首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The statistics of extreme values is used to investigate the statistical properties of the largest areas of sunspots and photospheric faculae per solar cycle. The largest values of the synodic-solar-rotation mean areas of umbrae, whole spots and faculae, which have been recorded for nine solar cycles, are each shown to comply with the general form of the extreme value probability function. Empirical expressions are derived for the three extreme value populations from which the characteristic statistical parameters, namely the mode, median, mean and standard deviation, can be calculated for each population. These three extreme value populations are also used to find the expected ranges of the extreme areas in a group of solar cycles as a function of the number of cycles in the group. The extreme areas of umbrae and whole spots have a dispersion comparable to that found by Siscoe for the extreme values of sunspot number, whereas the extreme areas of faculae have a smaller dispersion which is comparable to that found by Siscoe for the largest geomagnetic storm per solar cycle. The expected range of the largest sunspot area per solar cycle for a group of one hundred cycles appears to be inconsistent with the existence of the prolonged periods of sunspot minima that have been inferred from the historical information on solar variability. This inconsistency supports the contention that there are temporal changes of solar-cycle statistics during protracted periods of sunspot minima (or maxima). Indeed, without such temporal changes, photospheric faculae should have been continually observable throughout the lifetime of the Sun.  相似文献   

2.
Erofeev  D.V. 《Solar physics》2001,203(1):9-25
The distribution of polar faculae with respect to latitude is investigated, using data obtained at the Ussuriysk Observatory during the years 1963–1994. To correct the data for the effect of visibility, a visibility function of polar faculae is derived. Corrected surface density of polar faculae is calculated as a function of latitude and time. During most part of each solar cycle, polar faculae exhibit pronounced concentrations at high latitudes with maxima of the surface density located near the poles. Such concentrations of polar faculae (below referred to as `polar condensations') are formed after a lapse of 1–2 years from the polar magnetic field reversals, and then they persist for 7–9 years, until the high-latitude magnetic fields again start to reverse. During several years after the sunspot minima, the polar condensations co-exist with the new latitudinal belts of polar faculae which appear at middle latitudes and then migrate toward the poles. To describe the evolution of the polar condensations quantitatively, the polar faculae density n at latitudes above 60° has been approximated by means of the power law nn 0 cosm where is polar angle. The parameters n 0 and m both are found to vary during the course of the solar cycle, reaching maximum values near or shortly after the minimum of sunspot activity. At the minimum phase of the solar cycle, on average, the surface density of polar faculae varies as cos14. In addition to the 11-yr variation, the latitude–time distribution of polar faculae exhibits short-term variations occurring on the time scale of 2–3 years.  相似文献   

3.
The effect of large-scale magnetic fields on total solar irradiance (TSI) was studied both in time–frequency and in time–longitude aspects. A continuous wavelet analysis revealed that the energy of thermomagnetic disturbances due to sunspots and faculae cascades into the magnetic network and facular macrostructure. A numerical technique of time–longitude analysis was developed to study the fine structure of temporal changes in the TSI caused by longitudinal brightness inhomogeneities and rotation of the Sun. The analysis facilitates mapping large-scale thermal inhomogeneities of the Sun and reveals patterns of radiative excesses and deficits relative to the undisturbed solar photosphere. These patterns are organized into 2- and 4-sector structures that exhibit the effects of both activity complexes and magnetically active longitudes. Large-scale patterns with radiative excess display a facular macrostructure and bright patterns in the magnetic network caused by the dissipation of large-scale thermomagnetic disturbances. Similar global-scale temperature patterns were found in the upper solar atmosphere. These temperature patterns are also causally related to long-lived magnetic fields of the Sun. During activity cycles 21–23 the patterns with radiative excess tend to be concentrated around the active longitudes which are centered at about 60° and 230° in the Carrington system.  相似文献   

4.
The paper reports the results of the analysis of the data on polar faculae for three solar cycles (1960–1986) at the Kislovodsk Station of the Pulkovo Observatory and on polar bright points in Ca ii K line for two solar cycles (1940–1957) at the Kodaikanal Station of the Indian Institute of Astrophysics. We have noticed that the monthly numbers of polar faculae and polar bright points in Ca ii K line and monthly sunspot areas in each hemisphere of the following solar cycle have a correlation with each other. A new cycle of polar faculae and polar bright points in the Ca ii K line begins after the polar magnetic field reversal. We find that the smaller the period between the ending of the polar field reversal and the beginning of a new sunspot cycle is, the more intense is the cycle itself. The intensity of the forthcoming solar cycle (cycle 22) and the periods of strong fluctuations in activity expected in this cycle are also discussed.  相似文献   

