首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Chlorite is a common sheet silicate that occurs in various lithologies over a wide grade range involving diagenesis and low‐grade metamorphism. Thus, the reaction progress of chlorite offers a unique opportunity for direct correlation of zonal classification of metasedimentary rocks based on illite crystallinity with metabasite mineral facies. To provide such correlation, chlorite crystallinity indices, apparent mean crystallite sizes and lattice strains, crystallite size distributions and compositions of chlorite from coexisting metapelites and metabasites were determined by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), analytical electron microscopy (AEM) and electron microprobe (EMP) methods. Samples were from Palaeozoic and Mesozoic formations of the Bükkium (innermost Western Carpathians, Hungary) that underwent Alpine (Cretaceous) orogenic metamorphism. Metapelites range in grade from late diagenesis to epizone, whereas metabasites vary from prehnite–pumpellyite through pumpellyite–actinolite to greenschist facies. Despite significant differences in composition, mineral assemblages and textures, reaction progress, as measured in part by chlorite crystallinity, in metapelites paralleled that in metabasites. Chlorite crystallinity and mean crystallite size increase and the proportion of mixed layers in chlorite decreases, whereas the calculated lattice strain does not change significantly with increasing metamorphic grade. Similar trends, but (especially at higher grades) significant differences, were found in mean crystallite size values using various methods for XRD line profile analyses. The increase in crystallite size with increasing grade was demonstrated also by direct TEM measurements on ion‐milled whole‐rock samples, but with a larger scatter of data at higher grades. In spite of the different kinds of mixed layering in chlorite (Mg‐rich smectitic, mostly random, local corrensite‐like units in metabasites, and Fe‐rich berthierine and dioctahedral smectite in metapelites), XRD‐calculated and TEM‐measured parameters were found to be reliable tools for measuring reaction progress and metamorphic grade of the same degree in both lithotypes.  相似文献   

2.
极低级变质作用及其研究方法   总被引:9,自引:2,他引:9  
近年来国际上极低级变质作用的研究进展包括综合运用了伊利石结晶度等各项指标 ,将极低级变质带划分为成岩带、近变质带和浅变质带 ,成岩带和近变质带又可进一步划分为低级成岩带、高级成岩带、低级近变质带和高级近变质带 ;研究了伸展背景、阿尔卑斯碰撞背景和增生背景下的极低级变质作用 ;进一步理解了矿物的转变过程 ,建立了变质泥质岩石的矿物反应系列。即变质泥质岩石的二八面体矿物反应系列 ,为蒙皂石—伊 /蒙混层 (I/S)—伊利石—白云母 ;对应变质镁铁质岩石的三八面体矿物反应系列 ,为蒙皂石—绿泥石 /蒙皂石混层 (C/S)—绿泥石。岩石微构造也发生同步变化 ;明确了广泛应用的伊利石结晶度的本质是雏晶大小的一种量度 ,也与晶格应变有关 ,主要受反应动力的控制 ;建立了系统的研究技术方法 ,包括野外采样方法、室内X光衍射法 (XRD)、透射电镜法 (TEM )、地质温度计、地质压力计、岩石学方法、同位素地质学方法等  相似文献   

