首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
The availability of powerful desktop computers and graphical user interfaces for ground water flow models makes possible the construction of ever more complex models. A proposed copper-zinc sulfide mine in northern Wisconsin offers a unique case in which the same hydrologic system has been modeled using a variety of techniques covering a wide range of sophistication and complexity. Early in the permitting process, simple numerical models were used to evaluate the necessary amount of water to be pumped from the mine, reductions in streamflow, and the drawdowns in the regional aquifer. More complex models have subsequently been used in an attempt to refine the predictions. Even after so much modeling effort, questions regarding the accuracy and reliability of the predictions remain. We have performed a new analysis of the proposed mine using the two-dimensional analytic element code GFLOW coupled with the nonlinear parameter estimation code UCODE. The new model is parsimonious, containing fewer than 10 parameters, and covers a region several times larger in areal extent than any of the previous models. The model demonstrates the suitability of analytic element codes for use with parameter estimation codes. The simplified model results are similar to the more complex models; predicted mine inflows and UCODE-derived 95% confidence intervals are consistent with the previous predictions. More important, the large areal extent of the model allowed us to examine hydrological features not included in the previous models, resulting in new insights about the effects that far-field boundary conditions can have on near-field model calibration and parameterization. In this case, the addition of surface water runoff into a lake in the headwaters of a stream while holding recharge constant moved a regional ground watershed divide and resulted in some of the added water being captured by the adjoining basin. Finally, a simple analytical solution was used to clarify the GFLOW model's prediction that, for a model that is properly calibrated for heads, regional drawdowns are relatively unaffected by the choice of aquifer properties, but that mine inflows are strongly affected. Paradoxically, by reducing model complexity, we have increased the understanding gained from the modeling effort.  相似文献   

2.
Smith AJ  Pollock DW 《Ground water》2012,50(1):133-143
A simple quantitative approach for assessing the artificial recharge potential of large regions using spatial ensembles of local models is proposed. The method extends existing qualitative approaches and enables rapid assessments within a programmable environment. Spatial discretization of a water resource region into continuous local domains allows simple local models to be applied independently in each domain using lumped parameters. The ensemble results can be analyzed directly or combined with other quantitative and thematic information and visualized as regional suitability maps. A case study considers the hydraulic potential for surface infiltration across a large water resource region using a published analytic model for basin recharge. The model solution was implemented within a geographic information system and evaluated independently in >21,000 local domains using lumped parameters derived from existing regional datasets. Computer execution times to run the whole ensemble and process the results were in the order of a few minutes. Relevant aspects of the case study results and general conclusions concerning the utility and limitations of the method are discussed.  相似文献   

3.
Hassan AE 《Ground water》2004,42(2):277-290
Many sites of ground water contamination rely heavily on complex numerical models of flow and transport to develop closure plans. This complexity has created a need for tools and approaches that can build confidence in model predictions and provide evidence that these predictions are sufficient for decision making. Confidence building is a long-term, iterative process and the author believes that this process should be termed model validation. Model validation is a process, not an end result. That is, the process of model validation cannot ensure acceptable prediction or quality of the model. Rather, it provides an important safeguard against faulty models or inadequately developed and tested models. If model results become the basis for decision making, then the validation process provides evidence that the model is valid for making decisions (not necessarily a true representation of reality). Validation, verification, and confirmation are concepts associated with ground water numerical models that not only do not represent established and generally accepted practices, but there is not even widespread agreement on the meaning of the terms as applied to models. This paper presents a review of model validation studies that pertain to ground water flow and transport modeling. Definitions, literature debates, previously proposed validation strategies, and conferences and symposia that focused on subsurface model validation are reviewed and discussed. The review is general and focuses on site-specific, predictive ground water models used for making decisions regarding remediation activities and site closure. The aim is to provide a reasonable starting point for hydrogeologists facing model validation for ground water systems, thus saving a significant amount of time, effort, and cost. This review is also aimed at reviving the issue of model validation in the hydrogeologic community and stimulating the thinking of researchers and practitioners to develop practical and efficient tools for evaluating and refining ground water predictive models.  相似文献   

