首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Understanding the role of forest fires on water budgets of subarctic Precambrian Shield catchments is important because of growing evidence that fire activity is increasing. Most research has focused on assessing impacts on individual landscape units, so it is unclear how changes manifest at the catchment scale enough to alter water budgets. The objective of this study was to determine the water budget impact of a forest fire that partially burned a ~450 km2 subarctic Precambrian Shield basin. Water budget components were measured in a pair of catchments: one burnt and another unburnt. Burnt and unburnt areas had comparable net radiation, but thaw was deeper in burned areas. There were deeper snow packs in burns. Differences in streamflow between the catchments were within measurement uncertainty. Enhanced winter streamflow from the burned watershed was evident by icing growth at the streamflow gauge location, which was not observed in the unburned catchment. Wintertime water chemistry was also clearly elevated in dissolved organics, and organic-associated nutrients. Application of a framework to assess hydrological resilience of watersheds to wildfire reveal that watersheds with both high bedrock and open water fractions are more resilient to hydrological change after fire in the subarctic shield, and resilience decreases with increasingly climatically wet conditions. This suggests significant changes in runoff magnitude, timing and water chemistry of many Shield catchments following wildfire depend on pre-fire land cover distribution, the extent of the wildfire and climatic conditions that follow the fire.  相似文献   

2.
Wildfires are landscape scale disturbances that can significantly affect hydrologic processes such as runoff generation and sediment and nutrient transport to streams. In Fall 2016, multiple large drought-related wildfires burned forests across the southern Appalachian Mountains. Immediately after the fires, we identified and instrumented eight 28.4–344 ha watersheds (four burned and four unburned) to measure vegetation, soil, water quantity, and water quality responses over the following two years. Within burned watersheds, plots varied in burn severity with up to 100% tree mortality and soil O-horizon loss. Watershed scale high burn severity extent ranged from 5% to 65% of total watershed area. Water quantity and quality responses among burned watersheds were closely related to the high burn severity extent. Total water yield (Q) was up to 39% greater in burned watersheds than unburned reference watersheds. Total suspended solids (TSS) concentration during storm events were up to 168 times greater in samples collected from the most severely burned watershed than from a corresponding unburned reference watershed, suggesting that there was elevated risk of localized erosion and sedimentation of streams. NO3-N concentration, export, and concentration dependence on streamflow were greater in burned watersheds and increased with increasing high burn severity extent. Mean NO3-N concentration in the most severely burned watershed increased from 0.087 mg L−1 in the first year to 0.363 mg L−1 (+317%) in the second year. These results suggest that the 2016 wildfires degraded forest condition, increased Q, and had negative effects on water quality particularly during storm events.  相似文献   

3.
Stream and rainfall gauging and runoff sampling were used to determine changes in hydrology and export of nutrients and suspended sediment from a June 2004 wildfire that burned 3010 ha in chaparral coastal watersheds of the Santa Ynez Mountains, California. Precipitation during water year 2005 exceeded average precipitation by 200–260%. Burned watersheds had order of magnitude higher peak discharge compared with unburned watersheds but similar annual runoff. Suspended sediment export of 181 mt ha?1 from a burned watershed was approximately ten times greater than from unburned watersheds. Ammonium export from burned watersheds largely occurred during the first three storms and was 32 times greater than from unburned watersheds. Nitrate, dissolved organic nitrogen, and phosphate export from burned watersheds increased by 5.5, 2.8, and 2.2 times, respectively, compared with unburned chaparral watersheds. Storm runoff and peak discharge increase in burned compared with unburned sites were greatest during early season storms when enhanced runoff occurred. As the winter progressed, closely spaced storms and above average precipitation reduced the fire‐related impacts that resulted in significant increases in annual post‐fire runoff and export in other studies in southern California chaparral. