首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Observations of damped Lyα absorbers (DLAs) indicate that the fraction of hydrogen in its neutral form (H  i ) is significant by mass at all redshifts. This gas represents the reservoir of material that is available for star formation at late times. As a result, observational identification of the systems in which this neutral hydrogen resides is an important missing ingredient in models of galaxy formation. Precise identification of DLA host mass via traditional clustering studies is not practical owing to the small numbers of known systems being spread across sparsely distributed sightlines. However, following the completion of re-ionization, 21-cm surface brightness fluctuations will be dominated by neutral hydrogen in DLAs. No individual DLAs could be detected in 21-cm emission. Rather, observations of these fluctuations will measure the combined clustering signal from all DLAs within a large volume. We show that measurement of the spherically averaged power spectrum of 21-cm intensity fluctuations due to DLAs could be used to measure the galaxy bias for DLA host galaxies when combined with an independent measurement of the cosmological H  i mass density from quasar absorption studies. Utilizing this technique, the low-frequency arrays now under construction could measure the characteristic DLA host mass with a statistical precision as low as 0.3 dex at z ≳ 4. In addition, high signal-to-noise ratio observations of the peculiar-motion-induced anisotropy of the power spectrum would facilitate measurement of both the DLA host mass and the cosmic H  i density directly from 21-cm fluctuations. By exploiting this anisotropy, a second generation of low-frequency arrays with an order of magnitude increase in collecting area could measure the values of cosmic H  i density and DLA host mass, with uncertainties of a few per cent and a few tens of per cent, respectively.  相似文献   

2.
We construct a simple, robust model of the chemical evolution of galaxies from high to low redshift, and apply it to published observations of damped Lyman α quasar absorption line systems (DLAs). The elementary model assumes quiescent star formation and isolated galaxies (no interactions, mergers or gas flows). We consider the influence of dust and chemical gradients in the galaxies, and hence explore the selection effects in quasar surveys. We fit individual DLA systems to predict some observable properties of the absorbing galaxies, and also indicate the expected redshift behaviour of chemical element ratios involving nucleosynthetic time delays.
Despite its simplicity, our 'monolithic collapse' model gives a good account of the distribution and evolution of the metallicity and column density of DLAs, and of the evolution of the global star formation rate and gas density below redshifts z ∼3. However, from the comparison of DLA observations with our model, it is clear that star formation rates at higher redshifts ( z >3) are enhanced. Galaxy interactions and mergers, and gas flows very probably play a major role.  相似文献   

3.
In this paper, we investigate the star formation and chemical evolution of damped Lyman α systems (DLAs) based on the disc galaxy formation model developed by Mo, Mao & White. We propose that the DLAs are the central galaxies of less-massive dark haloes present at redshifts z ∼3, and they should inhabit haloes of moderately low circular velocity. The empirical Schmidt law of star formation rates, and closed box model of chemical evolution that an approximation known as instantaneous recycling is assumed, are adopted. In our models, when the predicted distribution of metallicity for DLAs is calculated, two cases are considered. One is that, using the closed-box model, empirical Schmidt law and star formation time, the distribution of metallicity can be directly calculated. The other is that, when the simple gravitational instability of a thin isothermal gas disc as first discussed by Toomre is considered, the star formation occurs only in the region where the surface density of gas satisfies the critical value, not everywhere of a gas disc. In this case, we first obtain the region where the star formation can occur by assuming that the disc has a flat rotation curve and rotational velocity is equal to the circular velocity of the surrounding dark matter halo, and then calculate the metallicity distribution as in case one. We assume that star formation in each DLA lasts for a period of 1 Gyr from redshifts z =3. There is only one output parameter in our models, i.e. the stellar yield, which relates to the time of star formation history and is obtained by normalizing the predicted distribution of metallicity to the mean value of 1/13 Z as presented by Pettini et al.. The predicted metallicity distribution is consistent with the current (rather limited) observational data. A random distribution of galactic discs is taken into account.  相似文献   