3.
Thrusting fault zone in foreland basins are characterized by highly foliated zones generally enriched in phyllosilicates which can play a major role on the mechanical behaviour of the fault. In this context, investigations of synkinematic clay minerals permit to determine the origin of the fluid from which they precipitated as well as the mechanisms of deformation. Our study is focused on clay mineral assemblages (illite and chlorite) in a major thrust fault located in the Monte Perdido massif (southern Pyrenees), a shallow thrust that affects upper cretaceous-paleocene platform carbonates and lower Eocene marls and turbidites. It implied 3?km of displacement of the Monte Perdido thrust unit with respect to the underlying Gavarnie unit. In this area the cleavage development by pressure-solution is linked to the Monte Perdido and Gavarnie thrust activity. The core zone of the fault, about 6?m thick, consists of an interval of intensely deformed clay-bearing rocks bounded by major shear surfaces. The deformed sediment is markedly darker than the protolith. Calcite-quartz shear veins along the shear planes are abundant. Detailed SEM and TEM observations of highly deformed fault zone samples indicate that clay mineral enrichment in the core zone of the fault is not only related to passive increase by pressure-solution mechanism but that dissolution?Crecrystallization of phyllosilicates occurs during deformation. A mineral segregation is observed in the highly deformed zone. Newly formed 2M 1 muscovite is present along the cleavage whereas IIb chlorite crystals fill SV2 shear veins suggesting syntectonic growth of phyllosilicates in the presence of fluids in low-grade metamorphic conditions. These mineralogical reactions act as weakening processes and would favour Monte Perdido fault creeping.  相似文献   

4.
We used illite and chlorite crystallinities, index minerals, mineral assemblages, polytype and domain size of white mica, electron microprobe analysis (EMPA), b0 geobarometer and chlorite geothermometer to quantify the diagenetic and metamorphic overprint on the Triassic flysch formations in the Songpan-Garzê orogen along profile Zoigê-Lushan, northwest Sichuan. Two anchizones, two epizones, one diagenetic zone and a transition belt in-between them are defined on the basis of the obtained data. lllite crystallinity correlates strongly with the best mean domain size of mica and moderately with chlorite crystallinity. 2M1 white mica polytype are observed within the epizone whilst 2M1 and 1M polytypes occur in the anchizone and diagenetic zone. Epizonal metamorphism reached maximum temperatures of 370℃±21℃ at low-to intermediate pressure conditions. Clay minerals underwent Ostwaid ripening during metamorphism. Rocks from both sides of the Longmenshan fault reveal contrasting degrees of metamorphic overprint: on the northwest side of the Longmenshan fault, epimetamorphlc conditions contrast with diagenetic rocks on the southeast side.  相似文献   

5.
Anomalously large chemical ranges in muscovite-paragonite and muscovite-celadonite systems are observed in white micas from the Piemonte calcschists in the Chisone valley area, internal western Alps. The petrographical and chemical observations on white mica strongly suggest that most mica crystals with high Na/K ratios in the chlorite zone are of detrital origin, and were derived from the pre-Alpine high-temperature metamorphic sequence such the Caledonian and/or Variscan. Submicroscopic muscovite (Ms) - paragonite (Pg) composite aggregates occur in the chlorite zone and their EPMA analyses give an apparent chemical composition range from Ms0.6Pg0.4 to Ms0.2Pg0.8. In the rutile zone, the paragonite content of the white micas is less than 20%, suggesting that the white micas have been homogenized during the Alpine metamorphism even if detrital white micas existed.Metamorphic mica is also very heterogeneous. The total range in Si content becomes wider with increasing of metamorphic grade: 3.22–3.39 pfu for the chlorite zone, 3.07–3.45 pfu for the chloritoid zone and 3.06–3.59 pfu for the rutile zone. This clearly indicates that the micas have experienced significant retrogressive chemical reactions during cooling and exhumations of the host schists.The detrital white mica in the chlorite zone has not reset well in its K-Ar system during the Alpine subduction-related metamorphism. The wide range of the white mica K-Ar ages from 115 to 41 Ma must be due to a mixture of various amounts of detrital white mica in the separates. This feature is also observed in the chloritoid zone though the age variation is not so large as that in the chlorite zone. In contrast, the mica in the rutile zone, which was higher than 450°C, has been reset completely during Alpine HP metamorphism.  相似文献   