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Two large neighbouring watersheds, the Bowron (3420 km2) and Willow (2860 km2) situated in the central interior of British Columbia, Canada, were used to compare their hydrological responses to forest harvesting in snow‐dominant environment. Both watersheds had experienced significant, comparative forest harvesting level. The long‐term hydrometric and timber harvesting data (>50 years of records) were analysed using time series analysis to examine the hydrological impacts of forest harvesting. The hydrological variables including mean, peak and low flows over annual and seasonal scales (spring snowmelt, summer rain and winter base flow) were tested separately. Results showed that forest harvesting in the Willow watershed significantly increased annual and spring mean flows as well as annual and spring peak flows, whereas it caused an insignificant change on those hydrological variables in the Bowron watershed. The contrasted differences in hydrological responses are due to the differences in topography, spatial heterogeneity, forest harvesting characteristics and climate between two watersheds. The relative uniform topography and climate in the Willow watershed may promote hydrological synchronization effects, whereas larger variation in elevations, together with forest harvesting that occurred at lower elevations, may cause hydrological de‐synchronization effect in the Bowron watershed. The contrasted results demonstrate that the effects of forest harvesting on hydrology in large watersheds are likely watershed specific, and any attempt to generalize hydrological responses to forest harvesting must be carried out with caution. A landscape ecological perspective is critically needed for future forest hydrology studies, particularly for large watersheds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Many studies have defined the interrelationships between climate, forest disturbance, and runoff at small scales (<100 km2), but few have translated these relationships to large watersheds (>500 km2). In this study, we explore the relationship between climate, extreme forest fire seasons, mountain pine beetle (MPB) outbreaks, and runoff in eight large watersheds within the Fraser and Peace drainage basins in British Columbia (BC), Canada from 1981–2019. Using a climate index based on precipitation and air temperature anomalies, we find extreme forest fire seasons (those that burned >5% of a watershed's area) are most likely to occur when a warm/dry summer is preceded by multiple seasons of cool/wet conditions. Using the climate suitability class (CSC) model to explore the relationship between climate and MPB outbreaks, we validate previous findings that lower-than-average precipitation, warm growing season temperatures, and lack of extremely cold temperatures during winter are connected to MPB outbreaks within central BC. However, the CSC model needs improvements to accurately assess MPB suitability in northern watersheds that are located outside the model's calibration region, either through weighted variables or lower degree day thresholds. Minimal runoff response occurs from these forest disturbances, with the most prominent runoff change being related to the 2014 fire season in the Osilinka and Mesilinka watersheds. The limited effects of forest disturbance on annual runoff are likely related to large watershed sizes, low percentages of disturbed area in some study watersheds and post-MPB forest dynamics. These results provide valuable insight into the interrelationships of climate, forest disturbance and runoff in large Canadian boreal forested watersheds.  相似文献   

6.
The Soil Conservation Service Curve Number (CN) method is routinely used to estimate the effects of forest fires on hydrological response. However, despite recent efforts, CN values are still not well known for burned conditions. A major forest fire in Attica, Greece, which affected the Lykorrema stream experimental watershed, provided an opportunity for the estimation of post-fire CN variation using detailed pre-fire and post-fire rainfall–runoff datasets. The CN values for both periods were estimated and compared using a wide range of available methods. Methods considering the spatial variability of soil-cover complexes were also used to investigate the effect of spatial heterogeneity. The post-fire watershed response changed from complacent to standard. Direct runoff depths and peak flows increased by a factor of more than 7.7 and 11.8, respectively. On average, the estimated post-fire CN values for the studied soil-cover complexes increased by about 25 units. This study may assist the improvement of existing post-fire hydrological assessment tools.  相似文献   

7.
Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long‐term water balances by explicitly simulating the internal watershed hydrological fluxes that affect discharge. We used the physically based Simultaneous Heat and Water (SHAW) model to simulate the inter‐annual hydrological dynamics of a 4 km2 watershed in northern Idaho. The model simulates seasonal and annual water balance components including evaporation, transpiration, storage changes, deep drainage, and trends in streamflow. Independent measurements were used to parameterize the model, including forest transpiration, stomatal feedback to vapour pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. No calibrations were applied to fit the simulated streamflow to observations. The model reasonably simulated the annual runoff variations during the evaluation period from water year 2004 to 2009, which verified the ability of SHAW to simulate the water budget in this small watershed. The simulations indicated that inter‐annual variations in streamflow were driven by variations in precipitation and soil water storage. One key parameterization issue was leaf area index, which strongly influenced interception across the catchment. This approach appears promising to help elucidate the mechanisms responsible for hydrological trends and variations resulting from climate and vegetation changes on small watersheds in the region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
《水文研究》2017,31(1):35-50
A methodology based on long‐term dynamical downscaling to analyse climate change effects on watershed‐scale precipitation during a historical period is proposed in this study. The reliability and applicability of the methodology were investigated based on the long‐term dynamical downscaling results. For an application of the proposed methodology, two study watersheds in Northern California were selected: the Upper Feather River watershed and the Yuba River watershed. Then, precipitation was reconstructed at 3‐km spatial resolution and hourly intervals over the study watersheds for 141 water years from 1 October 1871 to 30 September 2012 by dynamically downscaling a long‐term atmospheric reanalysis dataset, 20th century global reanalysis version 2 by means of a regional climate model. The reconstructed precipitation was compared against observed precipitation, in order to assess the applicability of the proposed methodology for the reconstruction of watershed‐scale precipitation and to validate this methodology. The validation shows that the reconstructed precipitation is in good agreement with observation data. Moreover, the differences between the reconstructed precipitation and the corresponding observations do not significantly change through the historical period. After the validation, climate change analysis was conducted based on the reconstructed precipitation. Through this analysis, it was found that basin‐average precipitation has increased significantly over both of the study watersheds during the historical period. An upward trend in monthly basin‐average precipitation is not significant in wet months except February while it is significant in dry months of the year. Furthermore, peak values of basin‐average precipitation are also on an upward trend over the study watersheds. The upward trend in peak basin‐average precipitation is more significant during a shorter duration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Nine small (2·5 ha) and four large (70–135 ha) watersheds were instrumented in 1999 to evaluate the effects of intensive silvicultural practices with best management practices (BMPs) on runoff and stream water quality in the Western Gulf Coastal Plain of East Texas, USA. Two treatments were implemented in 2002: a conventional treatment with clearcutting and herbicide site preparation, and an intensive treatment that added subsoiling, fertilization and a release herbicide application. Watershed effects were compared with results from a previously conducted study on the same watersheds in 1981, in which two combinations of harvesting and mechanical site preparation without BMPs were evaluated. Due to the reduction in evapotranspirational demand, total storm runoff increased on all six treated small watersheds following harvest by 0·94 to 13·73 cm in 2003. Runoff increases were not statistically significant on the treated large watersheds. Total first‐year sediment loss was significantly greater on two of the conventional and one of the intensive small watersheds. The greatest first‐year increase was 540·1 kg ha?1, only one‐fifth of that observed on these watersheds from shearing and windrowing without BMPs in 1981. First‐year sediment loss was significantly greater on the intensive large watershed following harvest, but not on the conventional large watershed. These data suggest that BMPs are very effective in reducing potential water quality impacts from intensive silvicultural practices. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Fire is an important and natural process in the lifecycle of chaparral systems, removing old growth and recycling nutrients. Recent catastrophic wildfires in southern California chaparral have heightened concerns about increased runoff and nutrient export. The goal of this study was to improve understanding of how overland flow is generated in unburned and post‐fire chaparral watersheds. Samples of overland flow were collected from burned and unburned watersheds after rainfall events and multiple regression analysis was used to examine the influence of individual storm characteristics and system moisture on overland flow volume. The results indicate that variation in overland flow generation in the unburned watershed is best explained by storm size, while overland flow in the burned watershed was positively related to storm size and time between storms. These findings suggest that the burned system had decreased infiltration rates and increased soil water repellency. In contrast, there is a statistically significant negative relationship between overland flow 1 year after a fire against different system and precipitation factors revealed a negative correlation with drying period and a positive relationship with rainfall intensity, a combination that suggests reduced repellency. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The results of a hydrological analysis that was conducted as part of a larger, multifaceted, collaborative effort to quantify ecosystem functions in watersheds subjected to land‐use and land‐cover change are presented. The primary goal of the study was to determine whether a small watershed in the Appalachian region (USA) that was recently subjected to surface mining and reclamation practices produces stormflow responses to rain events that are different from those produced by a nearby reference watershed covered by young, second‐growth forest. Water balances indicated that runoff yields did not vary significantly between the two watersheds on an annual basis. Statistically significant differences (p?0·05) in runoff responses were observed on an event basis, however, with the mined/reclaimed watershed producing, on average (a) higher storm runoff coefficients (2·5×), (b) greater total storm runoff (3×), and (c) higher peak hourly runoff rates (2×) when compared with the reference watershed. Results of a unit hydrograph analysis also showed, unexpectedly, that the modelled unit responses of the two watersheds to effective rainfall pulses were similar, despite the noted differences in land cover. Differences in stormflow responses were thus largely explained by dramatic reductions in cumulative rates of rainfall abstraction (measured using infiltrometers) attributable to soil compaction during land reclamation. Additional field hydrological measurements on other mined watersheds will be needed to generalize our results, as well as to understand and predict the cumulative hydrological impacts of widespread surface mining in larger watersheds and river basins. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The effects of land use changes on the ecology and hydrology of natural watersheds have long been debated. However, less attention has been given to the hydrological effects of forest roads. Although less studied, several researchers have claimed that streamflow changes related to forest roads can cause a persistent and pervasive effect on hillslope hydrology and the functioning of the channel system. The main potential direct effects of forest roads on natural watersheds hydrologic response are runoff production on roads surfaces due to reduced infiltration rates, interruption of subsurface flow by road cutslopes and rapid transfer of the produced runoff to the stream network through roadside ditches. The aforementioned effects may significantly modify the total volume and timing of the hillslope flow to the stream network. This study uses detailed field data, spatial data, hydro‐meteorological records, as well as numerical simulation to investigate the effects of forest roads on the hydrological response of a small‐scale mountain experimental watershed, which is situated in the east side of Penteli Mountain, Attica, Greece. The results of this study highlight the possible effects of forest roads on the watersheds hydrological response that may significantly influence direct runoff depths and peak flow rates. It is demonstrated that these effects can be very important in permeable watersheds and that more emphasis should be given on the impact of roads on the watersheds hydrological response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The paired watershed experimental (PWE) approach has long been used as an effective means to assess the impacts of forest change on hydrology in small watersheds (<100 km2). Yet, the effects of climate variability on streamflow are not often assessed in PWE design. In this study, two sets of paired watersheds, (1) Camp and Greata Creeks and (2) 240 and 241 Creeks located in the Southern Interior of British Columbia, Canada, were selected to explore relative roles of forest disturbance and climate variability on streamflow components (i.e., baseflow and surface runoff) at different time scales. Our analyses showed that forest disturbance is positively related to annual streamflow components. However, this relationship is statistically insignificant since forest disturbance can either increase or decrease seasonal streamflow components, which eventually limited the positive effect on streamflow at the annual scale. Interestingly, we found that forest disturbance consistently decreased summer streamflow components in the two PWEs as forest disturbance can augment earlier and quicker snow-melt processes and hence reduce soil moisture to maintain summer streamflow components. More importantly, this study revealed that climate variability played a more significant role than forest disturbance in both annual and seasonal streamflow components, for instance, climate variability can account for as much as 90% of summer streamflow components variation in Camp, suggesting the role of climate variability on streamflow should be highlighted in the traditional PWE approach to truly advance our understanding of the interactions of forest change, climate variability and water for sustainable water resource management.  相似文献   

14.