5.
M. Waldmeier 《Solar physics》1971,20(2):332-344
One of the most outstanding feature of solar activity in the decade 1959–1969 was a very strong asymmetry on the two hemispheres. On the northern hemisphere spots, faculae and prominences were more numerous and the white light corona was brighter than on the southern hemisphere. This happened as well in the main zone as in the polar zone. The green coronal line too was brighter on the northern hemisphere, but the intensity of the red line was asymmetric in the opposite sense. From this behaviour it follows that over the more active hemisphere the corona is denser and hotter. Between density N e and temperature T holds the relation: N e = 10–10 T 3. The real asymmetry was strengthened by a phase difference of the two hemispheres. This phase shift is subject to a long period that contains 8 eleven-year cycles. The intensity of the individual cycles follows the same long period. With low maxima of solar activity the northern hemisphere precedes, with high maxima the southern hemisphere (Figure 3).Astronomische Mitteilungen der Eidgenössischen Sternwarte Zürich, No. 302.  相似文献   

6.
Vernova  E.S.  Mursula  K.  Tyasto  M.I.  Baranov  D.G. 《Solar physics》2004,221(1):151-165
We study the longitudinal distribution of sunspot activity in 1917–1995 using vector sums of sunspot areas. The vector sum of sunspots of one solar rotation gives a total vector whose amplitude characterizes the size of longitudinal asymmetry and whose phase describes the location of the momentarily dominating longitude. We find that when the phase distributions are calculated separately for the ascending phase and maximum (AM) on the one hand and for the declining phase and minimum (DM) on the other hand, they behave differently and depict broad maxima around roughly opposite longitudes. While the maximum of the phase distribution for the AM period is found around the Carrington longitude of 180°, the maximum for the DM period is at the longitude of about 0°. This difference can be seen in both solar hemispheres, but it is more pronounced in the southern hemisphere where the phase distribution has a particularly clear pattern. No other division of data into two intervals leads to similar systematic differences.  相似文献   

7.
L. Gy?ri 《Solar physics》2012,280(2):365-378
Sunspot and white light facular areas are important data for solar activity and are used, for example, in the study of the evolution of sunspots and their effect on solar irradiance. Solar Dynamic Observatory??s Helioseismic and Magnetic Imager (SDO/HMI) solar images have much higher resolution (??0.5????pixel?1) than Solar and Heliospheric Observatory??s Michelson Doppler Imager (SOHO/MDI) solar images (??2????pixel?1). This difference in image resolution has a significant impact on the sunspot and white light facular areas measured in the two datasets. We compare the area of sunspots and white light faculae derived from SDO/HMI and SOHO/MDI observations. This comparison helps the calibration of the SOHO sunspot and facular area to those in SDO observations. We also find a 0.22 degree difference between the North direction in SDO/HMI and SOHO/MDI images.  相似文献   

8.
The monthly sunspot numbers compiled by Temmer et al. and the monthly polar faculae from observations of the National Astronomical Observatory of Japan, for the interval of March 1954 to March 1996, are used to investigate the phase relationship between polar faculae and sunspot activity for total solar disk and for both hemispheres in solar cycles 19, 20, 21 and 22. We found that (1) the polar faculae begin earlier than sunspot activity, and the phase difference exhibits a consistent behaviour for different hemispheres in each of the solar cycles, implying that this phenomenon should not be regarded as a stochastic fluctuation; (2) the inverse correlation between polar faculae and sunspot numbers is not only a long-term behaviour, but also exists in short time range; (3) the polar faculae show leads of about 50–71 months relative to sunspot numbers, and the phase difference between them varies with solar cycle; (4) the phase difference value in the northern hemisphere differs from that in the southern hemisphere in a solar cycle, which means that phase difference also existed between the two hemispheres. Moreover, the phase difference between the two hemispheres exhibits a periodical behaviour. Our results seem to support the finding of Hiremath (2010).  相似文献   