6.
High-resolution transmission electron microscopy (HRTEM) measurements of the thickness of white mica crystallites were made on three pelite samples that represented a prograde transition from diagenetic mudstone though anchizonal slate to epizonal slate. Crystallite thickness, measured normal to (001), increases as grade increases, whereas the XRD measured 10 Å peak-profile, the Kubler index, decreases. The mode of the TEM-measured size population can be correlated with the effective crystallite size N(001) determined by XRD. The results indicate that the Kubler index of white mica crystallinity measures changes in the crystallite size population that result from prograde increases in the size of coherent X-ray scattering domains. These changes conform to the Scherrer relationship between XRD peak broadening and small crystallite size. Lattice strain broadening is relatively unimportant, and is confined to white mica populations in the diagenetic mudstone. Rapid increases in crystallite size occur in the anchizone, coincident with cleavage development. Changes in the distribution of crystallite thickness with advancing grade and cleavage development are characteristic of grain-growth by Ostwald ripening. The Kubler index rapidly loses sensitivity as an indicator of metapelitic grade within the epizone.  相似文献   

7.
Textural and chemical changes occurring in illite and chlorite concomitant with pressure solution of limestone were studied in samples from the Kalkberg Formation of Catskill, New York, using XRD and TEM/AEM. Samples on one limb of an anticline are massive shaly limestones, but those on the other have undergone extensive pressure solution and well-developed cleavage is present. Illite and chlorite from the uncleaved shaly limestone are found in small individual packets (100–800 Å thick) dispersed throughout the carbonate matrix with crystal morphologies characteristic of burial diagenesis. Phyllosilicates from the limb more affected by pressure solution occur in larger units (>1 μm thick) as stacks of subparallel packets (150–500 Å thick). Such stacks are inferred to represent coalescence of smaller packets. These data imply that the phyllosilicates are largely passive during pressure solution of limestone; however, localized solution-recrystallization is required by the coherent to semi-coherent packet boundaries and the crystal morphologies present in the pressure solution sample. The largely passive role is in contrast with the more active role of phyllosilicates in many shales and slates.XRD data for illite show an increase in crystallinity in the pressure solution sample under isothermal conditions. Differences in illite crystallinity are adequately explained in large part by differences in crystal size with some contribution due to strain. The data demonstrate that illite crystallinity cannot be unambiguously used in determining absolute or even relative temperatures.  相似文献   

8.
The Lower Silurian??Lower Devonian Arisaig Group (Antigonish Highlands) in the Canadian Appalachians is a sequence of shallow marine strata deposited after the accretion of Avalonia to Baltica during the closure of the Iapetus Ocean. Deformation of the strata is widely attributed to the Devonian Acadian orogeny and produced shallowly plunging regional folds and a cleavage of varying penetrativity. Phyllosilicate minerals from the finest-grained rocks exhibit very low-grade (diagenetic-anchizone) metamorphic conditions. X-ray diffraction study reveals that the sampled rocks contain quartz, K-white mica, chlorite, and feldspars; illite?Csmectite and chlorite?Csmectite mixed-layers are common but Na?CK mica and kaolinite occur only in some samples. The identification of illite?Csmectite mixed-layers in diagenetic samples, with Kübler Index >0.50 ??°2?? and the highly heterogeneous b-cell dimension of the K-white micas are in agreement with the variable chemical composition of dioctahedral micas, which present low illitic substitution and variable phengitic content. The spatial variation in the above crystal-chemical parameters was plotted along a NW?CSE composite cross section across the regional folds. No correlation was found between the metamorphic conditions and either the stratigraphic depth or the strain values measured by phyllosilicates orientation analyses, as a function of the penetrativity of the cleavage. However, the metamorphic grade generally increases towards the Hollow Fault, and is highest in samples located within a 1?km corridor from the fault surface. Incipient cleavage is observed in the anchizonal samples located in the vicinity of the Hollow Fault and in some of the diagenetic samples, indicating cleavage development under low temperatures (<200?oC). These relationships, together with regional syntheses, suggest low-grade metamorphism post-dated regional folding and was coeval with Late Carboniferous dextral movement along the Hollow Fault. Fluid circulation associated with movement along this major fault may be the driving mechanism for the increasing metamorphism towards it.  相似文献   