Physiography and land cover determine the hydrologic response of watersheds to climatic events. However, vast differences in climate regimes and variation of landscape attributes among watersheds (including size) have prevented the establishment of general relationships between land cover and runoff patterns across broad scales. This paper addresses these difficulties by using power spectral analysis to characterize area‐normalized runoff patterns and then compare these patterns with landscape features among watersheds within the same physiographic region. We assembled long‐term precipitation and runoff data for 87 watersheds (first to seventh order) within the eastern Piedmont (USA) that contained a wide variety of land cover types, collected environmental data for each watershed, and compared the datasets using a variety of statistical measures. The effect of land cover on runoff patterns was confirmed. Urban‐dominated watersheds were flashier and had less hydrologic memory compared with forest‐dominated watersheds, whereas watersheds with high wetland coverage had greater hydrologic memory. We also detected a 10–15% urban threshold above which urban coverage became the dominant control on runoff patterns. When spectral properties of runoff were compared across stream orders, a threshold after the third order was detected at which watershed processes became dominant over precipitation regime in determining runoff patterns. Finally, we present a matrix that characterizes the hydrologic signatures of rivers based on precipitation versus landscape effects and low‐frequency versus high‐frequency events. The concepts and methods presented can be generally applied to all river systems to characterize multiscale patterns of watershed runoff. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Long-term watershed experiments provide the opportunity to understand forest hydrology responses to past logging, road construction, forest regrowth, and their interactions with climate and geomorphic processes such as road-related landslides. We examined a 50-year record from paired-watershed experiments in the H. J. Andrews Experimental Forest, Oregon, USA in which 125 to 450-year-old conifer forests were harvested in the 1960s and 1970s and converted to planted conifer forests. We evaluated how quickflow and delayed flow for 1222 events in treated and reference watersheds changed by season after clearcutting and road construction, including 50 years of growth of planted forest, major floods, and multi-decade reductions in snowpack. Quickflow runoff early in the water year (fall) increased by up to +99% in the first decade, declining to below pre-harvest levels (−1% to −15%) by the third to fifth decade after clearcutting. Fall delayed flow responded more dramatically than quickflow and fell below pre-treatment levels in all watersheds by the fifth decade, consistent with increased transpiration in the planted forests. Quickflow increased less (+12% to 70%) during the winter and spring but remained higher than pre-treatment levels throughout the fourth or fifth decade, potentially impacted by post-harvest burning, roads, and landslides. Quickflow remained high throughout the 50-year period of study, and much higher than delayed flow in the last two decades in a watershed in which road-related changes in flow routing and debris flows after the flood of record increased network connectivity. A long-term decline in regional snowpack was not clearly associated with responses of treated vs. reference watersheds. Hydrologic processes altered by harvest of old-growth conifer forest more than 50 years ago (transpiration, interception, snowmelt, and flow routing) continued to modify streamflow, with no clear evidence of hydrologic recovery. These findings underscore the importance of continued long-term watershed experiments.  相似文献   

16.
Climate change is expected to increase temperatures and lower rainfall in Mediterranean regions; however, there is a great degree of uncertainty as to the amount of change. This limits the prediction capacity of models to quantify impacts on water resources, vegetation productivity and erosion. This work circumvents this problem by analysing the sensitivity of these variables to varying degrees of temperature change (increased by up to 6·4 °C), rainfall (reduced by up to 40%) and atmospheric CO2 concentrations (increased by up to 100%). The SWAT watershed model was applied to 18 large watersheds in two contrasting regions of Portugal, one humid and one semi‐arid; incremental changes to climate variables were simulated using a stochastic weather generator. The main results indicate that water runoff, particularly subsurface runoff, is highly sensitive to these climate change trends (down by 80%). The biomass growth of most species showed a declining trend (wheat down by 40%), due to the negative impacts of increasing temperatures, dampened by higher CO2 concentrations. Mediterranean species, however, showed a positive response to milder degrees of climate change. Changes to erosion depended on the interactions between the decline in surface runoff (driving erosion rates downward) and biomass growth (driving erosion rates upward). For the milder rainfall changes, soil erosion showed a significant increasing trend in wheat fields (up to 150% in the humid watersheds), well above the recovery capacity of the soil. Overall, the results indicate a shift of the humid watersheds to acquire semi‐arid characteristics, such as more irregular river flows and increasingly marginal conditions for agricultural production. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Erosion and sediment yield from large and small watersheds exhibit different laws. Variations in surface runoff and sediment yield because of landuse change in four watersheds of different scales from 1 km2 to 73 km2 were analyzed. Due to reforestation and farmland terracing, surface runoff and sediment yield reduced by 20-100% and 10-100% respectively. Reductions in surface runoff were differed significantly under different precipitation regimes. For the large watershed (73 km2) landuse change had similar effects on surface runoff regardless of changing of precipitation. For the small watershed (1 km2) landuse change had fewer effects on surface runoff under high precipitation. The relative changes of sediment yield in the four watersheds under reforestation and farmland terracing decreased as precipitation increased from 350 mm to 650 mm, then increased as precipitation increased from 650 mm to 870 mm. Where initial forest coverage rate was below 45%, sediment yield decreased dramatically as forest coverage rate increased. Watershed management with aiming at reducing both surface runoff and sediment yield should be conducted both on sloping surfaces and in channels in large watersheds.  相似文献   

18.
