous or, in case of disequilibrium sediment feed, anastomosing. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Research in the 1990s showed that bed-material transport rates could be estimated at the reach scale in both one-dimension and, over small spatial scales (10s of m), in two-dimensions. The limit on the latter was the spatial scale over which it was possible to obtain distributed data on morphological change. Here, we revisit the morphological method given progress in both topographical data acquisition and hydraulic modelling. The bed-material transport needed to conserve mass is calculated in both one and two dimensions for a 1600 m × 300 m Alpine braided river “laboratory”. High-resolution topographical data were acquired by laser scanning to quantify Digital Elevation Models (DEMs), and morphological changes caused by the flushing of the water intake were derived from repeated surveys. Based on DEMs of differences, 1D bed-material transport rates were calculated using the morphological method. Then, a 2D hydraulic model was combined with a topographic correction to route sediment through the network of braided channels and to obtain a spatially variable estimate of transport in both downstream and cross-stream directions. Monte Carlo simulation was applied to the routing model parameters, allowing identification of the most probable parameter values needed to minimize negative transport. The results show that within-section spatial compensation of erosion and deposition using the 1D treatment leads to substantial local errors in transport rate estimates, to a degree related to braiding intensity. Even though the 2D application showed that a large proportion of the total transport was actually concentrated into one main channel during the studied low flow event, the proportion of transport in secondary anabranches is substantial when the river starts braiding. Investigations of the effects of DEM resolution, competent flow duration and survey frequency related to ‘travelling bedload’ and sequential erosion-deposition emphasized the critical importance of careful data collection in the application of the morphological method. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
Hydraulic modelling principles, together with a knowledge of channel pattern thresholds, allow the development of a small scale model of a gravel braided stream with flow characteristics and equivalent dimensions of a natural river. The forms and processes of natural gravel braided rivers are reproduced by imposing a constant flume discharge and slope, and maintaining approximate equilibrium with an adjustable sediment feed. Beginning from a straight trough, braiding is initiated by development of a series of alternating bars and scour pools which produce bends of increasing amplitude, leading finally to channel division. These lobate bars accrete downstream by deposition of bed material at their margins, often in the form of avalanche faces. Together with the scour pools with which they are necessarily closely associated, these bars are the fundamental elements of the channel pattern. Channel migration and division is a response to the development of bars, and these adjustments leave portions of the originally active bars in the form of exposed and eroded remnants. Complex flats built from these lobate forms show varying degrees of preservation of the original depositional units, but the model allows observation of the systematic construction of some flats. Sorting of sediment on active bars with avalanche faces shows a distinct fining downstream. This may be the result of the accretion of fining upwards avalanche faces along the bar margins rather than a ‘winnowing out’ of fine material. The processes and forms observed in the model appear to be very similar to those occurring in natural gravel braided streams during peak flows.  相似文献   

10.
This paper investigates variability in bedload transport and channel morphology for 11 replicate experimental runs in an approximately 1:50 braided river model. The experiments, each of 90 h duration, were carried out in a 20 × 3m tilting flume. All the experiments started with the same initial conditions. Bedload transport was measured at 5 min intervals in a collection drum at the exit from the flume. The model showed reasonable hydraulic similarity when compared to prototype rivers. Results show that mean bedload transport rates for the 11 runs vary in the range 0·98 to 1·49gs?1 (mean + 1·21, coefficient of variation 11 per cent). Within-run transport rates commonly vary from close to zero, to two and occasionally three or four times the mean rate. Within the bedload series, several irregular phases of transport intensity can be observed, but time series analysis of the data show little underlying serial structure (an AR(2) autoregressive model is appropriate). Channel patterns are narrow/braided, are established quickly and remain relatively stable throughout the runs, although channel widths increase between 20 and 103 per cent over the 11 runs. Channel behaviour varies from aggradational to transitional between aggradation and degradation. Time-averaged bedload transport rate is weakly correlated with braiding intensity. In general, these results demonstrate that for a given set of controlling variables, bedload transport and channel morphology can be approximately replicated.  相似文献   

11.
