首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We present a catalogue of 147 serendipitous X-ray sources selected to have hard spectra ( α <0.5) from a survey of 188 ROSAT fields. Such sources must be the dominant contributors to the X-ray background at faint fluxes. We have used Monte Carlo simulations to verify that our technique is very efficient at selecting hard sources: the survey has 10 times as much effective area for hard sources as it has for soft sources above a 0.5–2 keV flux level of 10−14 erg cm−2 s−1. The distribution of best-fitting spectral slopes of the hard sources suggests that a typical ROSAT hard source in our survey has a spectral slope α ∼0. The hard sources have a steep number flux relation (d N /d S ∝ S − γ with a best-fitting value of γ =2.72±0.12) and make up about 15 per cent of all 0.5–2 keV sources with S >10−14 erg cm−2 s−1. If their N ( S ) continues to fainter fluxes, the hard sources will comprise ∼40 per cent of sources with 5×10−15< S <10−14 erg cm−2 s−1. The population of hard sources can therefore account for the harder average spectra of ROSAT sources with S <10−14 erg cm−2 s−1. They probably make a strong contribution to the X-ray background at faint fluxes and could be the solution to the X-ray background spectral paradox.  相似文献   

2.
An analysis of the spatial fluctuations in 15 deep ASCA SIS0 images has been conducted in order to probe the 2–10 keV X-ray source counts down to a flux limit ∼ 2 × 10−14 erg cm−2 s−1. Special care has been taken in modelling the fluctuations in terms of the sensitivity maps of every one of the 16 regions (5.6 × 5.6 arcmin2 each) into which the SIS0 has been divided, by means of ray-tracing simulations with improved optical constants in the X-ray telescope. The very extended 'sidelobes' (extending up to a couple of degrees) exhibited by these sensitivity maps make our analysis sensitive to both faint on-axis sources and brighter off-axis ones, the former being dominant. The source counts in the range (2−12) × 10−14 erg cm−2 s−1 are found to be close to a Euclidean form which extrapolates well to previous results from higher fluxes and are in reasonable agreement with some recent ASCA surveys. However, our results disagree with the deep survey counts by Georgantopoulos et al. The possibility that the source counts flatten to a sub-Euclidean form, as is observed at soft energies in ROSAT data, is only weakly constrained to happen at a flux < 1.8 × 10−12 erg cm−2 s−1 (90 per cent confidence). Down to the sensitivity limit of our analysis, the integrated contribution of the sources the imprint of which is seen in the fluctuations amounts to ∼ 35 ± 13 per cent of the extragalactic 2–10 keV X-ray background.  相似文献   

3.
We present optical spectra and near-infrared imaging of a sample of 31 serendipitous X-ray sources detected in the field of Chandra observations of the A 2390 cluster of galaxies. The sources have  0.5–7 keV  fluxes of  (0.6–8)×10-14 erg cm-2 s-1  and lie around the break in the  2–10 keV  source counts. They are therefore typical of sources dominating the X-ray Background in that band. 12 of the 15 targets for which we have optical spectra show emission lines at a range of line luminosities, and half of these show broad lines. These active galaxies and quasars have soft X-ray spectra. Including photometric redshifts and published spectra, we have redshifts for 17 of the sources, ranging from   z ∼0.2  up to   z ∼3  , with a peak between   z =1–2  . 10 of our sources have hard X-ray spectra indicating a spectral slope flatter than that of a typical unabsorbed quasar. Two hard sources that are gravitationally lensed by the foreground cluster are obscured quasars, with intrinsic  2–10 keV  luminosities of  (0.2–3)×1045 erg s-1  , and absorbing columns of   N H>1023 cm-2  . Both of these sources were detected in the mid-infrared by ISOCAM on the Infrared Space Observatory , which when combined with radiative transfer modelling leads to the prediction that the bulk of the reprocessed flux emerges at ∼100 μm.  相似文献   