9.
Abstract Mafic phyllosilicates in metabasites affected by low-grade regional metamorphism from Wales and eastern North Greenland show variations in their structure and chemistry. These variations are related to four mineral zones in these metabasites, which are recognized on the presence/absence of various key calc-silicate minerals and also actinolite. Zones 1 and 2 equate with the zeolite facies, zone 3 with the prehnite–pumpellyite facies (or prehnite–actinolite facies in rocks with appropriate bulk rock composition) and zone 4 with the greenschist facies. Whilst variations in Fe/(Fe + Mg) in chlorite correlate closely with Fe/(Fe + Mg) ratios in the whole-rock, other chemical variations are clearly unrelated to whole-rock compositions. Contents of Aliv are seen to increase systematically in samples from zone 1 through to zone 4, which relate to an increase in temperature. Calibration of alteration temperatures, calculated using the chlorite geothermometer (based on Aliv contents) developed for meta-andesites in the Los Azufres geothermal system (Mexico), against x values (an estimate of the proportion of chlorite to swelling component in the mafic phyllosilicates) shows a decrease in the swelling component in passing from zone 1 to zone 4, i.e. with an increase in temperature. Calculated temperatures compare favourably with published stability estimates for the various key calc-silicates and actinolite. These data indicate that the chlorite geothermometer, although developed for meta-andesites from a hydrothermal system, does show a correlation with temperatures estimated from calc-silicate assemblages in metabasites affected by low-grade metamorphism developed on a regional scale.  相似文献   

10.
Sandstones of the juxtaposed and partially coeval quartzofeldspathic Torlesse terrane and volcanogenic Waipapa terrane of North Island, New Zealand, are generally described as having been derived from silicic continental arc and evolved intermediate volcano-plutonic arc sources, respectively. Modal and chemical compositions of the two terranes differ slightly as a result. From textural considerations, their single-grain (unitary) detrital mineral populations are inferred to have been derived largely from the plutonic components in their sources. Intensive microscopic and electron microprobe study of two representative samples shows that the unitary detrital mineral assemblages in the two terranes are virtually identical, comprising quartz, plagioclase, K-feldspar, white mica, epidote, titanite, pumpellyite, ilmenite, rutile, tourmaline, zircon, and apatite. Detrital chlorite, garnet, and graphite also occur in the Torlesse sample, whereas amphibole, clinopyroxene, and prehnite occur in the Waipapa sample. Authigenic mineral assemblages are also similar, consisting of quartz, albite, chlorite, phengitic mica, epidote, titanite, pumpellyite, pyrite, and calcite. Stilpnomelane and pyrrhotite also occur in the Torlesse sample, and prehnite in the Waipapa specimen. These assemblages define upper prehnite-pumpellyite to lower pumpellyite-actinolite facies conditions (Torlesse) and lower prehnite-pumpellyite facies metamorphism (Waipapa). By comparison with published compositional data for minerals from plutonic, metamorphic, and volcanic rocks, electron microprobe analyses of individual minerals confirm that the unitary detrital grains in both terranes were largely derived from calc-alkaline S-type granitoid plutonic rocks. Contrasts in mineral compositions between the two terranes show that the Torlesse unitary mineral detritus was derived almost entirely from granodiorite, whereas the Waipapa grains originated from a mixed diorite, monzonite, and granodiorite plutonic component in their source. In neither terrane was detritus derived from granite in the strict sense. Although the plutonic components in their sources are lithologically similar, the compositional contrasts seen indicate that they were not coeval or spatial components of the same terrane. Detailed electron microprobe analysis of unitary detrital phases in low-grade metasedimentary rocks thus enables identification of specific source terrane lithotypes, and hence is a valuable complement to existing petrographic, modal, and chemical approaches that define more generalized provenances.  相似文献   