4.
The study of elemental abundances in damped Lyman alpha systems (DLAs) at high redshift represents one of our best opportunities to probe galaxy formation and chemical evolution at early times. By coupling measurements made in high- z DLAs with our knowledge of abundances determined locally and with nucleosynthetic models, we can start to piece together the star formation histories of these galaxies. Here, we discuss the clues to galactic chemical evolution that may be gleaned from studying the abundance of Co in DLAs. We present high resolution echelle spectra of two quasi-stellar objects (QSOs), Q2206−199 and Q1223+17, both already known to exhibit intervening damped systems. These observations have resulted in the first ever detection of Co at high redshift, associated with the z abs=1.92 DLA in the sightline towards Q2206−199. We find that the abundance of Co is approximately 1/4 solar and that there is a clear overabundance relative to iron, [Co/Fe]=+0.31±0.05 . From the abundance of Zn, we determine that this is a relatively metal-rich DLA, with a metallicity of approximately 1/3 Z . Therefore, this first detection of Co is similar to the marked overabundance relative to Fe seen in Galactic bulge and thick-disc stars.  相似文献   

5.
We investigate the practice of assigning high spin temperatures to damped Lyman α absorption systems (DLAs) not detected in H  i 21-cm absorption. In particular, Kanekar & Chengalur have attributed the mix of 21-cm detections and non-detections in low-redshift  ( z abs≤ 2.04) DLAs  to a mix of spin temperatures, while the non-detections at high redshift were attributed to high spin temperatures. Below   z abs= 0.9  , where some of the DLA host galaxy morphologies are known, we find that 21-cm absorption is normally detected towards large radio sources when the absorber is known to be associated with a large intermediate (spiral) galaxy. Furthermore, at these redshifts, only one of the six 21-cm non-detections has an optical identification and these DLAs tend to lie along the sight-lines to the largest background radio continuum sources. For these and many of the high-redshift DLAs occulting large radio continua, we therefore expect covering factors of less than the assumed/estimated value of unity. This would have the effect of introducing a range of spin temperatures considerably narrower than the current range of  Δ T s≳ 9000 K  , while still supporting the hypothesis that the high-redshift DLA sample comprises a larger proportion of compact galaxies than the low-redshift sample.  相似文献   

6.
Feedback from star formation is thought to play a key role in the formation and evolution of galaxies, but its implementation in cosmological simulations is currently hampered by a lack of numerical resolution. We present and test a subgrid recipe to model feedback from massive stars in cosmological smoothed particle hydrodynamics simulations. The energy is distributed in kinetic form among the gas particles surrounding recently formed stars. The impact of the feedback is studied using a suite of high-resolution simulations of isolated disc galaxies embedded in dark haloes with total mass 1010 and  1012  h −1 M  . We focus, in particular, on the effect of pressure forces on wind particles within the disc, which we turn off temporarily in some of our runs to mimic a recipe that has been widely used in the literature. We find that this popular recipe gives dramatically different results because (ram) pressure forces on expanding superbubbles determine both the structure of the disc and the development of large-scale outflows. Pressure forces exerted by expanding superbubbles puff up the disc, giving the dwarf galaxy an irregular morphology and creating a galactic fountain in the massive galaxy. Hydrodynamic drag within the disc results in a strong increase in the effective mass loading of the wind for the dwarf galaxy, but quenches much of the outflow in the case of the high-mass galaxy.  相似文献   