4.
We have monitored the Seyfert galaxy NGC 3227 with the Rossi X-ray Timing Explorer ( RXTE ) since 1999 January. During late 2000 and early 2001 we observed an unusual hardening of the 2–10 keV X-ray spectrum which lasted several months. The spectral hardening was not accompanied by any correlated variation in flux above 8 keV. We therefore interpret the spectral change as transient absorption by a gas cloud of column density 2.6 × 1023 cm−2 crossing the line of sight to the X-ray source. A spectrum obtained by XMM–Newton during an early phase of the hard-spectrum event confirms the obscuration model and shows that the absorbing cloud is only weakly ionized. The XMM–Newton spectrum also shows that ∼10 per cent of the X-ray flux is not obscured, but this unabsorbed component is not significantly variable and may be scattered radiation from a large-scale scattering medium. Applying the spectral constraints on the cloud ionization parameter and assuming that the cloud follows a Keplerian orbit, we constrain the location of the cloud to be   R ∼ 10–100  light-days from the central X-ray source, and its density to be   n H∼ 108 cm−3  , implying that we have witnessed the eclipse of the X-ray source by a broad line region cloud.  相似文献   

5.
We present the Chandra ACIS-S3 data of the old classical nova RR Pic (1925). The source has a count rate of 0.067 ± 0.002 count s−1 in the 0.3–5.0 keV energy range. We detect the orbital period of the underlying binary system in the X-ray wavelengths. We also find that the neutral hydrogen column density differs for orbital minimum and orbital maximum spectra with values  0.25+0.23−0.18× 1022  and  0.64+0.13−0.14× 1022 cm−2  at 3σ confidence level. The X-ray spectrum of RR Pic can be represented by a composite model of bremsstrahlung with a photoelectric absorption, two absorption lines centered around 1.1–1.4 keV and five Gaussian lines centered at emission lines around 0.3–1.1 keV corresponding to various transitions of S, N, O, C, Ne and Fe. The bremsstrahlung temperature derived from the fits ranges from 0.99 to 1.60 keV and the unabsorbed X-ray flux is found to be  2.5+0.4−1.2× 10−13 erg  cm−2 s−1  in the 0.3–5.0 keV range with a luminosity of 1.1 ± 0.2  1031 erg s−1  at 600 pc. We also detect excess emission in the spectrum possibly originating from the reverse shock in the ejecta. A fit with a cooling flow plasma emission model shows enhanced abundances of He, C, N, O and Ne in the X-ray emitting region indicating existence of diffusive mixing.  相似文献   

6.
We report the discovery of type I X-ray bursts from the low-mass X-ray binary  4U 1708 − 40  during the 100-ks observation performed by BeppoSAX on 1999 August 15–16. Six X-ray bursts have been observed. The unabsorbed 2–10 keV fluxes of the bursts range from ∼3 to  9 × 10−10 erg cm−2 s−1  . A correlation between peak flux and fluence of the bursts is found, in agreement with the behaviour observed in other similar sources. There is a trend of the burst flux to increase with the time interval from the previous burst. From the value of the persistent flux we infer a mass accretion rate     , which may correspond to the mixed hydrogen/helium burning regime triggered by thermally unstable hydrogen. We have also analysed a BeppoSAX observation performed on 2001 August 22 and previous RXTE observations of  4U 1708 − 40  , where no bursts have been observed; we find persistent fluxes of more than a factor of 7 higher than the persistent flux observed during the BeppoSAX observation showing X-ray bursts.  相似文献   

7.
The X-ray-luminous quasar GB 1428+4217 at redshift 4.72 has been observed with ASCA . The observed 0.5–10 keV flux is 3.2 Å– 10−12 erg cm−2 s−1. We report here on the intrinsic 4 − 57 keV X-ray spectrum, which is very flat (photon index 1.29). We find no evidence for flux variability within the ASCA data set or between it and ROSAT data. We show that the overall spectral energy distribution of GB 1428+4217 is similar to that of lower redshift MeV blazars, and present models that fit the available data. The Doppler beaming factor is likely to be at least 8. We speculate on the number density of such high-redshift blazars, which must contain rapidly formed massive black holes.  相似文献   

8.
We present BeppoSAX observations of Nova Velorum 1999 (V382 Vel), carried out in a broad X-ray band covering 0.1–300 keV only 15 d after the discovery and again after 6 months. The nova was detected at day 15 with the BeppoSAX instruments which measured a flux F x≃1.8×10−11 erg cm−2 s−1 in the 0.1–10 keV range and a 2 σ upper limit F x<6.7×10−12 erg cm−2 s−1 in the 15–60 keV range. We attribute the emission to shocked nebular ejecta at a plasma temperature kT ≃6 keV . At six months no bright component emerged in the 15–60 keV range, but a bright central supersoft X-ray source appeared. The hot nebular component previously detected had cooled to a plasma temperature kT <1 keV . There was strong intrinsic absorption of the ejecta in the first observation and not in the second, because the column density of neutral hydrogen decreased from N (H)≃1.7×1023 to N (H)≃1021 cm−2 (close to the interstellar value). The unabsorbed X-ray flux also decreased from F x=4.3×10−11 to F x≃10−12 erg cm−2 s−1 .  相似文献   