11.
The metamorphic evolution of rocks cropping out near Stoer, within the Assynt terrane of the central region of the mainland Lewisian complex of NW Scotland, is investigated using phase equilibria modelling in the NCKFMASHTO and MnNCKFMASHTO model systems. The focus is on the Cnoc an t’Sidhean suite, garnet‐bearing biotite‐rich rocks (brown gneiss) with rare layers of white mica gneiss, which have been interpreted as sedimentary in origin. The results show that these rocks are polymetamorphic and experienced granulite facies peak metamorphism (Badcallian) followed by retrograde fluid‐driven metamorphism (Inverian) under amphibolite facies conditions. The brown gneisses are inferred to have contained an essentially anhydrous granulite facies peak metamorphic assemblage of garnet, quartz, plagioclase and ilmenite (±rutile, K‐feldspar and pyroxene) with biotite, hornblende, muscovite, chlorite and/or epidote as hydrous retrograde minerals. P–T constraints imposed by phase equilibria modelling imply conditions of 13–16 kbar at >900 °C for the Badcallian granulite facies metamorphic peak, consistent with the field evidence for partial melting in most lithologies. The white mica gneiss comprises a muscovite‐dominated matrix containing porphyroblasts of staurolite, corundum, kyanite and rare garnet. Previous studies have suggested that staurolite, corundum, kyanite and muscovite all grew at the granulite facies peak, with partial melting and melt loss producing a highly aluminous residue. However, at the inferred peak P–T conditions, staurolite and muscovite are not predicted to be stable, suggesting they are retrograde phases that grew during amphibolite facies retrograde metamorphism. The large proportion of mica suggests extensive H2O‐rich fluid‐influx, consistent with the retrograde growth of hornblende, biotite, epidote and chlorite in the brown gneisses. P–T conditions of 5.0–6.5 kbar at 520–550 °C are derived for the Inverian event. In situ dating of zircon from samples of the white mica gneiss yield apparent ages that are difficult to interpret. However, the data are permissive of granulite facies (Badcallian) metamorphism having occurred at c. 2.7–2.8 Ga with subsequent fluid driven (Inverian) retrogression at c. 2.5–2.6 Ga, consistent with previous interpretations.  相似文献   

12.
Metamorphic terranes comprised of blueschist facies and regional metamorphic (Barrovian) rocks in apparent structural continuity may represent subduction complexes that were partially overprinted during syn‐ to post‐subduction heating or may be comprised of unrelated tectonic slices. An excellent example of a composite blueschist‐to‐Barrovian terrane is the southern Sivrihisar Massif, Turkey. Late Cretaceous blueschist facies rocks are dominated by marble characterized by rod‐shaped calcite pseudomorphs after aragonite and interlayered with blueschist that contains eclogite and quartzite pods. Barrovian rocks, which have 40Ar/39Ar white mica ages that are >20 Myr younger than those of the blueschists, are also dominated by marble, but rod‐shaped calcite has been progressively recrystallized into massive marble within a ~200‐m transition zone. Barrovian marble is interlayered with quartzite and schist in which isograds are closely spaced and metamorphic conditions range from chlorite to sillimanite zone over ~1 km present‐day structural thickness. Andalusite, kyanite and prismatic sillimanite are present in muscovite‐rich quartzite; in one location, all three are in the same rock. Andalusite pre‐dates Barrovian metamorphism, kyanite is both pre‐ and syn‐Barrovian and sillimanite is entirely Barrovian. Muscovite with phengitic cores and relict kyanite in quartzite below the staurolite‐in isograd are evidence for pre‐Barrovian subduction metamorphism preserved at the low‐T end of the Barrovian domain; above the staurolite isograd, all evidence for subduction metamorphism has been erased. Some regional metamorphism may have occurred during exhumation, as indicated by syn‐kinematic high‐T minerals defining the fabric of L‐tectonite. Quartz microstructures in lineated quartzite reveal a strong constrictional fabric that may have formed in a transtensional bend in the plate boundary. Transtension accounts for the closely spaced isograds and development of a strong constrictional fabric during exhumation.  相似文献   

