首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Isobaric volume measurements for MgO were carried out at 2.6, 5.4, and 8.2 GPa in the temperature range 300–1073 K using a DIA-type, large-volume apparatus in conjunction with synchrotron X-ray powder diffraction. Linear fit of the thermal expansion data over the experimental pressure range yields the pressure derivative, (∂α/∂P) T , of −1.04(8) × 10−6 GPa−1 K−1 and the mean zero-pressure thermal expansion α0, T  = 4.09(6) × 10−5 K−1. The α0, T value is in good agreement with results of Suzuki (1975) and Utsumi et al. (1998) over the same temperature range, whereas (∂α/∂P) T is determined for the first time on MgO by direct measurements. The cross-derivative (∂α2/∂PT) cannot be resolved because of large uncertainties associated with the temperature derivative of α at all pressures. The temperature derivative of the bulk modulus, (∂K T/∂T) P , of −0.025(3) GPa K−1, obtained from the measured (∂α/∂P) T value, is in accord with previous findings. Received: 2 April 1999 / Revised, accepted: 22 June 1999  相似文献   

2.
Dense isotropic polycrystalline specimens of majorite-rich garnets (Py100, Py62Mj38, Py50Mj50, Py21Mj79 and Mj100) along the pyrope (Mg3Al2Si3O12 = Py100)-majorite (MgSiO3 = Mj100) join were fabricated in a 2000-ton uniaxial split-sphere anvil apparatus (USSA-2000) at pressures from 10 to 18.5 GPa and temperatures from 1200 to 1850 °C, within their stability fields in runs of 2–4-h duration, using hot-pressing techniques developed by Gwanmesia et al. (1993). These specimens are single-phased, fine-grained (≤5 mm), free of microcracks, and have bulk densities greater than 99% of the corresponding single-crystal X-ray density. Elastic compressional (P) and shear (S) wave velocities were determined at room pressure and temperature for these polycrystalline garnet specimens by phase comparison ultrasonic interferometry. For Mj100, the P and S wave velocities are within 1% of the Hashin-Shtrikman averages calculated from the single crystal elastic moduli measured by Brillouin spectroscopy. Both the elastic bulk modulus (K) and the shear modulus (G) decrease continuously with increasing majorite content from pyrope garnet (Py100) to pure majorite garnet (Mj100). The compositional dependence of K and G are given by K = 172.3 (40) − 0.085X, and G = 91.6 (10) − 0.038X, where X = mol% majorite), respectively, indicating that substitution of Si for Mg and Al decreases both K and G by about 5% along the solid solution series. Received: 25 March 1999 / Accepted: 12 July 1999  相似文献   

3.
 The thermoelastic parameters of natural andradite and grossular have been investigated by high-pressure and -temperature synchrotron X-ray powder diffraction, at ESRF, on the ID30 beamline. The PVT data have been fitted by Birch-Murnaghan-like EOSs, using both the approximated and the general form. We have obtained for andradite K 0=158.0(±1.5) GPa, (dK/dT )0=−0.020(3) GPa K−1 and α0=31.6(2) 10−6 K−1, and for grossular K 0=168.2(±1.7) GPa, (dK/dT)0=−0.016(3) GPa K−1 and α0=27.8(2) 10−6 K−1. Comparisons between the present issues and thermoelastic properties of garnets earlier determined are carried out. Received: 7 July 2000 / Accepted: 20 October 2000  相似文献   