4.
A strategy for modeling ground water rebound in abandoned deep mine systems   总被引:3,自引:0,他引:3  
Adams R  Younger PL 《Ground water》2001,39(2):249-261
Discharges of polluted water from abandoned mines are a major cause of degradation of water resources worldwide. Pollution arises after abandoned workings flood up to surface level, by the process termed ground water rebound. As flow in large, open mine voids is often turbulent, standard techniques for modeling ground water flow (which assume laminar flow) are inappropriate for predicting ground water rebound. More physically realistic models are therefore desirable, yet these are often expensive to apply to all but the smallest of systems. An overall strategy for ground water rebound modeling is proposed, with models of decreasing complexity applied as the temporal and spatial scales of the systems under analysis increase. For relatively modest systems (area < 200 km2), a physically based modeling approach has been developed, in which 3-D pipe networks (representing major mine roadways, etc.) are routed through a variably saturated, 3-D porous medium (representing the country rock). For systems extending more than 100 to 3000 km2, a semidistributed model (GRAM) has been developed, which conceptualizes extensively interconnected volumes of workings as ponds, which are connected to other ponds only at discrete overflow points, such as major inter-mine roadways, through which flow can be efficiently modeled using the Prandtl-Nikuradse pipe-flow formulation. At the very largest scales, simple water-balance calculations are probably as useful as any other approach, and a variety of proprietary codes may be used for the purpose.  相似文献   

5.
Important observations and parameters for a salt water intrusion model   总被引:1,自引:0,他引:1  
Shoemaker WB 《Ground water》2004,42(6-7):829-840
Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.  相似文献   

6.
Landscape evolution models (LEMs) simulate the geomorphic development of river basins over long time periods and large space scales (100s–1000s of years, 100s of km2). Due to these scales they have been developed with simple steady flow models that enable long time steps (e.g. years) to be modelled, but not shorter term hydrodynamic effects (e.g. the passage of a flood wave). Nonsteady flow models that incorporate these hydrodynamic effects typically require far shorter time steps (seconds or less) and use more expensive numerical solutions hindering their inclusion in LEMs. The recently developed LISFLOOD‐FP simplified 2D flow model addresses this issue by solving a reduced form of the shallow water equations using a very simple numerical scheme, thus generating a significant increase in computational efficiency over previous hydrodynamic methods. This leads to potential convergence of computational cost between LEMs and hydrodynamic models, and presents an opportunity to combine such schemes. This paper outlines how two such models (the LEM CAESAR and the hydrodynamic model LISFLOOD‐FP) were merged to create the new CAESAR‐Lisflood model, and through a series of preliminary tests shows that using a hydrodynamic model to route flow in an LEM affords many advantages. The new model is fast, computationally efficient and has a stronger physical basis than a previous version of the CAESAR model. For the first time it allows hydrodynamic effects (tidal flows, lake filling, alluvial fans blocking valley floor) to be represented in an LEM, as well as producing noticeably different results to steady flow models. This suggests that the simplification of using steady flow in existing LEMs may bias their findings significantly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The role of hand calculations in ground water flow modeling   总被引:1,自引:0,他引:1  
Haitjema H 《Ground water》2006,44(6):786-791
Most ground water modeling courses focus on the use of computer models and pay little or no attention to traditional analytic solutions to ground water flow problems. This shift in education seems logical. Why waste time to learn about the method of images, or why study analytic solutions to one-dimensional or radial flow problems? Computer models solve much more realistic problems and offer sophisticated graphical output, such as contour plots of potentiometric levels and ground water path lines. However, analytic solutions to elementary ground water flow problems do have something to offer over computer models: insight. For instance, an analytic one-dimensional or radial flow solution, in terms of a mathematical expression, may reveal which parameters affect the success of calibrating a computer model and what to expect when changing parameter values. Similarly, solutions for periodic forcing of one-dimensional or radial flow systems have resulted in a simple decision criterion to assess whether or not transient flow modeling is needed. Basic water balance calculations may offer a useful check on computer-generated capture zones for wellhead protection or aquifer remediation. An easily calculated "characteristic leakage length" provides critical insight into surface water and ground water interactions and flow in multi-aquifer systems. The list goes on. Familiarity with elementary analytic solutions and the capability of performing some simple hand calculations can promote appropriate (computer) modeling techniques, avoids unnecessary complexity, improves reliability, and is likely to save time and money. Training in basic hand calculations should be an important part of the curriculum of ground water modeling courses.  相似文献   