An erratum has been published for this article in Earth Surface Processes and Landforms 27(7) 2002, 795. Estimates of scour and fill in rivers that are derived by differencing topographic surfaces are known to be negatively biased by local compensation of scour and fill between surveys but the magnitude of bias is not well known. This study examines the effect of survey frequency on volumes of scour and fill over a period of active channel braiding in a small‐scale river model. A 100 min, high temporal resolution time series of digital elevation models is artificially coarsened by selectively removing models. The resulting four overlapping time series have survey intervals of 10 min, 20 min, 50 min and 100 min. Cumulative scour and fill volumes for the 100 min period are compared between the four series. It is concluded that the decay in measured volumes of scour and fill with increased survey interval can be described using inverse functions. Cumulative scour–fill volumes are approximately 420 per cent greater over the study period for 10 min survey intervals than for a 100 min interval. After the 100 min period of competent flow, nearly 65 per cent of the channel area experienced significant compensation of scour and fill. Several compensation mechanisms were identified in association with braided channel kinetics, including lateral channel migration, the migration of bed forms, and channel avulsion. It is demonstrated that by negatively biasing scour, fill and net estimates, this error significantly affects morphological approaches to the estimation of bed load sediment transport. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A simple analytic model is presented relating local sediment transport capacity to variance in the transverse shear stress distribution in a stream channel. The model is used to develop a physically based conceptual model for the initiation of meandering in straight, bedload‐dominated streams as a result of a feedback mechanism. The feedback maximizes the cross‐sectional shear stress variance and – in order to achieve stability – ultimately minimizes the energy slope at repeated locations along the channel, subject to steady‐state mass flux and the stability of the channel boundary. These locations develop into pools in a fully developed meandering channel; they represent attractor states wherein sediment continuity is satisfied using the least possible energy expenditure per unit length of channel. However, since the cross‐sectional geometry of a pool (and the adjacent bar) is asymmetric, these attractor states are only conditionally stable, requiring strong, curvature‐induced secondary circulation to maintain their asymmetry. Between two successive pools, a stream occupies a metastable, higher energy state (corresponding to a riffle) that requires greater energy expenditure per unit length of channel to transport the same volume of sediment. The model we present links processes at the scale of a channel width to adjustments of the channel sinuosity and slope at the scale of a channel reach. We argue that the reach‐scale extremal hypotheses employed by rational regime models are mathematical formalisms that permit a one‐dimensional theory to describe the three‐dimensional dynamics producing stream morphology. Our model is consistent with the results from stream table experiments, with respect to both the rate of development of meandering and the characteristics of the equilibrium channel morphology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The high dynamism and complexity of braided networks poses a series of open questions, significant for river restoration and management. The present work is aimed at the characterization of the morphology of braided streams, in order to assess whether the system reaches a steady state under constant flow conditions and, in that case, to determine how it can be described and on which parameters it depends. A series of 14 experimental runs were performed in a laboratory physical model with uniform sand, varying the discharge and the longitudinal slope. Planimetric and altimetric configurations were monitored in order to assess the occurrence of a steady state. A set of parameters was considered, such as the braid‐plain width and the number and typology of branches and nodes. Results point out that a relationship exists between braiding morphology and two dimensionless parameters, related to total water discharge and stream power. We found that network complexity increases at higher values of water discharge and a larger portion of branches exhibits morphological activity. Results are then compared to the outputs of a simple one‐dimensional model, that allows to easily predict the average network complexity, once the bed topography is known. Model computations permit also the investigation of the effect of water discharge variations and to compare different width definitions. The at‐a‐station variability of planimetric parameters shows a peculiar behaviour, both regarding number of branches and wetted width. In particular, the analysis of the relationship between width and discharge highlighted relevant differences in comparison to single thread channel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The downstream diminution in sediment size in a braided reach of the proglacial Sunwapta River, Alberta, Canada, was examined statistically to identify the sources of the observed variation about an expected exponential relationship between clast size and distance. Major deviations from this hypothetical relationship, such as a relative increase in grainsize, may be attributed to the effects of tributary sediment inputs and downstream changes in channel behaviour, whilst local variation is associated with complex patterns of sediment deposition observed at a bar scale. A comparison of diminution coefficients, calculated for separate lithologies and for subreaches along the river, with those obtained from previous studies, is used as an indicator of river behaviour and sediment transport processes. It is shown that rates of diminution vary within the reach in response to differing rates of aggradation and to the backwater effects created by tributary alluvial fans. The relatively high values for the calculated diminution coefficients indicate that processes of differential transport are the main cause of the grain size decrease.  相似文献   

16.
Knowledge on spatio-temporal variations in planform, hydraulic geometry, and bed-level variations of alluvial streams is required for planning and development of hydraulic structures and bank protection works. In the current study, a Geographic Information System (GIS) has been used to analyze topographical maps, multi-temporal remotely sensed imagery, and hydrologic and hydraulic data to extract the morphological parameters of the Upper Tapi River, India. The river has been found to have consistent migration towards the northern direction, with erosion/deposition on right/left banks. The river has not experienced any major meander except in the lower reaches of the Upper Tapi Gorge and minor braiding conditions at the location where the river emerges from mountainous topography to the plain region. The analyzed river cross sections were found to be depth dominated, and contain large flows within the channel banks. The cross-sections exhibited moderate channel bed adjustments in 1994, 2006, and 2007 wherein excessive sediment flux and stream power were capable of causing morphological changes in the river. High intensity rainfall in the subcatchment resulted in high sediment flux into the river during 1994, which was reported to cause significant aggradation at the downgauging station. The analysis of sediment flux into the river in conjunction with decadal land use land cover, revealed that sediment yield from the catchment was reduced during 2000–2010 due to an increase in water bodies in the form of minor hydraulic structures. The entry of comparatively less sediment laden water into the river, resulted in moderate bed degradation especially in 2006 and 2007 as observed at the downstream station. The methodology applied in the current study is generic in nature and can be applied to other rivers to identify their morphological issues.  相似文献   

17.
