首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Kathmandu Basin in Nepal contains up to 550 m of Pliocene-Quaternary fluvio-lacustrine sediments which have formed a dual aquifer system. The unconfined sand and gravel aquifer is separated by a clay aquitard, up to 200 m thick, from the deeper, confined aquifer, comprised of Pliocene sand and gravel beds, intercalated with clay, peat, and lignite. The confined aquifer currently provides an important water supply to the central urban area but there are increasing concerns about its sustainability due to overexploitation. A limited number of determinations of the radioisotope 36Cl have been made on bore waters in the basin, allowing us to postulate on the age of ground water in the deeper, confined aquifer. Ground water evolution scenarios based on radioisotope decay, gradual dissolution of formational salts as the ground waters move downgradient, and flow velocity estimations produce comparable ground water ages for the deep waters, ranging from 200,000 to 400,000 years. From these ages, we deduce a mean ground water flow velocity of only 45 mm/year from recharge in the northeast to the main extraction region 15 km to the southwest. We thus estimate current recharge at about 5 to 15 mm/year, contributing 40,000 to 1.2 million m3/year to the ground water system. Current ground water extraction is estimated to be 20 times this amount. The low specific discharge confirms that the resource is being mined, and, based on current projections, reserves will be used up within 100 years.  相似文献   

2.
Total concentrations of formate, acetate, and isobutyrate varied from less than 5 to greater than 9,000 μmol/l over distances of < 3 m in ground water from a shallow hydrocarbon contaminated aquifer. Laboratory incubations of aquifer material indicate that organic acid concentrations were dependent on the amount of hydrocarbon loading in the sediment and the relative rates of microbial organic acid production and consumption. In heavily contaminated sediments, production greatly exceeded consumption and organic acid concentrations increased. In lightly contaminated sediments rates were essentially equal and organic acid concentrations remained low. Concentrations of dissolved calcium, magnesium, and iron generally were one to two orders of magnitude higher in organic acid-rich ground water than in ground water having low organic acid concentrations. Carbonate and Fe(III)-oxyhydroxide minerals were the likely sources of these elements. Similarly, concentrations of dissolved silica, derived from quartz and k-feldspar, were higher in organic acid-rich ground water than in other waters. The positive relation (r = 0.60, p < .05, n = 16) between concentrations of silica and organic acids suggests that the microbially mediated buildup of organic acids in ground water enhanced quartz/k-feldspar dissolution in the aquifer, although it was not the only factor influencing their dissolution. A model that included organic acid microequivalents normalized by cation microequivalents significantly strengthened the correlation (r = 0.79, p < .001, n = 16) between dissolved silica and organic acid concentrations, indicating that competition between silica and cations for complexation sites on organic acids also influenced quartz/k-feldspar dissolution. Physical evidence for enhanced mineral dissolution in organic acid-rich waters included scanning electron microscopy images of highly corroded quartz and k-feldspar grains from portions of the aquifer containing organic acid-rich ground water. Microporosity generated in hydrocarbon contaminated sediments may adversely affect remediation efforts that depend on the efficient injection of electron acceptors into an aquifer or on the recovery of solutes from an aquifer.  相似文献   

3.
John M. Sharp  Jr. 《Ground water》1984,22(6):683-689
The dissected till plains physiographic province contains extensive areas of pre-Illinoian drift in Kansas, Nebraska, Iowa, and Missouri. The drift is typically a clay-rich, oxidized, and highly weathered till. In many areas of Missouri, this shallow drift represents the only readily available aquifer suitable for domestic and small agricultural users. There are, however, only few published data on the region's hydrogeology. Water budget analyses indicate that approximately 30% of mean annual rainfall is discharged by stream flow and 70% by evapotranspiration. The shallow drift flow systems are best considered unconfined, steady-state systems. Each watershed corresponds roughly to a local ground-water system. There is, typically, little hydraulic connection between the shallow drift systems and underlying strata. The drift hydraulic conductivity varies from approximately 1011 m/sec (laboratory tests) to 10−6 to 10−7 m/sec (field tests) when permeable sand lenses or joints are intersected. Ground-water discharge is concentrated in the immediate vicinity of stream channels, and recharge is concentrated on nearly horizontal hillslope summits. The ground water is generally potable (averaging 455 mg/1 total dissolved solids), but may be high in iron or polluted locally by organic wastes.  相似文献   

4.
A Full-Scale Porous Reactive Wall for Prevention of Acid Mine Drainage   总被引:3,自引:0,他引:3  
The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problems is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water exiting the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentrations decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L; pH increases from 5.8 to 7.0; and alkalinity (as CaCO3) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.  相似文献   