8.
视电阻率变化与地下水位定量关系的探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
刘心恒 《地震学报》1986,8(1):99-104
本文以三层电剖面模型计算出由于电剖面参数变化而引起的视电阻率变化,进而说明因地下水位变化所引起的视电阻率变化是可能估计的。根据这个结果能够确定出由于地下水干扰所引起的视电阻率异常幅度,这将有利于视电阻率变化与地震关系的定性、定量分析研究。实际工作表明,视电阻率变化很复杂,许多因素都会使视电阻率发生变化,但水的影响很重要,因此,研究这个问题有重要意义。   相似文献   

9.
Analytical models prepared from field drawings do not generally provide results that match with experimental results.The error may be due to uncertainties in the property of materials,size of members and errors in the modelling process.It is important to improve analytical models using experimentally obtained data.For the past several years,data obtained from ambient vibration testing have been successfully used in many cases to update and match dynamic behaviors of analytical models with real structures.This paper presents a comparison between artificial neural network(ANN) and eigensensitivity based model updating of an existing multi-story building.A simple spring-mass analytical model,developed from the structural drawings of the building,is considered and the corresponding spring stiffness and lumped mass of all floors are chosen as updating parameters.The advantages and disadvantages of these updating methods are discussed.The advantage is that both methods ensure a physically meaningful model which canbe further employed in determining structural response and health monitoring.  相似文献   

10.
《水文科学杂志》2013,58(5):872-885
Abstract

The “optimal” model complexity is defined as the minimum watershed model structure required for realistic representation of runoff processes. This paper examines the effects of model complexity at different time scales, daily and hourly. Two watershed models with different levels of complexity were constructed and their capability to simulate runoff from a watershed was evaluated. Both models were tested on the same watershed using identical meteorological input, thereby assuring that any difference between model outputs is due only to their model structure. It is demonstrated that, at a daily time scale, a simple model gives good results. For the mountain situation, in which snowmelt is a dominant influence, the nonlinearity of the runoff processes is moderate, and therefore a simple model works well. The model produced good results over a period of 28 years of continuous simulation. However, this simpler model was inadequate when tested on an hourly time scale due to greater nonlinear effects, especially when modelling high-intensity rainfall events. Therefore, the hourly simulation benefited from the more complex model structure. These model results show that optimal watershed model complexity depends on temporal resolution, namely the simulation period and the computational time step. It was shown that certain process representations and model parameters that appeared unimportant during the long-term simulation had significant effects on the short-term extreme event model simulation.  相似文献   

11.
High-resolution, spatially distributed ground water flow models can prove unsuitable for the rapid, interactive analysis that is increasingly demanded to support a participatory decision environment. To address this shortcoming, we extend the idea of multiple cell (Bear 1979) and compartmental (Campana and Simpson 1984) ground water models developed within the context of spatial system dynamics (Ahmad and Simonovic 2004) for rapid scenario analysis. We term this approach compartmental–spatial system dynamics (CSSD). The goal is to balance spatial aggregation necessary to achieve a real-time integrative and interactive decision environment while maintaining sufficient model complexity to yield a meaningful representation of the regional ground water system. As a test case, a 51-compartment CSSD model was built and calibrated from a 100,000+ cell MODFLOW (McDonald and Harbaugh 1988) model of the Albuquerque Basin in central New Mexico (McAda and Barroll 2002). Seventy-seven percent of historical drawdowns predicted by the MODFLOW model were within 1 m of the corresponding CSSD estimates, and in 80% of the historical model run years the CSSD model estimates of river leakage, reservoir leakage, ground water flow to agricultural drains, and riparian evapotranspiration were within 30% of the corresponding estimates from McAda and Barroll (2002), with improved model agreement during the scenario period. Comparisons of model results demonstrate both advantages and limitations of the CCSD model approach.  相似文献   

12.
Simulating a lake as a high-conductivity variably saturated porous medium   总被引:1,自引:0,他引:1  
Chui TF  Freyberg DL 《Ground water》2008,46(5):688-694
One approach for simulating ground water–lake interactions is to incorporate the lake into the ground water solution domain as a high-conductivity region. Previous studies have developed this approach using fully saturated models. This study extends this approach to variably saturated models, so that ground water–lake interactions may be more easily simulated with commonly used or public domain variably saturated codes that do not explicitly support coupled lake–water balance modeling. General guidelines are developed for the choices of saturated hydraulic conductivity and moisture retention and relative permeability curves for the lake region. When applied to an example ground water–lake system, model results are very similar to those from a model in which the lake is represented as a specified head boundary continuously updated by a lake mass balance. The high-conductivity region approach is most suitable for relatively simple geometries and lakes with slower and smaller fluctuations when the overall flow pattern and system fluxes, rather than the detailed flow pattern around the intersection of the lake and land surfaces, are of interest.  相似文献   