4.
The heat capacity of synthetic, stoichiometric wadeite-type K2Si4O9 has been measured by DSC in the 195≤T(K)≤598 range. Near the upper temperature limit of our data, the heat capacity observed by DSC agrees with that reported by Geisinger et al. (1987) based on a vibrational model of their infrared and Raman spectroscopic data. However, with decreasing temperature, the Cp observed by DSC is progressively higher than that predicted from the vibrational model, suggesting that the standard entropy of K2Si4O9 is likely to be larger than 198.9 ± 4.0 J/K · mol computed from the spectroscopic data. A fit to the DSC data gave: Cp(T) = 499.13 (±1.87) − 4.35014 · 103(±3.489 · 101) · T −0.5, with T in K and average absolute percent deviation of 0.37%. The room-temperature compressibilities of kalsilite and leucite, hitherto unknown, have been measured as well. The data, fitted to the Murnaghan equation of state, gave K o = 58.6 GPa, K o  = 0.1 for kalsilite and K o = 45 GPa, K o  = 5.7 for α-leucite. Apart from the above mentioned data on the properties of the individual phases, we have also obtained reaction-reversals on four equilibria in the system K2O-Al2O3-SiO2. The Bayesian method has been used simultaneously to process the properties of 13 phases and 15 reactions between them to derive an internally consistent thermodynamic dataset for the K2O-Al2O3-SiO2 ternary. The enthalpy of formation of K2Si4O9 wadeite is in perfect agreement with its revised calorimetric value, the standard entropy is 232.1 ± 10.4 J/K · mol, ∼15% higher than that implied by vibrational modeling. The phase diagram, generated from our internally consistent thermodynamic dataset, shows that for all probable P-T trajectories in the subduction regime, the stable pressure-induced decomposition of K-feldspar will produce coesite + kalsilite rather than coesite + kyanite + K2Si4O9 (cf. Urakawa et al. 1994). Received: 11 June 1997 / Accepted: 2 December 1997  相似文献   

5.
 Calorimetric and PVT data for the high-pressure phase Mg5Al5Si6O21(OH)7 (Mg-sursassite) have been obtained. The enthalpy of drop solution of three different samples was measured by high-temperature oxide melt calorimetry in two laboratories (UC Davis, California, and Ruhr University Bochum, Germany) using lead borate (2PbO·B2O3) at T=700 C as solvent. The resulting values were used to calculate the enthalpy of formation from different thermodynamic datasets; they range from −221.1 to −259.4 kJ mol−1 (formation from the oxides) respectively −13892.2 to −13927.9 kJ mol−1 (formation from the elements). The heat capacity of Mg5Al5Si6O21(OH)7 has been measured from T=50 C to T=500 C by differential scanning calorimetry in step-scanning mode. A Berman and Brown (1985)-type four-term equation represents the heat capacity over the entire temperature range to within the experimental uncertainty: C P (Mg-sursassite) =(1571.104 −10560.89×T −0.5−26217890.0 ×T −2+1798861000.0×T −3) J K−1 mol−1 (T in K). The P V T behaviour of Mg-sursassite has been determined under high pressures and high temperatures up to 8 GPa and 800 C using a MAX 80 cubic anvil high-pressure apparatus. The samples were mixed with Vaseline to ensure hydrostatic pressure-transmitting conditions, NaCl served as an internal standard for pressure calibration. By fitting a Birch-Murnaghan EOS to the data, the bulk modulus was determined as 116.0±1.3 GPa, (K =4), V T,0 =446.49 3 exp[∫(0.33±0.05) × 10−4 + (0.65±0.85)×10−8 T dT], (K T/T) P  = −0.011± 0.004 GPa K−1. The thermodynamic data obtained for Mg-sursassite are consistent with phase equilibrium data reported recently (Fockenberg 1998); the best agreement was obtained with Δf H 0 298 (Mg-sursassite) = −13901.33 kJ mol−1, and S 0 298 (Mg-sursassite) = 614.61 J K−1 mol−1. Received: 21 September 2000 / Accepted: 26 February 2001  相似文献   

6.
 Powder diffraction measurements at simultaneous high pressure and temperature on samples of 2M1 polytype of muscovite (Ms) and paragonite (Pg) were performed at the beamline ID30 of ESRF (Grenoble), using the Paris-Edinburgh cell. The bulk moduli of Ms, calculated from the least-squares fitting of VP data on each isotherm using a second-order Birch–Murnaghan EoS, were: 57.0(6), 55.1(7), 51.1(7) and 48.9(5) GPa on the isotherms at 298, 573, 723 and 873 K, respectively. The value of (∂K T /∂T) was −0.0146(2) GPa K−1. The thermal expansion coefficient α varied from 35.7(3) × 10−6 K−1 at P ambient to 20.1(3) × 10−6 K−1 at P = 4 GPa [(∂α/∂P) T = −3.9(1) × 10−6 GPa−1 K−1]. The corresponding values for Pg on the isotherms at 298, 723 and 823 K were: bulk moduli 59.9(5), 55.7(6) and 53.8(7) GPa, (∂K T /∂T) −0.0109(1) GPa K−1. The thermal expansion coefficient α varied from 44.1(2) × 10−6 K−1 at P ambient to 32.5(2) × 10−6 K−1 at P = 4 GPa [(∂α/∂P) T = −2.9(1) × 10−6 GPa−1 K−1]. Thermoelastic coefficients showed that Pg is stiffer than Ms; Ms softens more rapidly than Pg upon heating; thermal expansion is greater and its variation with pressure is smaller in Pg than in Ms. Received: 28 January 2002 / Accepted: 5 April 2002  相似文献   