9.
Mikhailutsa  V.P. 《Solar physics》2001,199(1):13-21
The area density distribution of bright photospheric points on the quiet solar surface is not uniform. The distributions show some considerable pecularities. This article is a study of their characteristics during the four last solar activity minima in Bartels longitudes. The bright-photospheric-point distributions on the equatorial and polar solar surface exhibit a type of sectoral-hemispherical asymmetry. The density distributions vary a lot, but have the tendency to alternate with a period of 22 years. The phase origin of density concentrations is the first structural pecularity of the photospheric point distributions. The simultaneous appearance of bright regions on the equatorial and polar solar surface in spatial antiphase lock and, at the same time, the half-phase shift (11 years) between polar and equatorial cycles suggests a synchronous distribution process. This time synchronization is the second important pecularity of density concentrations. Therefore, the solar activity organization in minima occurs according to strict synchronization, like being under the control of a very precise clock.  相似文献   

10.
We study the influence of faculae on sunspot heat blockage using a thermal model based on eddy heat diffusion through the convection zone. The facula is represented as a localized area of excess emission surrounding the sunspot, which is represented as a thermal plug. Our computations using a range of reasonable combinations of spot and facular depths show no significant influence of the facula on the long storage times of heat blocked by sunspots. However, the local cooling of surface layers produced by excess facular emission in this model propagates globally within the convection zone in a similar way to the heating produced by a spot. The net effect of spots and faculae on L over time scales longer than an active region lifetime should thus be determined by the global sum of sunspot flux deficits and facular excesses.  相似文献   

11.
The Extreme Limb Photometer (ELP) has been used to measure the irradiance fluctuation of the Sun due to selected active regions. Forty-five active regions that were completely scanned at various disk positions are included in the analysis. The contribution of these active regions to a global solar irradiance fluctuation has been correlated with photometric sunspot and facular indices (PSI and PFI) using published values of sunspot and calcium plage areas. The measured ELP fluctuations are converted to a global brightness fluctuation, B/B. The sunspot component of B/B correlates with PSI with r = 0.95. The facular component of B/B correlates with PFI with r - 0.72. The expression for PFI is important to the question of energy balance between sunspots and faculae and the results presented here are not incompatible with energy balance between the two phenomena; that is the energy deficit of sunspots may be balanced by the energy excess of faculae.  相似文献   

12.
The sidereal rotation rate of the high-latitude solar regions is examined using long-lived photospheric polar faculae. The observations were carried out with the photoheliograph of Kislovodsk Mountain Station of the Pulkovo Observatory from 1982 to 1986. The following facts have been established: (a) There is a differential rotation of the polar faculae close to the maximum of solar activity, while the amount of latitude gradient of solar rotation decreases towards the sunspot minimum; (b) small differences of rotation in the northern and southern hemispheres of the Sun are observed; (c) some deviations of differential rotation curves constructed for each Carrington rotation from the mean curve of differential rotation are revealed. The total amplitude of the maximum positive and negative excesses is about 40–50 m s–1. The positive surplus velocities of solar rotation (the amplitude of which is about 20–25 m s–1) move in the form of a wave from heliographic latitudes 40° with a velocity of 1.6 m s–1. The latitude width of this flow is B 15°. This wave of abnormally high velocity starts in the year of minimum solar activity and reaches the pole 11 years later. The picture is symmetrical relative to the equator.  相似文献   

13.
The purpose of the present article is to analyze the solar cycles from the point of view of the large-scale surface magnetic field (LSMF) polarity distributions. Using synoptic charts of the LSMF for the 1870–1991 time interval at maxima and minima and the spherical harmonic analysis of the polarity distributions, a connection between magnetic cycles has been found. The weight of the large-scale sectoral mode (m = 1) in the common LSMF polarity distribution at minima of the sunspot cycle is the source of sunspot activity at maxima after 16–18 years. The connections found suggest that surface LSMFs have a dual nature - the main source below the convective zone and a secondary source (sunspot production). The sunspot production has no visible influence on the LSMF cycles.  相似文献   

14.
The monthly number of polar faculae of the Sun were determined from white-light images at spectral band (eff) = (4100 ± 200) Å obtained at the Kislovodsk Solar Station during 1960–1994. Corrected monthly numbers were obtained with the help of the visibility function. The level of polar activity larger than 1 above the monthly running mean was calculated, and the relation between the polar faculae and sunspot cycle was studied. We confirmed earlier results (Makarov and Makarova, 1987) that the monthly number of polar faculae, NPF m (t) correlates with the monthly sunspot area A m (Sp)(t + T) with a time shift T 6 yr. The new polar faculae cycle began in the middle of 1991. Peculiarities of the first part of sunspot cycle 23 are discussed.Guest scientist with the University of Arizona and Zetetic Institute. Tucson, Arizona 85719, U.S.A.  相似文献   