9.
A Chandra X-ray observation of the globular cluster Terzan 1   总被引:1,自引:0,他引:1  
We present a ∼19-ks Chandra Advanced CCD Imaging Spectrometer (ACIS)-S observation of the globular cluster Terzan 1. 14 sources are detected within 1.4 arcmin of the cluster centre with two of these sources predicted to be not associated with the cluster (background active galactic nuclei or foreground objects). The neutron star X-ray transient, X1732−304, has previously been observed in outburst within this globular cluster with the outburst seen to last for at least 12 yr. Here, we find four sources that are consistent with the ROSAT position for this transient, but none of the sources are fully consistent with the position of a radio source detected with the Very Large Array that is likely associated with the transient. The most likely candidate for the quiescent counterpart of the transient has a relatively soft spectrum and an unabsorbed 0.5–10 keV luminosity of  2.6 × 1032 erg s−1  , quite typical of other quiescent neutron stars. Assuming standard core cooling, from the quiescent flux of this source we predict long (>400 yr) quiescent episodes to allow the neutron star to cool. Alternatively, enhanced core cooling processes are needed to cool down the core. However, if we do not detect the quiescent counterpart of the transient this gives an unabsorbed 0.5–10 keV luminosity upper limit of  8 × 1031 erg s−1  . We also discuss other X-ray sources within the globular cluster. From the estimated stellar encounter rate of this cluster we find that the number of sources we detect is significantly higher than expected by the relationship of Pooley et al.  相似文献   

10.
We present a catalogue of 17 filamentary X-ray features located within a  68 × 34  arcmin2  view centred on the Galactic Centre region from images taken by Chandra . These features are described by their morphological and spectral properties. Many of the X-ray features have non-thermal spectra that are well fitted by an absorbed power law. Of the 17 features, we find six that have not been previously detected, four of which are outside the immediate  20 × 20  arcmin2  area centred on the Galactic Centre. Seven of the 17 identified filaments have morphological and spectral properties expected for pulsar wind nebulae (PWNe) with X-ray luminosities of  5 × 1032  to 1034 erg s−1 in the 2.0–10.0 keV band and photon indices in the range of  Γ= 1.1  to 1.9. In one feature, we suggest the strong neutral Fe Kα emission line to be a possible indicator for past activity of Sgr A*. For G359.942−0.03, a particular filament of interest, we propose the model of a ram pressure confined stellar wind bubble from a massive star to account for the morphology, spectral shape and 6.7 keV He-like Fe emission detected. We also present a piecewise spectral analysis on two features of interest, G0.13−0.11 and G359.89−0.08, to further examine their physical interpretations. This analysis favours the PWN scenario for these features.  相似文献   

11.
We present the results of a detailed spectral analysis of optically faint hard X-ray sources in the Chandra deep fields selected on the basis of their high X-ray to optical flux ratio (X/O). The stacked spectra of high X/O sources in both Chandra deep fields, fitted with a single power-law model, are much harder than the spectrum of the X-ray background (XRB). The average slope is also insensitive to the 2–8 keV flux, being approximately constant around Γ≃ 1 over more than two decades, strongly indicating that high X/O sources represent the most obscured component of the XRB. For about half of the sample, a redshift estimate (in most of the cases a photometric redshift) is available from the literature. Individual fits of a few of the brightest objects and of stacked spectra in different redshift bins imply column densities in the range  1022–1023.5 cm−2  . A trend of increasing absorption towards higher redshifts is suggested.  相似文献   

