首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction rims of titanite on ilmenite are described in samples from four terranes of amphibolite-facies metapelites and amphibolites namely the Tamil Nadu area, southern India; the Val Strona area of the Ivrea-Verbano Zone, northern Italy, the Bamble Sector, southern Norway, and the northwestern Austroalpine Ötztal Complex. The titanite rims, and hence the stability of titanite (CaTiSiO4O) and Al–OH titanite, i.e. vuaganatite (hypothetical end-member CaAlSiO4OH), are discussed in the light of fH2O- and fO2-buffered equilibria involving clinopyroxene, amphibole, biotite, ilmenite, magnetite, and quartz in the systems CaO–FeO/Fe2O3–TiO2–SiO2–H2O–O2 (CFTSH) and CaO–FeO/Fe2O3–Al2O3–SiO2–H2O–O2 (CFASH) present in each of the examples. Textural evidence suggests that titanite reaction rims on ilmenite in rocks from Tamil Nadu, Val Strona, and the Bamble Sector originated most likely due to hydration reactions such as clinopyroxene + ilmenite + quartz + H2O = amphibole + titanite and oxidation reactions such as amphibole + ilmenite + O2 = titanite + magnetite + quartz + H2O during amphibolite-facies metamorphism, or, as in the case of the Ötztal Complex, during a subsequent greenschist-facies overprint. Overstepping of these reactions requires fH2O and fO2 to be high for titanite formation, which is also in accordance with equilibria involving Al–OH titanite. This study shows that, in addition to P, T, bulk–rock composition and composition of the coexisting fluid, fO2 and fH2O also play an important role in the formation of Al-bearing titanite during amphibolite- and greenschist-facies metamorphism.  相似文献   

2.
丰宁黄土-古土壤剖面常量元素地球化学特征   总被引:1,自引:0,他引:1       下载免费PDF全文
丰宁滦河上游的河谷地带有多处黄土堆积,由于该地区黄土分布零星、厚度较小,在以往的研究中却很少引起人们的关注,然而该地区黄土堆积是河北坝上地区环境演化和气候变化的重要地质记录.为了探讨该地区黄土的成因、物源以及化学风化强度,选取代表性的黄土-古土壤剖面77个样品进行了常量元素分析,并与已知典型风成堆积物的地球化学元素特征进行对比.结果表明:(1) 丰宁剖面的主要常量元素(SiO2、Al2O3和Fe2O3)之和以及UCC(Upper Continental Crust)标准化曲线均与典型风成堆积物具有较好的相似性, 表明丰宁黄土和古土壤为风成成因;(2) 丰宁黄土处于初等化学风化阶段,古土壤则进入了中等化学风化阶段.与典型风成堆积物相比,化学风化强度序列为:宣城风成红土>>西峰红黏土、镇江下蜀土>丰宁古土壤、洛川古土壤>洛川黄土>丰宁黄土;(3) 常量元素迁移特征表明丰宁黄土和古土壤的化学风化已完成了早期去Na、Ca阶段,并进入到了中期去K阶段;(4) 丰宁黄土、古土壤的K2O/Al2O3和Fe2O3/Al2O3比值与洛川黄土、洛川古土壤、镇江下蜀土、西峰红黏土较为接近,表明这些风成堆积物可能具有相似的源区.而TiO2/Al2O3比值小于其他风成堆积物, 指示丰宁剖面具有其他物源.   相似文献   

3.
Desert varnish of pristine sandstone and petroglyph surfaces from Takabart Kabort (Naturalistic Bubaline Art School) and Alamas (Tanzina Art School) can be well classified by their (SiO2+Al2O3):MnO2, Al2O3:SiO2, and P2O5:CaO ratios. Specific ratios are due to the occurrence of clay minerals like illite, kaolinite, smectite, and feldspar, quartz, carbonates like calcite and dolomite, manganese oxyhydroxides, and apatite. Their occurrence corresponds to the local origin and composition of the primary aeolian material.