7.
We calculate chemical evolution models for four dwarf spheroidal (dSph) satellites of the Milky Way (Carina, Ursa Minor, Leo I and Leo II) for which reliable non-parametric star formation histories have been derived. In this way, the independently-obtained star formation histories are used to constrain the evolution of the systems we are treating. This allows us to obtain robust inferences on the history of such crucial parameters of galactic evolution as gas infall, gas outflows and global metallicities for these systems. We can then trace the metallicity and abundance ratios of the stars formed, the gas present at any time within the systems and the details of gas ejection, of relevance to enrichment of the galaxies environment. We find that galaxies showing one single burst of star formation (Ursa Minor and Leo II) require a dark halo slightly larger that the current estimates for their tidal radii, or the presence of a metal-rich selective wind that might carry away much of the energy output of their supernovae before this might have interacted and heated the gas content, for the gas to be retained until the observed stellar populations have formed. Systems showing extended star formation histories (Carina and Leo I), however, are consistent with the idea that their tidally-limited dark haloes provide the necessary gravitational potential wells to retain their gas. The complex time structure of the star formation in these systems remains difficult to understand. Observations of detailed abundance ratios for Ursa Minor strongly suggest that the star formation history of this galaxy might in fact resemble the complex picture presented by Carina or Leo I, but localized at a very early epoch.  相似文献   

8.
Galactic winds and mass outflows are observed both in nearby starburst galaxies and in high-redshift star-forming galaxies. We develop a simple analytic model to understand the observed superwind phenomenon with a discussion of the model uncertainties. Our model is built upon the model of McKee & Ostriker for the interstellar medium. It allows one to predict how properties of a superwind, such as wind velocity and mass outflow rate, are related to properties of its starforming host galaxy, such as size, gas density and star formation rate. The model predicts a threshold of star formation rate density for the generation of observable galactic winds. Galaxies with more concentrated star formation activities produce superwinds with higher velocities. The predicted mass outflow rates are comparable to (or slightly larger than) the corresponding star formation rates. We apply our model to both local starburst galaxies and high-redshift Lyman break galaxies, and find its predictions to be in good agreement with current observations. Our model is simple and so can be easily incorporated into numerical simulations and semi-analytical models of galaxy formation.  相似文献   

9.
A model of supernova feedback in galaxy formation   总被引:3,自引:0,他引:3  
A model of supernova feedback during disc galaxy formation is developed. The model incorporates infall of cooling gas from a halo, and outflow of hot gas from a multiphase interstellar medium (ISM). The star formation rate is determined by balancing the energy dissipated in collisions between cold gas clouds with that supplied by supernovae in a disc marginally unstable to axisymmetric instabilities. Hot gas is created by thermal evaporation of cold gas clouds in supernova remnants, and criteria are derived to estimate the characteristic temperature and density of the hot component and hence the net mass outflow rate. A number of refinements of the model are investigated, including a simple model of a galactic fountain, the response of the cold component to the pressure of the hot gas, pressure-induced star formation and chemical evolution. The main conclusion of this paper is that low rates of star formation can expel a large fraction of the gas from a dwarf galaxy. For example, a galaxy with circular speed 50 km s1 can expel 6080 per cent of its gas over a time-scale of 1 Gyr, with a star formation rate that never exceeds 0.1 M yr1. Effective feedback can therefore take place in a quiescent mode and does not require strong bursts of star formation. Even a large galaxy, such as the Milky Way, might have lost as much as 20 per cent of its mass in a supernova-driven wind. The models developed here suggest that dwarf galaxies at high redshifts will have low average star formation rates and may contain extended gaseous discs of largely unprocessed gas. Such extended gaseous discs might explain the numbers, metallicities and metallicity dispersions of damped Lyman systems.  相似文献   