13.
Problem complexity for watershed model calibration is heavily dependent on the number of parameters that can be identified during model calibration. This study investigates the use of global sensitivity analysis as a screening tool to reduce the parametric dimensionality of multi-objective hydrological model calibration problems while maximizing the information extracted from hydrological response data. This study shows that by expanding calibration problem formulations beyond traditional, statistical error metrics to also include metrics that capture indices or signatures of hydrological function, it is possible to reduce the complexity of calibration while maintaining high quality model predictions. The sensitivity-guided calibration is demonstrated using the Sacramento Soil Moisture Accounting (SAC-SMA) conceptual rainfall–runoff model of moderate complexity (i.e., up to 14 freely varying parameters). Using both statistical and hydrological metrics, optimization results demonstrate that parameters controlling at least 20% of the model output variance (through individual effects and interactions) should be included in the calibration process. This threshold generally yields 30–40% reductions in the number of SAC-SMA parameters requiring calibration – setting the others to a priori values – while maintaining high quality predictions. Two parameters are recommended to be calibrated in all cases (percent impervious area and lower zone tension water storage), three parameters are needed in drier watersheds (additional impervious area, riparian zone vegetation, and percent of percolation going to tension storage), and the lower zone parameters are crucial unless the watershed is very dry. Overall, this study demonstrates that a coupled, multi-objective sensitivity and calibration analysis better captures differences between watersheds during model calibration and serves to maximize the value of available watershed response time series. These contributions are particularly important given the ongoing development of more complex integrated models, which will require new tools to address the growing discrepancy between the information content of hydrological data and the number of model parameters that have to be estimated.  相似文献   

14.
The paper presents the development of a lumped conceptual rainfall‐runoff model [Transformation of rainfall to runoff, Variability across timescales and Model parsimonization (TVM)] and a series of tests on various levels of model structure at different time resolutions. It is applied to the Bradford catchment in the United Kingdom. The TVM model is developed with a flexible structure through various relationships in each module that can be modified depending on the study catchments. Adopting the downward approach, parsimonious models are developed to examine at what level of complexity the model is able to capture runoff variability. The approach aims to compromise between parsimonious and complex alternatives in model development. This study shows that model structure requires data at different aggregation levels of timescales depending on its complexity. It reveals that the absence of the infiltration excess strongly affected all models. The analysis shows that the time resolution of hourly downwards must be used for the study catchment. The investigation of model complexity indicates that the combination of the most complicated model structure and timescale of quarter‐hourly is adequate to capture the catchment runoff characteristics. The downward approach in the TVM model helps to gain a deeper understanding of water balance and runoff process in the study catchment. The approach could be applicable to other catchments to obtain parsimonious models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Parameter calibration and sensitivity analysis (SA) are usually not straightforward tasks for distributed hydrological models, owing to the complexity of models and the large number of parameters. A two-step SA approach is proposed for analysing hydrological signatures based on the distributed hydrology–soil–vegetation model (DHSVM) in the Jinhua River Basin, East China. A preliminary SA is conducted to obtain influential parameters via analysis of variance. These parameters are further analysed through a variance-based global sensitivity analysis method to achieve robust rankings and parameter contributions. Parallel computing is designed to reduce the computational burden. The results reveal that only a few parameters are significantly sensitive and that interactions between parameters cannot be ignored. When analysing hydrological signatures, it is found that water yield is simulated very well for most samples. Small and medium floods are simulated very well, while slight underestimations happen for large floods.  相似文献   