13.
The 3D shape, size and orientation data for white mica grains sampled along two transects of increasing metamorphic grade in the Otago Schist, New Zealand, reveal that metamorphic foliation, as defined by mica shape‐preferred orientation (SPO), developed rapidly at sub‐greenschist facies conditions early in the deformation history. The onset of penetrative strain metamorphism is marked by the rapid elimination of poorly oriented large clastic mica in favour of numerous new smaller grains of contrasting composition, higher aspect ratios and a strong preferred orientation. The metamorphic mica is blade shaped with long axes defining the linear aspect of the foliation and intermediate axes a partial girdle about the lineation. Once initiated, foliation progressively intensified by an increase in the aspect ratio, size and alignment of grains, although highest grade samples within the chlorite zone record a decrease in aspect ratio and reduction in SPO strength despite continued increase in grain size. These trends are interpreted in terms of progressive competitive anisotropic growth of blade‐shaped grains so that the fastest growth directions and blade lengths tend to parallel the extension direction during deformation. The competitive nature of mica growth is indicated by the progressive increase in size and resultant decrease in number of metamorphic mica with increasing grade, from c. 1000 relatively small mica grains per square millimetre of thin section at lower grades, to c. 100 relatively large grains per square millimetre in higher grade samples. Reversal of SPO intensity and grain aspect ratio trends in higher grade samples may reflect a reduction in the strain rate or reduction in the deviatoric component of the stress field.  相似文献   

14.
The Michigamme Formation of the Marquette District in Michigan's Upper Peninsula comprises a sequence of cleaved rocks of increasing metamorphic grade. Because metamorphism in the area occurred after cleavage formation, the rocks provide an opportunity to study preferred orientation development of phyllosilicates under conditions of static recrystallization.X-ray texture goniometry on samples from the greenschist-facies zone that were collected at varying distances from the bounding biotite-in and garnet-in isograds, shows that: (1) the preferred orientation of phyllosilicates is always parallel to the mesoscopic cleavage, and (2) the degree of preferred orientation of phyllosilicates improves as a function of increasing metamorphic grade (from <4 to >9 m.r.d.). Scanning electron microscopy on these samples shows that: (1) the length/width ratio increases with increasing grade, and (2) grain shapes are better defined with increasing grade.Previous work on slates showed mechanical processes dominate at very low-grade metamorphism, whereas chemical processes are favored at higher grades. The Michigamme samples show that improvement of preferred orientation occurrred by grain dissolution and crystallization. Noncleavage-parallel phyllosilicate grains were preferentially dissolved, probably facilitated by internal strain energy from mineral defects, aided by chemical energy, whereas cleavage-parallel phyllosilicates were hosts for new growth along their basal planes. These results show that significant fabric strengthening can be achieved by grain dissolution and crystallization in the absence of tectonic stress.  相似文献   