7.
 P–V–T measurements on magnesite MgCO3 have been carried out at high pressure and high temperature up to 8.6 GPa and 1285 K, using a DIA-type, cubic-anvil apparatus (SAM-85) in conjunction with in situ synchrotron X-ray powder diffraction. Precise volumes are obtained by the use of data collected above 873 K on heating and in the entire cooling cycle to minimize non-hydrostatic stress. From these data, the equation-of-state parameters are derived from various approaches based on the Birch-Murnaghan equation of state and on the relevant thermodynamic relations. With K′0 fixed at 4, we obtain K0=103(1) GPa, α(K−1)=3.15(17)×10−5 +2.32(28)×10−8 T, (∂KT/∂T)P=−0.021(2) GPaK−1, (dα/∂P)T=−1.81×10−6 GPa−1K−1 and (∂KT/∂T)V= −0.007(1) GPaK−1; whereas the third-order Birch-Murnaghan equation of state with K′0 as an adjustable parameter yields the following values: K0=108(3) GPa, K′0=2.33(94), α(K−1)=3.08(16)×10−5+2.05(27) ×10−8 T, (∂KT/∂T)P=−0.017(1) GPaK−1, (dα/∂P)T= −1.41×10−6 GPa−1K−1 and (∂KT/∂T)V=−0.008(1) GPaK−1. Within the investigated P–T range, thermal pressure for magnesite increases linearly with temperature and is pressure (or volume) dependent. The present measurements of room-temperature bulk modulus, of its pressure derivative, and of the extrapolated zero-pressure volumes at high temperatures, are in agreement with previous single-crystal study and ultrasonic measurements, whereas (∂KT/∂T)P, (∂α/∂P)T and (∂KT/∂T)V are determined for the first time in this compound. Using this new equation of state, thermodynamic calculations for the reactions (1) magnesite=periclase+CO2 and (2) magnesite+enstatite=forsterite+CO2 are consistent with existing experimental phase equilibrium data. Received September 28, 1995/Revised, accepted May 22, 1996  相似文献   

8.
The ambient pressure elastic properties of single-crystal TiO2 rutile are reported from room temperature (RT) to 1800 K, extending by more than 1200 oK the maximum temperature for which rutile elasticity data are available. The magnitudes of the temperature derivatives decrease with increasing temperature for five of the six adiabatic elastic moduli (C ij ). At RT, we find (units, GPa): C 11=268(1); C 33=484(2); C 44=123.8(2); C 66=190.2(5); C 23=147(1); and C 12=175(1). The temperature derivatives (units, GPa K−1) at RT are: (∂C 11/∂T) P =−0.042(5); (∂C 33/∂T) P =−0.087(6); (∂C 44/∂T) P =−0.0187(2); (∂C 66/∂T) P =−0.067(2); (∂C 23/∂T) P =−0.025; and (∂C 12/∂T) P −0.048(5). The values for K S (adiabatic bulk modulus) and μ (isotropic shear modulus) and their temperature derivatives are K S =212(1) GPa; μ=113(1) GPa; (∂K S /∂T) P =−0.040(4) GPa K−1; and (∂μ/∂T) P =−0.018(1) GPa K−1. We calculate several dimensionless parameters over a large temperature range using our new data. The unusually high values for the Anderson-Gròneisen parameters at room temperature decrease with increasing temperature. At high T, however, these parameters are still well above those for most other oxides. We also find that for TiO2, anharmonicity, as evidenced by a non-zero value of [∂ln (K T )/∂lnV] T , is insignificant at high T, implying that for the TiO2 analogue of stishovite, thermal pressure is independent of volume (or pressure). Systematic relations indicate that ∂2 K S /∂TP is as high as 7×10−4 K−1 for rutile, whereas ∂2μ/∂TP is an order of magnitude less. Received: 19 September 1997 / Revised, accepted: 27 February 1998  相似文献   