12.
The X-ray pulsar GX 1+4 was observed with the RXTE satellite for a total of 51 ks between 1996 July 19 and 21. During this period the flux decreased smoothly from an initial mean level of ≈6×1036 erg s−1 to a minimum of ≈4×1035 erg s−1 (2–60 keV, assuming a source distance of 10 kpc) before partially recovering towards the initial level at the end of the observation.
BATSE pulse timing measurements indicate that a torque reversal took place approximately 10 d after this observation. Both the mean pulse profile and the photon spectrum varied significantly. The observed variation in the source may provide important clues as to the mechanism of torque reversals.
The single best-fitting spectral model was based on a component originating from thermal photons with kT 0≈1 keV Comptonized by a plasma of temperature kT ≈7 keV. Both the flux modulation with phase during the brightest interval and the evolution of the mean spectra over the course of the observation are consistent with variations in this model component; with, in addition, a doubling of the column density n H contributing to the mean spectral change.
A strong flare of duration ≲50 s was observed during the interval of minimum flux, with the peak flux ≈20 times the mean level. Although beaming effects are likely to mask the true variation in M ˙ thought to give rise to the flare, the timing of a modest increase in flux prior to the flare is consistent with dual episodes of accretion resulting from successive orbits of a locally dense patch of matter in the accretion disc.  相似文献   

13.
The cluster 3C 129 is classified as a rich cluster. An analysis of the properties of the cluster 3C 129 from ROSAT PSPC and HRI, Einstein IPC, and EXOSAT ME observations is presented. The mean temperature from a joint fit of the ROSAT PSPC and EXOSAT ME data is 5.5(±0.2) keV. The luminosity is 0.6×1044 erg s−1 in 0.2–2.4 keV and 2.7×1044 erg s−1 in 0.2–10 keV. We find a cooling flow with a rate of ∼84 M yr−1. The central gas density is 6×10−3 cm−3, and the ICM mass is 3.6×1013 M. The total cluster mass is ∼5×1014 M. The X-ray morphology shows an east–west elongation, which is evidence for a recent merger event. The radio source 3C 129.1 is located near the X-ray centre. Another cluster member galaxy (the radio galaxy 3C 129) is a prototype of head-tailed radio galaxies, and is located in the west part of the cluster. The tail points along the gradient of intracluster gas pressure. There are no significant point X-ray sources associated with the AGNs of the two radio galaxies.  相似文献   

14.
We report the result of an XMM–Newton observation of the black hole X-ray transient XTE J1650–500 in quiescence. The source was not detected, and we set upper limits on the 0.5–10 keV luminosity of  0.9–1.0 × 1031 erg s−1  (for a newly derived distance of 2.6 kpc). These limits are in line with the quiescent luminosities of black hole X-ray binaries with similar orbital periods (∼7–8 h).  相似文献   

15.
I use ASCA data to investigate the 2–10 keV X-ray emission of active galactic nuclei (AGN) taken from the ROSAT International X-ray Optical Survey (RIXOS). I find that the integrated spectrum of these faint, soft X-ray-selected AGN in the 2–10 keV band is harder (best-fitting α = 0.8 ± 0.1) than the slope measured with ROSAT between 0.1 and 2 keV, but softer than the 2–10 keV X-ray background, and consistent with the average 2–10 keV spectrum of bright, nearby Seyfert galaxies. With this spectral slope and using measurements of the AGN contribution to the 1–2 keV X-ray background, I estimate that the AGN percentage contribution to the 2–10 keV background is 0.60 +0.19−0.14 times the AGN percentage contribution to the 1–2 keV background. Hence AGN produce between 12 and 32 per cent of the 2–10 keV X-ray background. This is only the contribution from the types of AGN which are found in soft X-ray surveys; a population of absorbed AGN could represent an additional component of the 2–10 keV X-ray background.  相似文献   

16.
We present results from XMM–Newton observations of the obscured quasi-stellar object 1SAX J1218.9+2958. We find that the previously reported optical and soft X-ray counterpart positions are incorrect. However, we confirm the spectroscopic redshift of 0.176. The optical counterpart has a K magnitude of 13.5 and an R – K colour of 5.0 and is therefore a bright extremely red object. The X-ray spectrum is well described by a power law  (Γ= 2.0 ± 0.2)  absorbed by an intrinsic neutral column density of  8.2+1.1−0.7× 1022 cm−2  . We find that any scattered emission contributes at most 0.5 per cent to the total X-ray flux. From the optical/near-infrared colour we estimate that the active nucleus must contribute at least 50 per cent of the total flux in the K band and that the ratio of extinction to X-ray absorption is 0.1–0.7 times that expected from a Galactic dust–gas ratio and extinction curve. If 1SAX J1218.9+2958 were 100 times less luminous it would be indistinguishable from the population responsible for most of the 2–10 keV X-ray background. This has important implications for the optical/infrared properties of faint absorbed X-ray sources.  相似文献   