15.
This study uses illite crystallinity,chlorite crystallinity,illite polytypes,the b_0 cell-dimension of K-white mica,clay mineral assemblages and mineral geothermo-geobarometers to investigate the overprint of diagenesis and metamorphism on the Meso-Neoproterozoic and the Lower Paleozoic along the profile Yueyang-Linxiang in northeastern Hunan Province,China.Illite crystallinity Kbler index(KI) of the 2μm fractions ranges from 0.225 to 0.485°Δ2θ while chlorite crystallinity Arkai index(AI) ranges from 0.244 to 1.500°Δ2θ.This indicates that the Meso-Neoproterozoic and the Lower Paleozoic along the profile Yueyang-Linxiang were overprinted with diagenesis and anchi- to epimetamorphism.Peak metamorphic temperature is estimated with the IV site chlorite geothermometer roughly at 360℃.The b_0 cell dimension values of illites(K-mica) range from 0.9002 to 0.9054 nm and,on average,at 0.9030 nm for the Meso-Neoproterozoic.Based on cumulative frequency curves of illite(K-mica) b_0 cell dimension,the peak metamorphic pressure of the MesoNeoproterozoic along the profile Yueyang-Linxiang is derived of an intermediate pressure type.Most illites occur in the 2M_1 polytype and some of them in a mixture of 2M1+1M types especially those in the Paleozoic.This result partly agrees with the conclusion of the lower greenschist and greenschist facies of the Lengjiaxi and Banxi Groups.However,it is not agreed with the sedimentary cover from the Sinian to the Lower Paleozoic or from the Banxi Group to the Lower Paleozoic.Crustal thickening due to "collision" between the Yangtze and Cathaysia blocks led to an increase in the thickness of the Meso-Neoproterozoic to ca.14 km and resulted in a temperature increase in those rocks due to burial.The very low grade to low grade metamorphism overprinting the Meso-Neoproterozoic implies that the so called "Chiangnania or Jiangnan orogen" was no relative with the "Grenvillian orogeney;instead,it might be a continuous amalgamation product between the Yangtze and Cathaysia blocks.  相似文献   

16.
Abstract The Ruby terrane is an elongate fragment of continental crustal rocks that is structurally overlain by thrust slices of oceanic crust. Our results from the Kokrines Hills, in the south-central part of the Ruby terrane, demonstrate that the low-angle schistose fabric formed under high- P /low- T conditions, at peak conditions of 10.8-13.2 kbar and 425-550° C, consistent with the rare occurrence of glaucophane. White mica 40Ar/39Ar cooling ages from these blueschists indicate that the metamorphism occurred prior to 144 ± 1 Ma. The blueschist facies assemblages are partially replaced by greenschist facies assemblages in the eastern Kokrines Hills. In contrast, in the central and western Kokrines Hills, upper amphibolite to lower granulite facies metamorphism associated with extensive late Early Cretaceous plutonism has completely overprinted any evidence of an earlier high- P/T metamorphic history. Deformation accompanying the plutonism produced recumbent isoclinal folds in the plutonic rocks and pelitic gneisses of the wallrock; decompression reactions in the pelitic gneisses suggest that the deformation occurred during exhumation. Thermochronological data bracket the time of intrusion and cooling below 500° C between 118 ± 3 and 109 ± 1 Ma.
Our data from the schists of the Ruby terrane support the general assumption of many authors that the Ruby terrane was subducted beneath an oceanic island arc. This tectonic history is similar to that described for other large continental crustal blocks in northern and central Alaska, in the Brooks Range, Seward Peninsula and Yukon-Tanana Upland. The current orientation of the Ruby terrane at an oblique angle to these other crustal blocks and to the Cordilleran trend is due to post-collisional tectonic processes that have greatly modified the original continental margin.  相似文献   

17.
The Meliata unit represents a mélange-like accretionary wedge, containing blueschist facies tectonic blocks and slices in a Triassic and Jurassic sedimentary matrix. The blueschist facies rocks are tectonic remnants of the subducted parts of the Meliata-Hallstatt branch of the Tethys. The phyllosilicate assemblages in very low-grade metapelites represent metastable disequilibrium stages which the assemblages have reached during reaction progress. Therefore, temperature and pressure values of low-T metamorphism of the sedimentary series and the late stages of decompressional cooling of blueschist facies rocks, obtained by phyllosilicate "crystallinity", chlorite thermometric and white K-mica geobarometric methods, can be regarded as semiquantitative estimates. However, results of chlorite–white mica thermobarometry suggest that local equilibrium was approached at a microscopic scale. For deciphering the age relations of prograde and retrograde events, K–Ar isotope geochronological methods were applied. The sedimentary series and related basalts of the Meliata unit experienced high-T anchizonal prograde regional metamorphism, the temperature and pressure of which can vary between ca. 280 and 350 °C and ca. 2.5 and 5 kbar. White K-mica b geobarometry suggests possible minimal pressures of ca. 1.5 to 3 kbar. The mylonitic retrogression of blueschist facies phyllites is characterised by 340 °C and 4 kbar (minimal P). The low-T prograde metamorphism was synchronous with the retrograde metamorphism of the blueschists. The ages of these two events may be between ca. 150 and 120 Ma, culminating most probably at around 140–145 Ma. Thus, the Upper Jurassic (lowermost Cretaceous) very low-grade metamorphism of the Meliata unit is younger than the subduction-related, 160–155 Ma blueschist facies event, and definitely older than the Cretaceous (100–90 Ma) metamorphism of the footwall Gemer Palaeozoic.  相似文献   