10.
We extend our spiral galaxy models, which successfully describe nearby template spectra as well as the redshift evolution of CFRS and HDF spirals, to include – in a chemically consistent way – the redshift evolution of a series of individual elements. Comparison with observed DLA abundances shows that DLAs might well be the progenitors of present-day spiral types Sa through Sd. Our models bridge the gap between high redshift DLA and nearby spiral HII region abundances. The slow redshift evolution of DLA abundances is a natural consequence of the long SF timescales for discs, the scatter at any redshift reflects the range of SF timescales from early to late spiral types. We claim that, while at high redshift all spiral progenitor types seem to give rise to DLA absorption, towards low redshifts, the early-type spirals seem to drop out of DLA samples due to low gas and/or high metal and dust content. Model implications for the spectrophotometric properties of the DLA galaxy population are discussed in the context of campaigns for the optical identifications of DLA galaxies both at low and high redshift. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The number of z ∼ 1 damped Lyα systems (DLAs, log  N (H  i ) ≥ 20.3) per unit redshift is approximately 0.1, making them relatively rare objects. Large, blind QSO surveys for low-redshift DLAs are therefore an expensive prospect for space-borne ultraviolet telescopes. Increasing the efficiency of these surveys by pre-selecting DLA candidates based on the equivalent widths (EWs) of metal absorption lines has previously been a successful strategy. However, the success rate of DLA identification is still only ∼35 per cent when simple EW cut-offs are applied, the majority of systems having 19.0 < log  N (H  i ) < 20.3. Here, we propose a new way to pre-select DLA candidates. Our technique requires high-to-moderate-resolution spectroscopy of the Mg  ii λ2796 transition, which is easily accessible from the ground for 0.2 ≲ z ≲ 2.4. We define the D -index, the ratio of the line equivalent width to velocity spread, and measure this quantity for 19 DLAs and eight sub-DLAs in archival spectra obtained with echelle spectrographs. For the majority of absorbers, there is a clear distinction between the D -index of DLAs compared with sub-DLAs (Kolmogorov–Smirnov probability = 0.8 per cent). Based on this pilot data sample, we find that the D -index can select DLAs with a success rate of up to 90 per cent, an increase in selection efficiency by a factor of 2.5 compared with a simple EW cut. We test the applicability of the D -index at lower resolution and find that it remains a good discriminant of DLAs for full width at half-maximum (FWHM) ≲ 1.5 Å. However, the recommended D -index cut-off between DLAs and sub-DLAs decreases with poorer resolution and we tabulate the appropriate D -index values that should be used with spectra of different resolutions.  相似文献   

12.
At high redshift the ubiquity of outflows and winds in strongly star‐forming galaxies has been demonstrated using rest frame UV absorption lines. In the cases with optical emission lines, the studies mostly had to rely on low and intermediate dispersion spectra. This implies that for detailed studies of galactic wind physics we have to use local objects. In particular, dwarf galaxies are well suited to extrapolation to high redshift protogalaxies. Several kinematic studies of strongly starforming dwarf galaxies using Fabry‐Pérot and IFU spectrographs exist. Unfortunately, similar as for high redshift galaxies the employed spectral resolution is often significantly higher that the thermal line width. As a result faint high velocity features and details of the turbulent motion are hidden or unresolved. Here we will present an analysis of the ionized gas kinematics of the prototypical star‐forming irregular galaxy NGC 4449 using long‐slit, high‐dispersion échelle spectra. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present new important results about the intermediate-type Seyfert galaxy Mrk 315, recently observed through optical imaging and integral-field spectroscopy. Broad-band images were used to study the morphology of the host galaxy, narrow-band Hα images to trace the star-forming regions, and middle-band [O  iii ] images to evidence the distribution of the highly ionized gas. Some extended emission regions were isolated and their physical properties studied by means of flux-calibrated spectra. High-resolution spectroscopy was used to separate different kinematic components in the velocity fields of gas and stars. Some peculiar features characterize this apparently undisturbed and moderately isolated active galaxy. Such features, already investigated by other authors, are re-analysed and discussed in the light of these new observations. The most relevant results we obtained are: the multitiers structure of the disc; the presence of a quasi-ring of regions with star formation much higher than previous claims; a secondary nucleus confirmed by a stellar component kinematically decoupled by the main galaxy; a new hypothesis about the controversial nature of the long filament, initially described as hook shaped, and more likely made of two independent filaments caused by interaction events between the main galaxy and two dwarf companions.  相似文献   