9.
The elastic moduli of magnesioferrite spinel, MgFe2O4, and their temperature dependence have been determined for the first time by ultrasonic measurements on a polycrystalline specimen. The measurements were carried out at 300 MPa and to 700°C in a gas-medium high-pressure apparatus. On heating, both the elastic bulk (K S) and shear (G) moduli decrease linearly to 350°C. By combining with extant thermal-expansion data, the values for the room-temperature K S and G, and their temperature derivatives are as follows: K 0 = 176.3(7) GPa, G 0 = 80.1(2) GPa, (∂K S/∂T) P = −0.032(3) GPa K−1 and (∂G/∂T) P = −0.012(1) GPa K−1. Between 350 and 400°C, there are abrupt increases of 1.4% in both of the elastic moduli; these closely coincide with the magnetic Curie transition that was observed by thermal analyses at about 360°C.  相似文献   

10.
 High-pressure and high-temperature Raman spectra of CaGeO3 tetragonal garnet have been collected to 11.5 GPa and 1225 K, respectively, in order to investigate possible intrinsic anharmonic behaviour in this phase. The Raman peak positions were observed to vary linearly with pressure and temperature within the ranges studied, with the higher-energy peaks showing larger P- and T-induced shifts than the low energy modes. The observed T-induced shifts are similar to those reported for grossular and andradite, while the observed P-induced shifts are generally larger than those of aluminosilicate and MgSiO3 majorite garnets (Gillet et al. 1992; Rauch et al. 1996) due to the larger bulk modulus of CaGeO3 garnet. The observed mode shifts of CaGeO3 garnet were used to determine the isothermal and isobaric mode Grüneisen parameters for this phase. These parameters are similar in value to those reported previously for grossular and andradite (Gillet et al. 1992). The calculated intrinsic anharmonic parameters, a i , for CaGeO3 garnet were determined to be nonzero, indicating significant anharmonic behaviour for this phase. These values, which range from −3.8 × 10−5 K−1 to −1.3 × 10−5 K−1, are also similar to those reported for andradite and grossular, but smaller than those determined for pyrope (Gillet et al. 1992). Hence, we expect MgSiO3 majorite to show greater anharmonicity than the germanate analogue studied by us. The anharmonic parameters determined for CaGeO3 tetragonal garnet may now be introduced into quasiharmonic vibrational heat capacity models to account for the observed anharmonic behaviour. Received: 21 April 1999 / Revised, accepted: 11 September 1999  相似文献   

11.
 The structural behavior of synthetic gahnite (ZnAl2O4) has been investigated by X-ray powder diffraction at high pressure (0–43 GPa) and room temperature, on the ID9 beamline at ESRF. The equation of state of gahnite has been derived using the models of Birch–Murnaghan, Vinet and Poirier–Tarantola, and the results have been mutually compared (the elastic bulk modulus and its derivatives versus P determined by the third-order Birch–Murnaghan equation of state are K 0=201.7(±0.9) GPa, K 0=7.62(±0.09) and K 0=−0.1022 GPa−1 (implied value). The compressibilities of the tetrahedral and octahedral bond lengths [0.00188(8) and 0.00142(5) GPa−1 at P=0, respectively], and the␣polyhedral volume compressibilities of the four-␣and␣sixfold coordination sites [0.0057(2) and 0.0041(2) GPa−1 at P=0, respectively] are discussed. Received: 15 January 2001 / Accepted: 23 April 2001  相似文献   