In general, the analyzed desert varnish shows lamination patterns characterized by alternating MnO2-rich and -poor layers (25 wt% MnO2) at rather constant iron oxyhydroxide content (6 wt% Fe2O3). Varnish on non-engraved surfaces exhibits three MnO2-rich layers, whereas varnish-coated petroglyphs reveal minor lamination patterns corresponding to the dating of petroglyphs by rock art. The older Naturalistic Bubaline Art School petroglyphs (about 6–4 ka BP) and the younger Tazina Art School petroglyphs (about 3.8–3 ka BP) contain only two and one MnO2-rich layer, respectively. It is assumed that the occurrence of such microlaminations is caused by climate changes in North Africa. Three humid periods are discerned from the Terminal Pleistocene to Holocene in the literature. Such periods are suitable to induce manganese accumulation by biotic and abiotic processes. Accordingly, the distinct lamination patterns gained from this study verify the dating of petroglyphs by rock art. From another point of view, classification of the above petroglyphs may be provided by analyses of microlaminations independently on cultural historical aspects.  相似文献   


4.
High-calcium, nepheline-normative ankaramitic basalts (MgO > 10 wt.%, CaO/Al2O3 > 1) from Rinjani volcano, Lombok (Sunda arc, Indonesia) contain phenocrysts of clinopyroxene and olivine (Fo85–92) with inclusions of spinel (Cr# 58–77) and crystallised melt. Olivine crystals have variable but on average low NiO (0.10–0.23 wt.%) and high CaO (0.22–0.35 wt.%) contents for their forsterite number. The CaO content of Fo89–91 olivine is negatively correlated with the Al2O3 content of enclosed spinel (9–15 wt.%) and positively correlated with the CaO/Al2O3 ratios of melt inclusions (0.9–1.5). Major and trace element patterns of melt inclusions are similar to that of the host rock, indicating that the magma could have formed by accumulation of small batches of melt, with compositions similar to the melt inclusions. The liquidus temperature of the magma was  1275 °C, and its oxygen fugacity ≤ FMQ + 2.5. Correlations between K2O, Zr, Th and LREE in the melt inclusions are interpreted to reflect variable degrees of melting of the source; correlations between Al2O3, Na2O, Y and HREE are influenced by variations in the mineralogy of the source. The melts probably formed from a water-poor, clinopyroxene-rich mantle source.  相似文献   

5.
The varying geochemical and petrogenetic nature of A-type granites is a controversial issue. The oxidized, magnetite-series A-type granites, defined by Anderson and Bender [Anderson, J.L., Bender, E.E., 1989. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos 23, 19–52.], are the most problematic as they do not strictly follow the original definition of A-type granites, and approach calc-alkaline and I-type granites in some aspects. The oxidized Jamon suite A-type granites of the Carajás province of the Amazonian craton are compared with the magnetite-series granites of Laurentia, and other representative A-type granites, including Finnish rapakivi and Lachlan Fold Belt A-type granites, as well as with calc-alkaline, I-type orogenic granites. The geochemistry and petrogenesis of different groups of A-types granites are discussed with an emphasis on oxidized A-type granites in order to define their geochemical signatures and to clarify the processes involved in their petrogenesis. Oxidized A-type granites are clearly distinguished from calc-alkaline Cordilleran granites not only regarding trace element composition, as previously demonstrated, but also in their major element geochemistry. Oxidized A-type granites have high whole-rock FeOt/(FeOt + MgO), TiO2/MgO, and K2O/Na2O and low Al2O3 and CaO compared to calc-alkaline granites. The contrast of Al2O3 contents in these two granite groups is remarkable. The CaO/(FeOt + MgO + TiO2) vs. CaO + Al2O3 and CaO/(FeOt + MgO + TiO2) vs. Al2O3 diagrams are proposed to distinguish A-type and calc-alkaline granites. Whole-rock FeOt/(FeOt + MgO) and the FeOt/(FeOt + MgO) vs. Al2O3 and FeOt/(FeOt + MgO) vs. Al2O3/(K2O/Na2O) diagrams are suggested for discrimination of oxidized and reduced A-type granites. Experimental data indicate that, besides pressure, the nature of A-type granites is dependent of ƒO2 conditions and the water content of magma sources. Oxidized A-type magmas are considered to be derived from melts with appreciable water contents (≥ 4 wt.%), originating from lower crustal quartz-feldspathic igneous sources under oxidizing conditions, and which had clinopyroxene as an important residual phase. Reduced A-type granites may be derived from quartz-feldspathic igneous sources with a metasedimentary component or, alternatively, from differentiated tholeiitic sources. The imprint of the different magma sources is largely responsible for the geochemical and petrological contrasts between distinct A-type granite groups. Assuming conditions near the NNO buffer as a minimum for oxidized granites, magnetite-bearing granites formed near FMQ buffer conditions are not stricto sensu oxidized granites and a correspondence between oxidized and reduced A-type granites and, respectively, magnetite-series and ilmenite-series granites is not always observed.  相似文献   