14.
The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous matter during their lifetime (either intergalactic gas, or galaxies) because they will typically lose the competition with the much larger galaxy. We can utilise observations of stars of a range of ages to measure star formation and enrichment histories back to the earliest epochs. The most ancient objects we have ever observed in the Universe are stars found in and around our Galaxy. Their proximity allows us to extract from their properties detailed information about the time in the early Universe into which they were born. A currently fashionable conjecture is that the earliest star formation in the Universe occurred in the smallest dwarf galaxy sized objects. Here I will review some recent observational highlights in the study of dwarf galaxies in the Local Group and the implications for understanding galaxy formation and evolution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The mass density of massive black holes observed locally is consistent with the hard X-ray background provided that most of the radiation produced during their growth was absorbed by surrounding gas. A simple model is proposed here for the formation of galaxy bulges and central black holes in which young spheroidal galaxies have a significant distributed component of cold dusty clouds, which accounts for the absorption. The central accreting black hole is assumed to emit both a quasar-like spectrum, which is absorbed by the surrounding gas, and a slow wind. The power in both is less than the Eddington limit for the black hole. The wind, however, exerts the most force on the gas and, as earlier suggested by Silk & Rees, when the black hole reaches a critical mass it is powerful enough to eject the cold gas from the galaxy, so terminating the growth of both black hole and galaxy. In the present model this point occurs when the Thomson depth in the surrounding gas has dropped to about unity and results in the mass of the black hole being proportional to the mass of the spheroid, with the normalization agreeing with that found for local galaxies by Magorrian et al. for reasonable wind parameters. The model predicts a new population of hard X-ray and submm sources at redshifts above 1, which are powered by black holes in their main growth phase.  相似文献   

16.
A model for gas outflows is proposed which simultaneously explains the correlations between the (i) equivalent widths of low-ionization and Lyα lines, (ii) outflow velocity, and (iii) star formation rate observed in Lyman break galaxies (LBGs). Our interpretation implies that LBGs host short-lived (30 ± 5 Myr) starburst episodes observed at different evolutionary phases. Initially, the starburst powers a hot wind bound by a denser cold shell, which after ≈5 Myr becomes dynamically unstable and fragments; afterwards the fragment evolution is approximately ballistic while the hot bubble continues to expand. As the fragments are gravitationally decelerated, their screening ability of the starlight decreases as the ultraviolet (UV) starburst luminosity progressively dims. LBG observations sample all these evolutionary phases. Finally, the fragments fall back on to the galaxy after ≈60 Myr. This phase cannot be easily probed as it occurs when the starburst UV luminosity has already largely faded; however, galaxies dimmer in the UV than LBGs should show infalling gas.  相似文献   

17.
Dwarf galaxies, as the most numerous type of galaxy, offer the potential to study galaxy formation and evolution in detail in the nearby universe. Although they seem to be simple systems at first view, they remain poorly understood. In an attempt to alleviate this situation, the MAGPOP EU Research and Training Network embarked on a study of dwarf galaxies named MAGPOP-ITP. In this paper, we present the analysis of a sample of 24 dwarf elliptical galaxies (dEs) in the Virgo cluster and in the field, using optical long-slit spectroscopy. We examine their stellar populations in combination with their light distribution and environment. We confirm and strengthen previous results that dEs are, on average, younger and more metal-poor than normal elliptical galaxies, and that their [α/Fe] abundance ratios scatter around solar. This is in accordance with the downsizing picture of galaxy formation where mass is the main driver for the star formation history. We also find new correlations between the luminosity-weighted mean age, the large-scale asymmetry, and the projected Virgocentric distance. We find that environment plays an important role in the termination of the star formation activity by ram-pressure stripping of the gas in short time-scales, and in the transformation of discy dwarfs to more spheroidal objects by harassment over longer time-scales. This points towards a continuing infalling scenario for the evolution of dEs.  相似文献   