12.
A pressure-volume-temperature data set has been obtained for lawsonite [CaAl2Si2O7(OH)2.H2O], using synchrotron X-ray diffraction and an externally heated diamond anvil cell. Unit-cell volumes were measured to 9.4 GPa and 767 K by angle dispersive X-ray diffraction using imaging plates. Phase changes were not observed within this pressure-temperature range, and lawsonite compressed almost isotropically at constant temperature. The P-V-T data have been analyzed using a Birch- Murnaghan equation of state and a linear equation of state expressed as β=–1/V0 (∂V/∂P) T . At room temperature, the derived equation of state parameters are: K 0=124.1 (18) GPa K'0 set to 4) and β–1=142.0(24) GPa, respectively. Our results are intermediate between previously reported measurements. The high-temperature data show that the incompressibility of lawsonite decreases with increasing temperature to ∼500 K and then increases above. Hence, the second order temperature derivative of the bulk modulus is taken into account in the equation of state; a fit of the volume data yields K 0=123.9(18) GPa, (∂K/∂T)P=–0.111(3) GPa K–1, (∂2 K/∂T 2)P=0.28(6) 10–3 GPa K–2, α0=3.1(2) 10–5 K–1, assuming K'0=4. Received: 2 June 1998 / Revised, accepted: 12 Ocotber 1998  相似文献   

13.
The thermoelastic parameters of synthetic Ca3Al2Si3O12 grossular garnet were examined in situ at high-pressure and high-temperature by energy dispersive X-ray diffraction, using a Kawai-type multi-anvil press apparatus coupled with synchrotron radiation. Measurements have been conducted at pressures up to 20 GPa and temperatures up to 1,650 K: this P, T range covered the entire high-P, T stability field of grossular garnet. The analysis of room temperature data yielded V 0,300 = 1,664 ± 2 ?3 and K 0 = 166 ± 3 GPa for K0 K^{\prime}_{0} fixed to 4.0. Fitting of our PVT data by means of the high-temperature third order Birch–Murnaghan or the Mie–Grüneisen–Debye thermal equations of state, gives the thermoelastic parameters: (∂K 0,T /∂T) P  = −0.019 ± 0.001 GPa K−1 and α 0,T  = 2.62 ± 0.23 × 10−5 K−1, or γ 0 = 1.21 for fixed values q 0 = 1.0 and θ 0 = 823 (Isaak et al. Phys Chem Min19:106–120, 1992). From the comparison of fits from two different approaches, we propose to constrain the bulk modulus of grossular garnet and its pressure derivative to K T0 = 166 GPa and KT0 K^{\prime}_{T0}  = 4.03–4.35. Present results are compared with previously determined thermoelastic properties of grossular-rich garnets.  相似文献   

14.
 In situ synchrotron X-ray experiments in the system SnO2 were made at pressures of 4–29 GPa and temperatures of 300–1400 K using sintered diamond anvils in a 6–8 type high-pressure apparatus. Orthorhombic phase (α-PbO2 structure) underwent a transition to a cubic phase (Pa3ˉ structure) at 18 GPa. This transition was observed at significantly lower pressures in DAC experiments. We obtained the isothermal bulk modulus of cubic phase K 0 = 252(28) GPa and its pressure derivative K =3.5(2.2). The thermal expansion coefficient of cubic phase at 25 GPa up to 1300 K was determined from interpolation of the P-V-T data obtained, and is 1.7(±0.7) × 10−5 K−1 at 25 GPa. Received: 7 December 1999 / Accepted: 27 April 2000  相似文献   

15.
 Synthetic Zn-ferrite (ideally ZnFe2O4; mineral name: franklinite) was studied up to 37 GPa, by X-ray powder diffraction at ESRF (Grenoble, France), on the ID9 beamline; high pressure was achieved by means of a DAC. The P-V equation of state of franklinite was investigated using the Birch-Murnaghan function, and the elastic properties thus inferred [K0 = 166.4(±3.0) GPa K0  = 9.3(±0.6) K0  = −0.22 GPa−1] are compared with earlier determinations for MgAl-spinel and magnetite. The structural behaviour of Zn-ferrite as a function of pressure was studied by Rietveld refinements, and interpreted in the light of a phase transition from spinel to either CaTi2O4- or MnFe2O4-like structure; this transformation occurs above 24 GPa. Received: 15 March 1999 / Accepted: 22 April 2000  相似文献   