6.
Volumetrically minor microsyenites, alkali microgranite and related trachytic dykes intrude early Pliocene OIB-like alkali basaltic and basanitic flows of the Meseta del Lago Buenos Aires in Central Patagonia (47°S–71°30′W), and occur together with scarce trachytic lava flows. Whole-rock K–Ar ages between 3.98 and 3.08 Ma indicate that the emplacement of these felsic rocks occurred more or less synchronously with that of the post-plateau basaltic sequence that they intrude, during a bimodal mafic–felsic magmatic episode devoid of intermediate compositions. Chemically, these rocks have A1-type granitoid affinities and are characterized by high silica and alkali contents (60–68 wt.% SiO2; 8.7–10.8 wt.% Na2O + K2O), major and trace elements patterns evidencing evolution by low-pressure fractional crystallization, and Sr and Nd isotopic signatures similar to those of coeval basalts ((87Sr/86Sr)o = 0.70488–0.70571; (143Nd/144Nd)o = 0.512603–0.512645). Nevertheless, some of them have the most radiogenic Sr values ever reported for a magmatic rock in the Meseta and even in the whole Neogene Patagonian Plateau Lavas province ((87Sr/86Sr)o = 0.70556–0.70571; (143Nd/144Nd)o = 0.512603–0.512608). In addition, very high contents of strongly incompatible elements in the most evolved rocks, together with Sr isotopic ratios higher than those of coeval basalts, suggest the occurrence of open-system magmatic processes. Continuous fractional crystallization from a primitive basaltic source, similar to post-plateau coeval basalts, towards alkali granites combined with small rates of assimilation of host Jurassic tuffs (AFC) in a shallow magmatic reservoir, best explains the geochemical and petrographic features of the felsic rocks. Therefore, A1-type magmatic rocks can be generated by open-system crystallization of deep asthenospheric melts in back-arc tectonic settings.

In Central Patagonia, these  3–4 Ma old alkaline intrusions occur aligned along a  N160–170 trending lineament, the Zeballos Fault Zone, stacking the morphotectonic front of one segment of the Patagonian Cordillera. Intrusion along this fault zone occurred during the onset of a new transtensional or extensional event in the area, related to major regional tectonics occurring in possible relation with the collision of one segment of the Chile Spreading Ridge with the trench.  相似文献   


7.
SHRIMP zircon U–Pb ages and geochemical and Sr–Nd–Pb isotopic data are presented for the gabbroic intrusive from the southern Taihang Mountains to characterize the nature of the Mesozoic lithospheric mantle beneath the central North China Craton (NCC). The gabbroic rocks emplaced at 125 Ma and are composed of plagioclase (40–50%), amphibole (20–30%), clinopyroxene (10–15%), olivine (5–10%) and biotite (5–7%). Olivines have high MgO (Fo = 78–85) and NiO content. Clinopyroxenes are high in MgO and CaO with the dominant ones having the formula of En42–46Wo41–50Fs8–13. Plagioclases are dominantly andesine–labradorite (An = 46–78%) and have normal zonation from bytownite in the core to andesine in the rim. Amphiboles are mainly magnesio and actinolitic hornblende, distinct from those in the Precambrian high-pressure granulites of the NCC. These gabbroic rocks are characterized by high MgO (9.0–11.04%) and SiO2 (52.66–55.52%), and low Al2O3, FeOt and TiO2, and could be classified as high-mg basaltic andesites. They are enriched in LILEs and LREEs, depleted in HFSEs and HREEs, and exhibit (87Sr/86Sr)i = 0.70492–0.70539, εNd(t) = − 12.47–15.07, (206Pb/204Pb)i = 16.63–17.10, Δ8/4 = 70.1–107.2 and Δ7/4 = − 2.1 to − 9.4, i.e., an EMI-like isotopic signatures. Such geochemical features indicate that these early Cretaceous gabbroic rocks were originated from a refractory pyroxenitic veined-plus-peridotite source previously modified by an SiO2-rich melt that may have been derived from Paleoproterozoic subducted crustal materials. Late Mesozoic lithospheric extension might have induced the melting of the metasomatised lithospheric mantle in response to the upwelling of the asthenosphere to generate these gabbroic rocks in the southern Taihang Mountains.  相似文献   