15.
Peter Foukal 《Solar physics》1993,148(2):219-232
We analyze the record of facular areas compiled by the Royal Greenwich Observatory (RGO) from daily white-light observations between 1874 and 1976. Curiously, the relative amplitudes of the three largest sunspot cycles 17, 18, and 19 in this record are reversed when they are ranked by facular area. We show that this negative correlation arises from a general decrease of the ratioA F/A S, of facular to sunspot area, with increasingA S. Within a given cycle,A F/A Sdecreases in active regions of largeA S, butA F/A Sis also lower at allA S, in cycles of higher peak amplitude inA S. This decrease ofA F/A Sin large spot groups is consistent with its decrease in younger, more active solar-mass stars, and it may explain why stars only slightly more magnetically active than the Sun tend to exhibit much greater variability in broad-band photometry. We suggest that the physical explanation is an increased spatial filling factor of magnetic flux, favoring formation of sunspots over faculae. We also explain why the decrease inA F/ASis not seen in the disc-integrated Ca K plage areas, nor in theF10.7 microwave index, both of which exhibit remarkable linearity when plotted against smoothed sunspot area. This explanation suggests how complementary data on faculae and plages from RGO and Mt. Wilson could be used to improve empirical models of total irradiance variation, extending back to 1874.  相似文献   

16.
We believe the Babcock-Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from the 1970s, we use the polar faculae number data recorded by Sheeley (1991, 2008) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare the results with observational data. We find that the theoretically computed asymmetries of different cycles compare favorably with the observational data, with the correlation co-efficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle ei-ther from observational data or from theoretical calculations statistically tends to be less than the asymmetry in the polar field (as inferred from the faculae data) in the preceding minimum. This reduction factor turns out to be 0.43 and 0.51 respectively in observational data and theoretical simulations.  相似文献   

17.
Coordinates of polar faculae have been measured and processed using daily photoheliograms of the Kislovodsk Station of the Pulkovo observatory with the final goal of studying their latitude distribution during the solar cycles 20–21. The results obtained are as follows:
  1. The first polar faculae emerge immediately after the polarity inversion of the solar magnetic field at the latitudes from 40° to 70° with the average ?-55°.
  2. The zone of the emergence of polar faculae migrates poleward during the period between the neighbouring polarity inversions of the solar magnetic field. This migration is about 20° for 8 years, which corresponds to a velocity of 0.5 m s-1.
  3. The maximum number of polar faculae was reached at the activity minimum (1975–1976).
  4. The last polar faculae were observed in the second half of 1978 at the latitudes from 70° to 80°.
  相似文献   

18.
Using data from the Greenwich catalog, we determined the nonuniformity of the longitudinal distribution of sunspot groups as a function of the rotation period taken for the longitude determination. We estimated the statistical significance of the active longitudes found. A fairly high significance was achieved only for sunspot groups of the Northern Hemisphere and odd activity cycles and only for a synodic rotation period close to 28 days. In this case, one interval of active longitudes was found. The active longitudes are assumed to be associated with the fossil magnetic field frozen in the uniformly rotating radiative zone of the Sun.  相似文献   

19.
Longitudinal distributions of the photospheric magnetic field studied on the basis of National Solar Observatory (Kitt Peak) data (1976 – 2003) displayed two opposite patterns during different parts of the 11-year solar cycle. Helio-longitudinal distributions differed for the ascending phase and the maximum of the solar cycle on the one hand and for the descending phase and the minimum on the other, depicting maxima around two diametrically opposite Carrington longitudes (180° and 0°/360°). Thus the maximum of the distribution shifted its position by 180° with the transition from one characteristic period to the other. Two characteristic periods correspond to different situations occurring in the 22-year magnetic cycle of the Sun, in the course of which both global magnetic field and the magnetic field of the leading sunspot in a group change their sign. During the ascending phase and the maximum (active longitude 180°) polarities of the global magnetic field and those of the leading sunspots coincide, whereas for the descending phase and the minimum (active longitude 0°/360°) the polarities are opposite. Thus the observed change of active longitudes may be connected with the polarity changes of Sun’s magnetic field in the course of 22-year magnetic cycle.  相似文献   

20.
The monthly probability of occurrence of southward (B z ) component of IMF estimated independent of the sector polarity observed near earth is found to change with the magnitude of solar wind velocity. The above analysis is done for each month during two years around sunspot minima and maxima in cycle 21. The results will be interpreted in terms of association of southwardB z events with solar wind flows of distinct solar origin such as low and high speed solar wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号