18.
Six samples of a single carbonate-rich unit of the Swiss Préalpes, progressively metamorphosed from diagenesis to deep anchizone, yield 40Ar/39Ar spectra with variably developed staircase patterns, consistent with mixtures of detrital mica and neocrystallized mixed-layer illite/smectite. The lowest temperature heating steps for different size fractions (2–6?μm and 6–20?μm) converge to ~40?Ma providing an imprecise, maximum age of regional metamorphism. A method is described for distinguishing and quantifying the amount of pre-existing detrital mica versus neoformed illite layer in the illite/smectite formed during Tertiary Alpine metamorphism by comparison of X-ray diffraction patterns with Newmod© simulations. In the least metamorphosed samples the illite/smectite contains ~65% neoformed illite, and this illite accounts for approximately 17% of all dioctahedral phyllosilicate minerals in the rock (e.g., detrital mica and illite/smectite). In contrast, the illite/smectite from the more strongly metamorphosed samples contains >97% neoformed illite, which accounts for ~70% to >90% of all dioctahedral phyllosilicate minerals. Phyllosilicate morphologies viewed by scanning electron microscopy are consistent with these estimates. A process of dissolution/reprecipitation is inferred as a mechanism for the growth of the neoformed phyllosilicates. A plot of neoformed illite content versus 40Ar/39Ar total fusion age yields a near-linear curve with an extrapolated age of 27?Ma for 100% neoformed dioctahedral phyllosilicates. This age is interpreted as the time of incipient metamorphism and is consistent with independent biostratigraphic constraints. Model 40Ar/39Ar age spectra constructed with the XRD simulation results correspond well to the experimental data and illustrate the changes in degassing properties of progressively metamorphosed mixtures of detrital mica and neoformed illite.  相似文献   

19.
20.
Burial Metamorphism of the Ordos Basin in Northern Shaanxi   总被引:1,自引:0,他引:1  
Burial metamorphism has been found in the Ordos basin of northern Shaanxi. On the basis of a rather intensive study of burial metamorphism of sandstone, it has been shown that the evolution from diagenesis to metamorphism involves four stages: cementation of clay minerals, regrowth of pressolved quartz and feldspar, cementation of carbonates and formation of laumontite. On that basis it has been put forward that the laumontite is formed by burial metamorphism of clay and carbonate minerals. According to the thermodynamic data of minerals, the conditions under which laumontite is formed are T<250℃ and X_(CO_2)<0.17. High-resolution SEM and TEM studies of clay minerals in mudstone show that there occur a mixed layer assemblage of bertherine and illite/chlorite and transformation from bertherine to chlorite. On that basis coupled by the X-ray diffraction analysis the author suggests the following transformation of clay minerals during burial metamorphism: the earliest smectite-kaolinite assemblage changes into the bertherine-illite mixture with increasing depth, then into the illite/chlorite mixed layer assemblage and finally into dispersed individual illite and chlorite. The reaction of the transformation is:smectite+kaolinite+K~+=illite+chlorite+quartz According to the study of the oxygen isotope thermometry of the coexisting illitequartz pair, the temperature of the above transformation is lower than 180℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号