8.
The quantitative determination of the main compounds Al (OH)3 (gibbsite) as Al2O3 and hydrated Fe-oxides as Fe2O3 in natural and beneficiated ferruginous bauxites (low-grade bauxites) by X-ray diffraction (XRD) is presented employing the external standard method. The calibration parameters for the analysis by XRD were ascertained by using ten synthetic mixtures of the pure oxides Al2O3 and Fe2O3 which were calcined at 1200°C. The concentration ranges for Fe2O3 were 10–70 wt.% and those for alumina 30–90 wt.%. The standard deviation for the calibrations of the two oxides was 3.33 wt.%. The results obtained by XRD for both oxides were compared with those attained by X-ray fluorescence. The precision of the determinations by XRD was ascertained by analysing a natural sample consecutively 5 times. The accuracy was verified by the analysis of two international standard reference materials with low silica contents.  相似文献   

9.
早白垩世剑门关组是研究四川盆地北部沉积环境演化的良好地层,对该地层开展系统的地球化学研究,对探讨四川盆地北部早白垩世剑门关组物源区性质、构造背景、古风化作用及古环境具有重要意义。系统分析了剑门关组泥质岩主量、微量和稀土元素地球化学特征,发现早白垩世剑门关组泥质岩富CaO、MgO,贫Al_2O_3、Fe_2O_3、K_2O、Na_2O、TiO_2、P_2O_5、MnO,富Cr、Cs、V,贫Sr、Nb、U、Hf,稀土元素总量为(164.96~234.35)×10-6,轻、重稀土元素比值为11.77~15.87,轻、重稀土元素分馏程度高,轻稀土元素相对富集,具弱的正Eu异常。综合分析认为:剑门关组为同一物源的近物源再旋回沉积岩;源岩为沉积岩,可能富含斜长石、重晶石等富Eu矿物;源岩在沉积前经历了中等程度的化学风化作用,并发生了钾交代作用;剑门关组沉积期为温暖、湿润的气候,物源区具有由活动大陆边缘向大陆岛弧转化的特征。  相似文献   

10.
The minerals of Oldoinyo Lengai natrocarbonatite lavas are unstable under atmospheric conditions. Subsolidus mineral assemblages in natrocarbonatites were studied in 105 samples from contemporary eruptions ranging from present day to about 100 years old. The subsolidus minerals in natrocarbonatites were formed (i) along cracks on the lava surface from hot gases escaping during cooling, (ii) as atmospheric alteration by solution of water-soluble minerals, in particular halides and gregoryite, and by hydration of nyerereite under the influence of meteoric water and (iii) by reaction with fumarole gases. After solidification, the lavas were cut by a network of thin cracks, the edges of which are covered by polymineralic encrustations. Samples collected 2–24 h after eruption contain nahcolite, trona, sylvite, and halite with accessory kalicinite and villiaumite. Atmospheric humidity results immediately (≥ 2 h after eruption) in alteration of black lavas that is marked by the appearance of white powdery thermonatrite with nahcolite on the lava surface. Subsequent reaction (weeks, months, years) of natrocarbonatite with meteoric water and the atmosphere results in the formation of pirssonite, gaylussite, shortite, trona, thermonatrite, nahcolite and calcite. Generally, the first important step is the formation of pirssonite and the end-members are calcite carbonate rocks or loose aggregates. Fumarolic activity is common for the active northern crater of the volcano. Reaction of hot (54–141 °C) fumarolic gases with natrocarbonatite leads to the formation of sulphur, gypsum, calcite, anhydrite, monohydrocalcite, barite and celestine. Changes in mineralogy of the natrocarbonatite lead to substantial chemical transformation. The most obvious chemical changes in this process are the loss of Na, K, Cl and S, combined with an increase in H2O, Ca, Sr, Ba, F and Mn. The oxygen and carbon isotopic composition of altered natrocarbonatites shows a significant shift from the primary “Lengai Box” to high values of δ18O and δ13C. Calcite exhibits δ13C values between − 2‰ and − 4‰ PDB and δ18O values of + 23‰ to + 26‰ SMOW. The observed assemblages of secondary minerals formed by reaction with atmosphere and meteoric water, the changes in chemical composition of the natrocarbonatite and field observations suggest that alteration of natrocarbonatite is an open-system low-temperature process. It takes place at temperatures between 8 and 43 °C with the addition of H2O to the system and the removal of Na, K, Cl and S from the carbonatites. Low-temperature thermodynamic models developed for alkali carbonate systems can be used for the interpretation of Oldoinyo Lengai subsolidus mineralization.  相似文献   