Depending on the severity of the fire, forest fires may modify infiltration and soil erosion processes. Rainfall simulations were used to determine the hydrological effects of fire on Andisols in a pine forest burned by a wildfire in 2007. Six burned zones with different fire severities were compared with unburned zones. Infiltration, runoff and soil loss were analysed on slopes of 10% and 30%. Forest floor and soil properties were evaluated. Unburned zones exhibited relatively low infiltration (23 and 16 mm h?1 on 10% and 30% slope angles, respectively) and high average runoff/rainfall ratios (43% and 50% on 10% and 30% slope angles, respectively), which were associated with the extreme water repellency of the forest floor. Nonetheless, this layer seems to provide protection against raindrop impact and soil losses were found to be low (8 and 16 g m?2 h?1 for 10% and 30% slope angles, respectively). Soil cover, soil structure and water repellency were the main properties affected by the fire. The fire reduced forest floor and soil repellency, allowing rapid infiltration. Moreover, a significant decrease was noted in soil aggregate stabilities in the burned zones, which limited the infiltration rates. Consequently, no significant differences in infiltration and runoff were found between the burned and the unburned zones. The decrease in post‐fire soil cover and soil stability resulted in order‐of‐magnitude increases in erosion. Sediment rates were 15 and 31 g m?2 h?1 on the 10% and 30% slope angles, respectively, in zones affected by light fire severity. In the moderate fire severity zones, these values reached 65 and 260 g m?2 h?1 for the 10% and 30% slope angles, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Wildfires raise concerns over the risk of accelerated erosion as a result of increased overland flow and decreased protection of the soil by litter and ground vegetation cover. We investigated these issues following the 1994 fires that burnt large areas of native Eucalyptus forest surrounding Sydney, Australia. A review of previous studies identifies the fire and rainfall conditions that are likely to lead to increased runoff and accelerated erosion. We then compare runoff and erosion between burnt and unburnt sites for 10 months after the 1994 fires. At the scale of hillslope plots, the 1994 fire increased runoff by enhancing soil hydrophobicity, and greatly increased sediment transport, mainly through the reduced ground cover, which lowered substantially the threshold for initial sediment movement. However, both runoff and sediment transport were very localized, resulting in little runoff or sediment yield after the fire at the hillslope catchment scale. We identify that after moderately intense fires, rainfall events of greater than one year recurrence interval are required to generate substantial runoff and sediment yield. Such events did not occur during the monitoring period. Past work shows that mild burns have little effect on erosion, and it is only after the most extreme fires that erosion is produced from small, frequent storms. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Fourier and wavelet analyses were used to reveal the dominant trends and coherence of a more than one‐century‐long time series of precipitation and discharge in several watersheds in Sweden, two of which were subjected to hydropower and intensive agriculture. During the 20th century, there was a gradual, significant drift of the dominant discharge periodicity in agricultural watersheds. This study shows that the steepness of the Fourier spectrum of runoff from the May to October period each year increased gradually during the century, which suggests a more predictable intra‐annual runoff pattern (more apart from white‐noise). In the agricultural watershed, the coherence spectrum of precipitation and runoff is generally high with a consistent white‐noise relationship for precipitation during the 20th century, indicating that precipitation is not controlling the drift of the discharge spectrum. In the hydropower regulated watershed, there was a sudden decrease of the discharge spectrum slope when regulation commenced in the 1920s. This study develops a new theory in which the runoff spectrum is related to the hydraulic and hydro‐morphological characteristics of the watershed. Using this theory, we explain the changes in runoff spectra in the two watersheds by the anthropogenic change in surface water volume and, hence, changes in kinematic wave celerity and water transit times. The reduced water volume in the agricultural watershed would also contribute to decreasing evaporation, which could explain a slightly increasing mean discharge during the 20th century despite the fact that precipitation was statistically constant in the area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号