16.
 Synchrotron X-ray powder diffraction experiments at high pressure conditions (0.0001–13 GPa) were performed at ESRF (Grenoble-F), on the beamline ID9, to investigate the bulk elastic properties of natural P2/n-omphacites, with quasi-ideal composition. The monoclinic cell parameters a, b, c and β were determined as a function of pressure, and their compressibility coefficients are 0.00277(7), 0.00313(8), 0.00292(5) and 0.00116(4) GPa−1, respectively. The third-order Birch-Murnaghan equation of state was used to interpolate the experimental PV data, obtaining K 0=116.6(±2.5) GPa and K0=6.03(±0.60). K 0 was also determined by means of the axial and angular compressibilities [122.5(±1.7) GPa], and of the finite Lagrangian strain theory [121.5(±1.0) GPa]. The discrepancies on K 0 are discussed in the light of a comparison between techniques to determine the bulk modulus of crystalline materials from static compression diffraction data. Received: 22 February 2000 / Accepted: 10 July 2000  相似文献   

17.
Static elasticity measurements at high pressures were carried out on oriented fluorapatite single crystals, some of which contained oriented amorphous ion tracks (ITs) implanted with relativistic Au ions (2.2 GeV) from the UNILAC linear accelerator at GSI, Darmstadt. High-pressure experiments on irradiated and non-irradiated crystal sections were carried out in diamond-anvil high-pressure cells under hydrostatic conditions. In situ single-crystal diffraction was performed to determine the high-precision lattice parameters, simultaneously monitoring the widths of X-ray diffraction Bragg peaks. High-pressure Raman spectra were analyzed with respect to the frequency shift and widths of bands, which correspond to the Raman-active vibrational modes of the phosphate tetrahedra. Swift heavy ion irradiation was found to induce anisotropic lattice expansion and tensile strain within the host lattice dependent on the ion-track orientation. The relatively low Grüneisen parameter for the ν 1b(A g) mode, which has been assigned to originate from the volume fraction of the amorphous tracks, and the γ(ν 1a)/γ(ν 1b) ratio reveals compressive strain on the amorphous ITs. The comparative compressibilities for the host lattice reveal approximately equivalent bulk moduli, but significantly different pressure derivatives (K T = 88.4 ± 0.7 GPa, ∂K/∂P = 6.3 ± 0.3 for non-irradiated, K T = 90.0 ± 1.7 GPa, ∂K/∂P = 3.8 ± 0.5 for irradiated samples). The axial compressibility moduli β −1 reveal significant differences, which correlate with the ion-track orientation [ba - 1 \beta_{a}^{ - 1}  = 240 ± 5 GPa, bc - 1 \beta_{c}^{ - 1}  = 361 ± 14 GPa, ∂( ba - 1 ) \left( {\beta_{a}^{ - 1} } \right) /∂P = 11.3 ± 1.2, ∂( bc - 1 ) \left( {\beta_{c}^{ - 1} } \right) /∂P = 11.6 ± 3.4 for irradiation ⊥(100); 246 ± 9 GPa, 364 ± 57 GPa, 9.5 ± 2.9, 14.7 ± 14.1 for irradiation ⊥(001), 230.7 ± 3.6 GPa, 373.5 ± 5.1 GPa, 19.2 ± 1.4, 20.1 ± 1.8 for no irradiation]. Line widths of XRD Bragg peaks in irradiated apatites confirm the strain of the host lattice, which appears to decrease with increasing pressure. By contrast, the bandwidths of Raman modes increase with pressure, and this is attributed to increasing strain gradients on the length scale of the short-range order. The investigations reveal considerable deviatoric stress on the [100]-oriented tracks due to the anisotropic elasticity, while the compression is uniform for the directions perpendicular to the tracks, which are aligned parallel to the c-axis. This difference might be considered to control the diffusion properties related to the annealing kinetics and its observed anisotropy, and hence to cause potential pressure effects on track-fading rates.  相似文献   