11.
The Indosinian granites in the South China Block (SCB) have important tectonic significance for the evolution of East Asia. Samples collected from Hunan Province can be geochemically classified into two groups. Group 1 is strongly peraluminous (A/CNK > 1.1), similar to S-type granites, and Group 2 has A/CNK = 1.0–1.1, with an affinity to I-type granites. Group 1 has lower FeOt, Al2O3, MgO, CaO, TiO2 and εNd(t) values but higher K2O + Na2O, Rb/Sr, Rb/Ba and 87Sr/86Sr(t) than those of Group 2. Samples of both groups have similar LREE enriched pattern, with (Eu/Eu) = 0.19–0.69, and strongly negative Ba, Sr, Nb, P and Ti anomalies. Geothermobarometry study indicates that the precursor magmas were emplaced at high-level depth with relatively low temperature (734–827 °C). Geochemical data suggest that Group 1 was originated from a source dominated by pelitic composition and Group 2 was from a mixing source of pelitic and basaltic rocks with insignificant addition of newly mantle-derived magma. Eight granitic samples in Hunan Province are dated at the cluster of 243–235 and 218–210 Ma by zircon U–Pb geochronology. Together with recent zircon U–Pb ages for other areas in the SCB, two age-clusters, including 243–228 Ma just after peak-metamorphism ( 246–252 Ma) and 220–206 Ma shortly after magma underplating event (224 Ma), are observed. It is proposed that in-situ radiogenic heating from the over-thickened crust induced dehydrated reaction of muscovite and epidote/zoisite to form the early Indosinian granites in response to the isostatic readjustments of tectonically thickened crust. Conductive heating from the underplating magma in the postcollisional setting triggered the formation of late Indosinian granites. Such a consideration is supported by the results from FLAC numerical simulation.  相似文献   

12.
太平岭成矿带是黑龙江省重要的铜金多金属成矿带,矿床类型主要为中温热液脉型,也发育斑岩型、浅成低温热液型和岩浆熔离型.区内广泛发育的下二叠统双桥子组(P1s)由泥质岩、粉砂岩及砂岩夹多层中酸性火山岩等组成.地层中Au、P、Fe等元素含量较高,近年来,在东宁县及穆棱市境内相继发现了陆角岭、五道沟-二十三公里等小型金矿床,金矿体均呈脉状产于P1s中,但品位较低,直接影响到下一步找矿决策.在野外调查的基础上,利用岩石地球化学、X射线粉晶衍射以及有机碳分析等手段,对该地层岩石类型、沉积物源以及Au等成矿元素来源进行了分析,结果表明:岩石主量元素含量稳定,与PAAS相比,轻度亏损Al2O3、P2O5、CaO和MnO2,中度亏损Na2O、MgO、TiO2和Fe2O3;微量元素除了Zn外,其他元素含量都较低;稀土元素总量与北美页岩相当,轻重稀土元素分异略低于北美页岩;主要矿物为粘土矿物(伊利石、绿泥石)和石英,另有不等量的钠长石、少量的碳酸盐矿物和黄铁矿,岩石TOC含量为0.22%~2.52%,平均值为1.10%;岩石中Au的含量与TOC和粘土矿物含量之间没有相关性.认为区内P1s为碳质砂板岩,沉积物主要来源于石英质沉积岩的风化产物,少量来源于镁铁质和长英质火成岩,沉积于近岸环境,地层中高含量的金并不是成岩之后由流体携带而来并被岩石中富含的有机物或粘土矿物所吸附,而是同样来源于陆源风化产物,指示该区产于P1s中的金矿并非层控型金矿床,而是受断层控制的热液脉型金矿床.   相似文献   