16.
Technological advances, by facilitating extensive data collection, better data sharing, formulation of sophisticated methods, and development of complex models, have brought hydrologic research to a whole new level. Despite these obvious advances, there are also concerns about their general use in practice. On the one hand, it is natural to develop more complex models than perhaps needed (i.e. representations having too many parameters and requiring too much data); on the other hand, it is often difficult to ‘translate’ results from one specific situation to another. Recent studies have addressed these concerns, albeit in different forms, such as dominant processes, thresholds, model integration, and model simplification. A common aspect in some of these studies is that they recognize the need for a globally agreed upon ‘classification system’ in hydrology. The present study explores this classification issue further from a simple phase‐space data reconstruction perspective. The reconstruction involves representation of the given multidimensional hydrologic system using only an available single‐variable series through a delay coordinate procedure. The ‘extent of complexity’ of the system (defined especially in the context of variability of relevant data) is identified by the ‘region of attraction of trajectories’ in the phase space, which is then used to classify the system as potentially low‐, medium‐ or high‐dimensional. A host of river‐related data, representing different geographic and climatic regions, temporal scales, and processes, are studied. Yielding ‘attractors’ that range from ‘very clear’ ones to ‘very blurred’ ones, depending on data, the results indicate the usefulness of this simple reconstruction concept for studying hydrologic system complexity and classification. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Representing runoff process complexity in a simple model structure remains a challenge in hydrology. We present an integrated approach to investigate runoff processes using a hillslope tracer experiment and modeling exercise to explore model parameterization, process representation, and transit times. A spatially-explicit model constrained by soil hydrologic properties, runoff, and applied tracer data was used to identify the dominant processes necessary to explain both water and solute flux from a steep hillslope. The tracer data allowed for the rejection of model parameter sets based on the calibration to runoff data alone, thus reducing model uncertainty. The additional calibration to tracer data, improved parameter identifiability and provided further insight to process controls on hillslope-scale water and solute flux. Transit time distributions developed using the model provided further insight to model structure such as subsurface volume, mixing assumptions, and the water table dynamics. Combining field experiments with the modeling exercise may lead to a more comprehensive assessment of runoff process representation in models.  相似文献   

18.
Modeling axisymmetric flow and transport   总被引:3,自引:0,他引:3  
Langevin CD 《Ground water》2008,46(4):579-590
Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.  相似文献   

19.
Model ground water ages based on chlorofluorocarbons (CFCs) and tritium/helium-3 (3H/3He) data were obtained from two arrays of nested piezometers located on the north limb of an anticline in fractured sedimentary rocks in the Valley and Ridge geologic province of Pennsylvania. The fracture geometry of the gently east plunging fold is very regular and consists predominately of south dipping to subhorizontal to north dipping bedding-plane parting and east striking, steeply dipping axial-plane spaced cleavage. In the area of the piezometer arrays, which trend north-south on the north limb of the fold, north dipping bedding-plane parting is a more dominant fracture set than is steeply south dipping axial-plane cleavage. The dating of ground water from the piezometer arrays reveals that ground water traveling along paths parallel to the dip direction of bedding-plane parting has younger 3H/3He and CFC model ages, or a greater component of young water, than does ground water traveling along paths opposite to the dip direction. In predominantly unmixed samples there is a strong positive correlation between age of the young fraction of water and dissolved sodium concentration. The travel times inferred from the model ages are significantly longer than those previously calculated by a ground water flow model, which assumed isotropically fractured layers parallel to topography. A revised model factors in the directional anisotropy to produce longer travel times. Ground water travel times in the watershed therefore appear to be more influenced by anisotropic fracture geometry than previously realized. This could have significant implications for ground water models in other areas underlain by similarly tilted or folded sedimentary rock, such as elsewhere in the Valley and Ridge or the early Mesozoic basins.  相似文献   

20.
Reduced‐complexity models of fluvial processes use simple rules that neglect much of the underlying governing physics. This approach is justified by the potential to use these models to investigate long‐term and/or fundamental river behaviour. However, little attention has been given to the validity or realism of reduced‐complexity process parameterizations, despite the fact that the assumptions inherent in these approaches may limit the potential for elucidating the behaviour of natural rivers. This study presents two new reduced‐complexity flow routing schemes developed specifically for application in single‐thread rivers. Output from both schemes is compared with that from a more sophisticated model that solves the depth‐averaged shallow water equations. This comparison provides the first demonstration of the potential for deriving realistic predictions of in‐channel flow depth, unit discharge, energy slope and unit stream power using simple flow routing schemes. It also highlights the inadequacy of modelling unit stream power, shear stress or sediment transport capacity as a function of local bed slope, as has been common practice in a number of previous reduced‐complexity models. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号