17.
We present Chandra and XMM–Newton observations of 12 bright  [ f (2–10 keV) > 10−13 erg cm−2 s−1]  sources from the ASCA search for the High Energy Extragalactic Population (SHEEP) survey. Most of these have been either not observed or not detected previously with the ROSAT mission, and therefore they constitute a sample biased towards hard sources. The Chandra observations are important in locating the optical counterpart of the X-ray sources with accuracy. Optical spectroscopic observations show that our sample is associated with both narrow-line (NL) (six objects) and broad-line (BL) active galactic nuclei (AGN) (five objects), with one source remaining unidentified. Our sources cover the redshift range 0.04–1.29, spanning luminosities from 1042 to  1045 erg s−1  (2–10 keV). The NL sources have preferentially lower redshift (and luminosity) compared to the BL ones. This can be most easily explained in a model where the NL AGN are intrinsically less luminous than the BL ones in line with the results of Steffen et al. The X-ray spectral fittings show a roughly equal number of obscured  ( N H > 1022 cm−2)  and unobscured  ( N H < 1022 cm−2)  sources. There is a clear tendency for obscured sources to be associated with NL AGN and unobscured sources with BL ones. However, there is a marked exception with the highest obscuring column observed at a BL AGN at a redshift of z = 0.5.  相似文献   

18.
We present X-ray results on the ultraluminous infrared galaxy Arp 220 obtained with BeppoSAX . X-ray emission up to 10 keV is detected. No significant signal is detected with the PDS detector in the higher energy band. The 2–10 keV emission has a flat spectrum (Γ∼1.7) , similar to M82, and a luminosity of ∼ 1×1041 erg s−1 . A population of X-ray binaries may be a major source of this X-ray emission. The upper limit of an iron K line equivalent width at 6.4 keV is ≃600 eV. This observation imposes the tightest constraint so far on an active nucleus if present in Arp 220. We find that a column density of X-ray absorption must exceed 1025 cm−2 for an obscured active nucleus to be significant in the energetics, and the covering factor of the absorption should be almost unity. The underluminous soft X-ray starburst emission may need a good explanation, if the bolometric luminosity is primarily powered by a starburst.  相似文献   

19.
Chandra X-ray Observatory observations of the powerful, peculiar radio galaxy 3C 123 have resulted in an X-ray detection of the bright eastern hotspot, with a 1-keV flux density of ∼5 nJy. The X-ray flux and spectrum of the hotspot are consistent with the X-rays being inverse-Compton scattering of radio synchrotron photons by the population of electrons responsible for the radio emission ('synchrotron self-Compton emission') if the magnetic fields in the hotspot are close to their equipartition values. 3C 123 is thus the third radio galaxy to show X-ray emission from a hotspot which is consistent with being in equipartition. Chandra also detects emission from a moderately rich cluster surrounding 3C 123, with L X(2–10 keV)=2×1044 erg s−1 and kT ∼5 keV, and absorbed emission from the active nucleus, with an inferred intrinsic column density of 1.7×1022 cm−2 and an intrinsic 2–10 keV luminosity of 1044 erg s−1.  相似文献   

20.
We report results of an 18-ks exposure with the ACIS instrument on Chandra of the powerful z =0.62 radio galaxy 3C 220.1. The X-ray emission separates into cluster gas of emission-weighted kT ∼5 keV , 0.7–12 keV luminosity (to a radius of 45 arcsec) of 5.6×1044 erg s−1 and unresolved emission (coincident with the radio core). While the extended X-ray emission is clearly thermal in nature, a straightforward cooling-flow model, even in conjunction with a point-source component, is a poor fit to the radial profile of the X-ray emission. This is despite the fact that the measured properties of the gas suggest a massive cooling flow of ∼130 M yr−1, and the data show weak evidence for a temperature gradient. The central unresolved X-ray emission has a power-law spectral energy index α ∼0.7 and 0.7–12 keV luminosity of 1045 erg s−1, and any intrinsic absorption is relatively small. The two-point spectrum of the core emission between radio and X-ray energies has α rx=0.75 . Since this is a flatter spectrum than seen in other sources where the X-ray emission is presumed to be radio-related, regions close to the active galactic nucleus (AGN) in this source may dominate the central X-ray output, as is believed to be the case for lobe-dominated quasars. Simple unification models would be challenged if this were found to be the case for a large fraction of high-power radio galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号