13.
The fractionation of boron isotopes between synthetic boromuscovite and fluid was experimentally determined at 3.0 GPa/500 °C and 3.0 GPa/700 °C. For near-neutral fluids Δ11B(mica-fluid) = δ11B(mica) − δ11B(fluid) is − 10.9 ± 1.3‰ at 500 °C, and − 6.5 ± 0.4‰ at 700 °C. This supports earlier assumptions that the main fractionation effect is due to the change from trigonal coordination of boron in neutral fluids to tetrahedrally coordinated boron in micas, clays and melts. The T-dependence of this effect is approximated by the equation Δ11B(mica,clay,melt–neutral fluid) = − 10.69 · (1000/T [K]) + 3.88; R2 = 0.992, valid from 25 °C for fluid–clay up to about 1000 °C for fluid–silicate melt. Experiments at 0.4 GPa that used strongly basic fluids produced significantly lower fractionations with Δ11B(mica–fluid) of − 7.4 ± 1.0‰ at 400 °C, and − 4.8 ± 1.0‰ at 500 °C, showing the reduced fractionation effect when large amounts of boron in basic fluids are tetrahedrally coordinated. Field studies have shown that boron concentrations and 11B/10B-ratios in volcanic arcs systematically decrease across the arc with increasing distance from the trench, thus reflecting the thermal structure of the subducting slab. Our experiments show that the boron isotopic signature in volcanic arcs probably results from continuous dehydration of micas along a distinct PT range. Continuous slab dehydration and boron transport via fluid into the mantle wedge is responsible for the boron isotopic signature in volcanic arcs.  相似文献   

14.
Tropical chemical weathering produces extensive lateritization and formation of deep weathering profiles. Both processes are fundamental to landscape evolution and slope instability. The Aburrá Valley of the northern Colombian Andes is characterized by tropical conditions. The valley slopes are mostly covered by hillslope deposits originating from four basement rock suites which comprise contrasting granitoid, volcanic–sedimentary, ophiolitic, and metamorphic sources, respectively. Tropical chemical weathering of the Aburrá hillslope deposits and their respective bedrock were examined using X-ray fluorescence and X-ray diffraction analysis, to document and quantify their chemical weathering profiles, compositions, and mineralogical properties. The Chemical Index of Alteration (CIA), loss on ignition (LOI), and the Mobiles index (Imob) were used to quantify the degree of weathering of hillslope deposits and bedrock source. Weathering trends were analyzed using A–CN–K and A–CNK–FM diagrams. The material mantling the slopes in the Aburrá Valley records an intense weathering history. Chemical weathering is characterized by increased development of clay minerals (kaolinite, halloysite) and iron and aluminum sesquioxides. Lateritization characterizes the final stage of the weathering profiles. Concentrations of CaO, Na2O, K2O decrease markedly in the weathering products compared to the fresh bedrock source, whereas concentrations of Al2O3, Fe2O3, and MgO increase significantly. CIA ratios of matrix slope deposits derived from all four sources near 100, whereas those of boulder slope deposits and saprolites are lower, but exceed source rock values. Different A–CN–K weathering paths are evident for each lithotype, validating the correlation established between the hillslope deposits and their various parents. Chemical weathering indices in some samples are strongly influenced by the presence of sesquioxides, as reflected by high LOI, anomalously low CIA, and varying enrichment trends on the A–CNK–FM diagrams. Consequently, different chemical indices based on different criteria need to be combined to obtain best results, as illustrated here by the combination of LOI, CIA, and Imob. The overall results suggest that tropical conditions have dominated for a long time in the northern Colombian Andes, leading to uniformly high weathering indices in matrix slope deposits irrespective of parent lithotype. Prolonged warm and humid conditions could thus be responsible for the weathering and remobilization of extensive old hillslope deposits during the Quaternary. However, in addition to the influence of climatic factors, tectonism has also undoubtedly influenced slope evolution in the Aburrá Valley.  相似文献   

15.
多期构造叠加及多种成岩环境下的早古生代碳酸盐岩储集层形成机理十分复杂。重庆南川三汇场剖面寒武系碳酸盐岩出露完整,是研究沉积与成岩史的理想解剖点之一。研究表明,三汇场剖面寒武系白云岩分别经历了早期海水胶结、大气淡水淋滤、准同生白云岩化、中浅层埋藏、中期构造大气水作用、中晚期埋藏及热液作用和构造晚期表生大气水成岩作用,不同期次的大气淡水作用特征不同。在早成岩期,沿向上变浅的高频层序界面附近发育了鲕模孔、窗格溶孔等组构性溶孔,胶结物和充填物的δ18O、δ13C值均比同期海水负偏,87Sr/86Sr值与同期海水相近,不发光(CL),含有较小的液相包裹体;加里东晚期—海西期,发育了非组构扩溶孔洞缝,伴有氧化沥青,不发光充填物的δ18O、δ13C负偏、87Sr/86Sr值正偏,发育含烃的低温不混溶包裹体,并叠加后期的深埋藏及热液成岩作用;燕山期和喜马拉雅期, 发育孤立的非组构溶蚀孔洞、缝洞,多被巨晶方解石或黏土充填,方解石中δ18O、δ13C强烈负偏($\delta^{13}C_{PDB}$=-4.6‰~-23.4‰,$\delta^{18}C_{PDB}$=-8.6‰~-17.8‰)、含有低温不混溶包裹体(<28.5℃),是有机质或生物甲烷(细)菌参于下的表生大气水成岩作用产物。  相似文献   