18.
Recent observations have revealed that damped Lyα clouds (DLAs) host star formation activity. In order to examine if such star formation activity can be triggered by ionization fronts, we perform high-resolution hydrodynamics and radiative transfer simulations of the effect of radiative feedback from propagating ionization fronts on high-density clumps. We examine two sources of ultraviolet (UV) radiation field to which high-redshift ( z ∼ 3) galaxies could be exposed: one corresponding to the UV radiation originating from stars within the DLA, itself, and the other corresponding to the UV background radiation. We find that, for larger clouds, the propagating I-fronts created by local stellar sources can trigger cooling instability and collapse of significant part, up to 85 per cent, of the cloud, creating conditions for star formation in a time-scale of a few Myr. The passage of the I-front also triggers collapse of smaller clumps (with radii below ∼4 pc), but in these cases the resulting cold and dense gas does not reach conditions conducive to star formation. Assuming that 85 per cent of the gas initially in the clump is converted into stars, we obtain a star formation rate of  ∼0.25 M yr−1 kpc−2  . This is somewhat higher than the value derived from recent observations. On the other hand, the background UV radiation which has harder spectrum fails to trigger cooling and collapse. Instead, the hard photons which have long mean free-path heat the dense clumps, which as a result expand and essentially dissolve in the ambient medium. Therefore, the star formation activity in DLAs is strongly regulated by the radiative feedback, both from the external UV background and internal stellar sources and we predict quiescent evolution of DLAs (not starburst-like evolution).  相似文献   

19.
We present K -band imaging of fields around 30 strong Ca  ii absorption-line systems, at  0.7 < z < 1.2  , three of which are confirmed damped Lyman α systems. A significant excess of galaxies is found within 6.0 arcsec (≃50 kpc) from the absorber line of sight. The excess galaxies are preferentially luminous compared to the population of field galaxies. A model in which field galaxies possess a luminosity-dependent cross-section for Ca  ii absorption of the form  ( L / L *)0.7  reproduces the observations well. The luminosity-dependent cross-section for the Ca  ii absorbers appears to be significantly stronger than the established  ( L / L *)0.4  dependence for Mg  ii absorbers. The associated galaxies lie at large physical distances from the Ca  ii -absorbing gas; we find a mean impact parameter of 24 kpc  ( H 0= 70 km s−1 Mpc−1)  . Combined with the observed number density of Ca  ii absorbers the large physical separations result in an inferred filling factor of only ∼10 per cent. The physical origin of the strong Ca  ii absorption remains unclear, possible explanations vary from very extended discs of the luminous galaxies to associated dwarf galaxy neighbours, remnants of outflows from the luminous galaxies, or tidal debris from cannibalism of smaller galaxies.  相似文献   

20.
We have developed a new scheme to treat a multiphase interstellar medium in smoothed particle hydrodynamics simulations of galaxy formation. This scheme can represent a co-spatial mixture of cold and hot ISM components, and is formulated without scale-dependent parameters. It is thus particularly suited to studies of cosmological structure formation where galaxies with a wide range of masses form simultaneously. We also present new algorithms for energy and heavy element injection by supernovae, and show that together these schemes can reproduce several important observed effects in galaxy evolution. Both in collapsing systems and in quiescent galaxies our codes can reproduce the Kennicutt relation between the surface densities of gas and of star formation. Strongly metal-enhanced winds are generated in both cases with ratios of mass-loss to star formation which are similar to those observed. This leads to a self-regulated cycle for star formation activity. The overall impact of feedback depends on galaxy mass. Star formation is suppressed at most by a factor of a few in massive galaxies, but in low-mass systems the effects can be much larger, giving star formation an episodic, bursty character. The larger the energy fraction assumed available in feedback, the more massive the outflows and the lower the final stellar masses. Winds from forming discs are collimated perpendicular to the disc plane, reach velocities up to  ∼1000 km s−1  , and efficiently transport metals out of the galaxies. The asymptotically unbound baryon fraction drops from >95 per cent to ∼30 per cent from the least to the most massive of our idealized galaxies, but the fraction of all metals ejected with this component exceeds 60 per cent regardless of mass. Such winds could plausibly enrich the intergalactic medium to observed levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号