18.
 The adiabatic elastic moduli of polycrystalline En50Py50 and En80Py20 majorite-garnet solid solutions (where En=4MgSiO3, Py=Mg3Al2Si3O12) and the end-member En100 tetragonal majorite were determined at ambient conditions using Brillouin spectroscopy. The adiabatic bulk modulus, K, and shear modulus, μ, of En50Py50 were found to be K=173.1 (20) and μ=92.3 (10) GPa, and are indistinguishable from those of the end-member pyrope, Py100. The moduli of the more majorite-rich samples are significantly lower and are virtually identical to each other (K=162.6(11) and μ=85.7(7) for En80Py20; K=166(5) and μ=88(2) for En100). In combination with previously reported moduli for this system, we conclude that both K and μ are constant over the compositional range from Py100 to a majorite content of about 70–80%, whereupon the moduli decrease substantially. For compositions ranging from En80Py20 to the end-member majorite, the moduli are also approximately independent of composition, but at a lower value. An alternative model with a continuous decrease in moduli with increasing majorite content cannot be excluded, within the uncertainties of existing measurements. The contrast in moduli between aluminous pyrope garnet and Al-free majorite are small compared with the modulus changes accompanying the pyroxene – majorite phase transformation. Received August 16, 1995 /Revised, accepted January 12, 1996  相似文献   

19.
We have carried out an in situ synchrotron X-ray diffraction study on iron and an iron-silicon alloy Fe0.91Si0.09 at simultaneously high pressure and temperature. Unit-cell volumes, measured up to 8.9 GPa and 773 K on the bcc phases of iron and Fe0.91Si0.09, are analyzed using the Birch-Murnaghan equation of state and thermal pressure approach of Anderson. Equation of state parameters on iron are found to be in agreement with results of previous studies. For both iron and Fe0.91Si0.09, thermal pressures show strong dependence on volume; the (∂KT/∂T)V values are considerably larger than those previously reported for other solids. The present results, in combination with our previous results on ɛ-FeSi, suggest a small dependency of the room-temperature bulk modulus upon the silicon content, less than 0.3 GPa for 1 wt.% silicon. We also find that substitution of silicon in iron would not appreciably change the thermoelastic properties of iron-rich Fe−Si alloys. If this behavior persists over large pressure and temperature ranges, the relative density contrast between iron and iron-rich Fe−Si alloys at conditions of the outer core of the Earth could be close to that measured at ambient conditions, i.e., 0.6% for 1 wt.% Si. Received: 13 January 1998 / Revised, accepted: 8 May 1998  相似文献   

20.
Low-temperature heat capacity measurements for MgCr2O4 have only been performed down to 52 K, and the commonly quoted third-law entropy at 298 K (106 J K−1 mol−1) was obtained by empirical extrapolation of these measurements to 0 K without considering the magnetic or electronic ordering contributions to the entropy. Subsequent magnetic measurements at low temperature reveal that the Néel temperature, at which magnetic ordering of the Cr3+ ions in MgCr2O4 occurs, is at ∼15 K. Hence a substantial contribution to the entropy of MgCr2O4 has been missed. We have determined the position of the near-univariant reaction MgCr2O4+SiO2=MgSiO3+Cr2O3. The reaction, which has a small positive slope in P-T space, has been bracketed at 100 K intervals between 1273 and 1773 K by reversal experiments. The reaction is extremely sluggish, and lengthy run times with a flux (H2O, BaO-B2O3 or K2O-B2O3) are needed to produce tight reversal brackets. The results, combined with assessed thermodynamic data for Cr2O3, MgSiO3 and SiO2, give the entropy and enthalpy of formation of MgCr2O4 spinel. As expected, our experimental results are not in good agreement with the presently available thermodynamic data. We obtain Δ f H 298=−1759.2±1.5 kJ mol−1 and S 298=122.1±1.0 J K−1 mol−1 for MgCr2O4. This entropy is some 16 J K−1 mol−1 more than the calorimetrically determined value, and implies a value for the magnetic entropy of MgCr2O4 consistent with an effective spin quantum number (S') for Cr3+ of 1/2 rather than the theoretical 3/2, indicating, as in other spinels, spin quenching. Received: 9 May 1997 / Accepted: 28 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号