16.
峡谷水道是南海北部琼东南盆地深水区主要储集层,乐东-陵水凹陷黄流组储集岩以粉、细砂岩为主,储层物性好.然而目前针对不同期水道主要物源供给及水道形成的母岩区性质、古风化程度等研究甚少.对中央峡谷西段水道的砂泥岩进行了岩石薄片与重矿物成分观察统计、岩石主量、微量/稀土元素分析,结果表明:岩石类型以岩屑石英砂岩和长石岩屑砂岩为主,崖城、陵水区重矿物分别为磁铁矿、白钛矿、锆石、电气石与白钛矿、石榴石、电气石、锆石的组合;地球化学特征表现为泥岩较砂岩SiO2含量低,Fe2O3、MgO、K2O、稀土含量偏高,与其含有高粘土矿物有关.砂、泥岩Al2O3/TiO2、K2O/Al2O3、K2O/Na2O比值说明物源区富石英、贫钾长石,分别为石英质沉积与中性火成岩源区;砂岩较泥岩具有较高SiO2/Al2O3比值、低ICV、CIA、CIW值,表明源区经历了低-中等程度的风化作用,是稳定构造环境再循环沉积而成,泥岩的形成环境较砂岩动荡.   相似文献   

17.
We report trace element and Sr–Nd isotopic compositions of Early Miocene (22–18 Ma) basaltic rocks distributed along the back-arc margin of the NE Japan arc over 500 km. These rocks are divided into higher TiO2 (> 1.5 wt.%; referred to as HT) and lower TiO2 (< 1.5 wt.%; LT) basalts. HT basalt has higher Na2O + K2O, HFSE and LREE, Zr/Y, and La/Yb compared to LT basalt. Both suite rocks show a wide range in Sr and Nd isotopic compositions (initial 87Sr/86Sr (SrI) = 0.70389 to 0.70631, initial 143Nd/144Nd(NdI) = 0.51248 to 0.51285). There is no any systematic variation amongst the studied Early Miocene basaltic rocks in terms of Sr–Nd isotope or Na2O + K2O and K2O abundances, across three volcanic zones from the eastern through transitional to western volcanic zone, but we can identify gradual increases in SrI and decreases in NdI from north to south along the back-arc margin of the NE Japan arc. Based on high field strength element, REE, and Sr–Nd isotope data, Early Miocene basaltic rocks of the NE Japan back-arc margin represent mixing of the asthenospheric mantle-derived basalt magma with two types of basaltic magmas, HT and LT basaltic magmas, derived by different degrees of partial melting of the subcontinental lithospheric mantle composed of garnet-absent lherzolite, with a gradual decrease in the proportion of asthenospheric mantle-derived magma from north to south. These mantle events might have occurred in association with rifting of the Eurasian continental arc during the pre-opening stage of the Japan Sea.  相似文献   

18.
Calculations of isobaric batch, polybaric batch, and polybaric fractional melting have been carried out on a variety of proposed lunar and terrestrial source region compositions. Results show that magmas with a generally tholeiitic character—plagioclase and high-Ca pyroxene crystallize before low-Ca pyroxene reflecting relatively high Al2O3 concentrations (>12 wt%)—are the inevitable consequence of anhydrous partial melting of source regions composed primarily of olivine and two pyroxenes with an aluminous phase on the solidus. Low-Al2O3 magmas (<10 wt%), as typified by the green picritic glasses in the lunar maria require deep (700–1000 km), low-Al2O3 source regions without an aluminous phase. The difference between primitive and depleted mantle beneath mid-ocean ridges amounts to less than 0.1 wt% Al2O3, whereas formation of the green glass source region requires a net loss of between 1.5 and 2.5 wt% Al2O3. Basalt extraction cannot account for fractionations of this magnitude. Accumulation of olivine and pyroxene at the base of a crystallizing magma ocean is, however, an effective method for producing the necessary Al2O3 depletions. Both olivine-rich and pyroxene-rich source regions can produce the picritic magmas, but mixing calculations show that both types of source region are likely to be hybrids consisting of an early- to intermediate-stage cumulate (olivine plus enstatite) and a later stage cumulate assemblage. Mass balance calculations show that refractory element-enriched bulk Moon compositions contain too much Al2O3 to allow for the deep low-Al2O3 source regions even after extraction of an Al2O3-rich (26–30 wt%) crust between 50 and 70 km thick.  相似文献   