Floods are an important geomorphic agent that accelerate sediment supply from bank failures. The quantitative proportions supplied by lateral inputs and the transport conditions of the channel can create local or extended accumulation zones within the channel reaches. These accumulation zones play an important role in the geomorphic regime of the stream. Knowledge of long‐term history of sediment supply is necessary to determine how these input and deposition forms developed. This study introduces a new approach for the quantification of past sediment supply via lateral erosion (incised banks and individual bank failures), using a case study of the confluence of three partial tributaries in the accumulation zone in the Outer Western Carpathians. For each tributary, as well as the channel reach downstream of the confluence zone, we calculated the mean of the largest bed particles and the unit stream power as indicators of transport capacity. We found that two of the tributaries supply significant amounts of sediment to the accumulation zone because of their higher unit stream power related to their higher transport potential, and observed coarser bed sediment. Seventy‐three bank failures with a total volume 395.5 m3 were mapped, and the sediment supply volume was dated using dendrogeomorphic analysis of 114 scarred tree roots (246 samples). The total volume of the dated sediment supply in the individual tributaries was 193.9 m3, whereas the volume of erosion in the accumulation zone was only 4.9 m3 for a period of approximately 30 years. The period represented by the dated tree roots included 12 years in which erosion events occurred and impacted the total sediment budget in the study area. Although sediment supply was greater than erosion in the accumulation zone, there are no present‐day signs of accretion. The rupture of a dam in an old pond (which is situated approximately 50 m below the accumulation zone) probably increased the transport conditions in the accumulation zone so that it balanced the high sediment supply from individual tributaries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The composition, grain‐size, and flux of stream sediment evolve downstream in response to variations in basin‐scale sediment delivery, channel network structure, and diminution during transport. Here, we document downstream changes in lithology and grain size within two adjacent ~300 km2 catchments in the northern Rocky Mountains, USA, which drain differing mixtures of soft and resistant rock types, and where measured sediment yields differ two‐fold. We use a simple erosion–abrasion mass balance model to predict the downstream evolution of sediment flux and composition using a Monte Carlo approach constrained by measured sediment flux. Results show that the downstream evolution of the bed sediment composition is predictably related to changes in underlying geology, influencing the proportion of sediment carried as bedload or suspended load. In the Big Wood basin, particle abrasion reduces the proportion of fine‐grained sedimentary and volcanic rocks, depressing bedload in favor of suspended load. Reduced bedload transport leads to stronger bed armoring, and coarse granitic rocks are concentrated in the stream bed. By contrast, in the North Fork Big Lost basin, bedload yields are three times higher, the stream bed is less armored, and bed sediment becomes dominated by durable quartzitic sandstones. For both basins, the geology‐based mass balance model can reproduce within ~5% root‐mean‐square error the composition of the bed substrate using realistic erosion and abrasion parameters. As bed sediment evolves downstream, bedload fluxes increase and decrease as a function of the abrasion parameter and the frequency and size of tributary junctions, while suspended load increases steadily. Variable erosion and abrasion rates produce conditions of variable bed‐material transport rates that are sensitive to the distribution of lithologies and channel network structure, and, provided sufficient diversity in bedrock geology, measurements of bed sediment composition allow for an assessment of sediment source areas and yield using a simple modeling approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The present work explores relations between stream power,braiding intensities and bank erosion in certain stretches of the Brahmaputra River.In this paper,an objective approach is presented to enable quantitative assessment of spatio-temporal behaviour of channel braiding process of the Brahmaputra River by using the Plan Form Index and corresponding estimation of stream power to establish a behavioural pattern of variability of potential energy expenditure.The braiding index is compared for discrete years to understand the morphological behaviour.Subsequently,a real time estimation of stream power for certain stretches of Brahmaputra River is done in order to analyse its variability in braiding intensity and bank erosion.The paper presents the dynamic behaviour of the channel pattern of the Brahmaputra River System in Assam valley of India over a time span of 18 years.The procedure addresses the selection of input parameters from digital satellite images,comprising scenes for the years 1990,1997 and 2007 with specific dates,from Dhubri near Indo-Bangladesh Border to Upper Assam.Deployment of GIS technique has been made to extract the required parameters to derive Plan Form Indices for the entire study reach.Stream power estimation is done for corresponding latest floods and for corresponding dates of image scenes.The study indicated that due to consistent aggradation of riverbed inducing temporal declination of stream power,there is an occurrence of wide spread braiding.This in turn incurs substantial yearly land loss due to bank erosion,caused by flow concentrations due to temporal evolution of multiple channels in the Brahmaputra River.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号