19.
甘肃省平凉市灵台县邵寨镇剖面风尘堆积底界年龄大约为5.23 Ma B.P.,通过对该剖面新近纪红粘土与第四纪黄土-古土壤序列的常量元素、微量元素、Nd同位素的测试,分析其在物源和风化方面的指示意义,发现新近纪红粘土与第四纪黄土具有相似的常量、微量元素UCC标准化曲线和稀土元素球粒陨石标准化曲线,指示二者皆来自广阔的物源区,经过了相似的搬运过程,并在搬运中得到充分混合。新近纪红粘土的MgO、Li、Cs、Bi含量较高,Na2O、稀土元素La-Lu、Y含量较低。风化参数Na2O/Al2O3、化学风化参数CIA以及Al2O3-CaO+Na2O-K2O (A-CN-K)图,均显示新近纪红粘土比第四纪黄土经历了更为强烈的风化过程。新近纪红粘土的稳定元素比值(TiO2/Al2O3,SiO2/Al2O3,SiO2/TiO2,Zr/Hf,Nb/Ta,Lu/Hf,Y/Ho,Th/Nb和Hf/Nb)、稀土元素总量、轻稀土与重稀土的分异程度、轻稀土内部分异程度、重稀土内部分异程度、Ce和Eu的异常程度、同位素εNd(0) 值等,皆与第四纪黄土无太大差异,指示二者物质来源一致。粒度以及风化强度的差异,可能是导致新近纪红粘土与第四纪黄土常量和微量元素含量差异的主要原因。   相似文献   

20.
The most evolved rocks of the Pilansberg alkaline complex are aegirine lujavrites in which three varieties of eudialyte are recognized on the basis of textural relationships and composition. Manganoan eudialyte-I is a relict orthomagmatic phase occurring as poikilitic plates or as relict grains in pseudomorphed euhedral phenocrysts. Late eudialyte-II ranges in composition from manganoan eudialyte through kentbrooksite to taseqite-like varieties and is considered to be formed by cation exchange with eudialyte-I and alkaline fluids. Eudialyte-III is a hydrothermal phase replacing eudialyte-II, and has either taseqite-like (5–7.3 wt.% SrO, < 2.0 wt.% REE2O3) or kentbrooksite (< 1.5 wt.% SrO,  8.5 wt.% REE2O3) compositions. Three styles of replacement of eudialyte-I and -II are recognizable. Type 1 involves replacement by complex aggregates of zircon, fergusonite-(Ce), allanite-(Ce), britholite-(Ce), titanite, pyrochlore, albite and potassium feldspar, i.e. a “miaskitic” paragenesis. Type 2 alteration consists of complex aggregates dominated by deuteric Na–Zr-silicates (?catapleiite), stronalsite, strontium-apatite and lamprophyllite replacing eudialyte-I and -II and relicts of the “miaskitic paragenesis”, i.e. a highly sodic “agpaitic-to-hyperagpaitic” paragenesis. Type 3 replacement involves mantling of any residual eudialyte-II and zircon, and replacement of deuteric Na–Zr-silicates by eudialyte-III together with barytolamprophyllite as late hydrothermal phases. Further alteration and replacement resulted in the superposition of natrolite, britholite, pyrochlore, allanite and diverse Ba- and Mn-based minerals onto the types 2 and 3 assemblages, and ultimately to the deposition of allanite-(La), La-dominant REE carbonates and rarely a silica phase. All of the alteration styles are considered to have occurred in situ under subsolidus conditions (< 450 °C) by interaction of pre-existing eudialyte and other minerals with deuteric, sodium- and chlorine-bearing aqueous fluids. The evolution of the replacement products is from a miaskitic through an agpaitic to a hyperagpaitic paragenesis and ultimately back to a low agpaitic-to-miaskitic assemblage, reflecting changes in the a(Na+)/a(Cl) ratio and alkalinity of the deuteric/hydrothermal fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号