5.
TOC Determinations in Ground Water   总被引:2,自引:0,他引:2  
Determinations of total organic carbon (TOC) can provide valuable diagnostic evidence of the extent of ground-water contamination by organic compounds. The usefulness of conventional TOC results in monitoring efforts is limited by the bias introduced during the purging of inorganic carbon prior to analysis. A modified TOC procedure has been evaluated to permit the quantitation of the volatile organic carbon (VOC) fraction in water samples. The methodology consists of trapping the VOC in a manner analogous to commercial purge and trap instruments which are used for specific organic compound separations. The method has been found to be sensitive, accurate and reasonably precise for TOC determinations of standard solutions as well as on ground-water samples. Volatile organic carbon levels can range from 9–50% of the TOC in both uncontaminated and contaminated ground waters. The reporting of the volatile and nonvolatile fractions of the TOC will enhance both monitoring and research efforts, since it permits more complete characterization of the organic carbon content of ground-water samples.  相似文献   

6.
Ground-water levels in the Upper Floridan aquifer beneath the southeastern coast of South Carolina have undergone pumpage-induced declines approaching 20 ft below sea level at the southern end of Hilton Head Island. This scenario suggests the potential exists for the inducement of recharge to the Upper Floridan aquifer across the island, which could affect the quality of water being pumped by wells. However, low radiocarbon concentrations in ground-water samples (0.5 to 1.4 ± 0.1 PMC) indicate that most of the water is relict ground water reflecting prepumpage ground-water flow conditions in the Upper Floridan aquifer. The isotopic data indicate long residence times and water-chemistry evolution more characteristic of ground-water recharge occurring farther inland prior to the commencement of pumpage in the late 1800s. Radiocarbon concentrations (as Percent Modern Carbon) and stable carbon isotope ratios (as δ13C in dissolved inorganic carbon) determined during this study and reported in other studies on and around Hilton Head Island varied in a systematic manner. Heavier δ13C values (–2.8 to –1.6 per mil) in ground water beneath southern Hilton Head Island reflect ground-water discharge from prepumpage flowpaths originating over 100 miles away, hence a depletion in radiocarbon concentration with corrected ground-water ages no younger than 16,000 yrs BP. In contrast, lighter δ13C values (–13.9 to –8.67 per mil) beneath the northern part of the island indicate recent recharge as a result of water-level declines, and recharge in areas off the island that have not changed as a result of pumpage (evidenced by enrichment in radiocarbon with corrected ground-water ages no older than 4,000 yrs BP). This suggests that the δ13C composition of ground water in the Upper Floridan aquifer is a useful indicator of mixing between ground waters from different sources, and can be used to delineate recharge-discharge patterns. This approach may be applicable to other aquifers of highly evolved ground-water chemistry in regional carbonate aquifer systems that may be receiving recent recharge. Moreover, this approach could prove useful in delineating the contribution of recent water being captured by pumped wells as part of wellhead protection programs designed to assess aquifer vulnerability from surficial contaminant sources.  相似文献   

7.
Patterns and Rates of Ground-Water Flow on Long Island, New York   总被引:3,自引:0,他引:3  
Increased ground-water contamination from human activities on Long Island has prompted studies to define the pattern and rate of ground-water movement. A two-dimensional, fine-mesh, finite-element model consisting of 11,969 nodes and 22,880 elements was constructed to represent ground-water flow along a north-south section through central Long Island. The model represents average hydrologic conditions within a corridor approximately 15 miles wide. The model solves discrete approximations of both the potential and stream functions. The resulting flownet depicts flow paths and defines the vertical distribution of flow within the section. Ground-water flow rates decrease with depth. Sixty-two percent of the water flows no deeper than the upper glacial (water-table) aquifer, 38 percent enters the underlying Magothy aquifer, and only 3.1 percent enters the Lloyd aquifer. The limiting streamlines for flow to the Magothy and Lloyd aquifers indicate that aquifer recharge areas are narrow east-west bands through the center of the island. The recharge area of the Magothy aquifer is only 5.4 miles wide; that of the Lloyd aquifer is less than 0.5 miles. The distribution of ground-water traveltime and a flownet are calculated from model results; both are useful in the investigation of contaminant transport or the chemical evolution of ground water within the flow system. A major discontinuity in traveltime occurs across the streamline which separates the flow subsystems of the two confined aquifers. Water that reaches the Lloyd aquifer attains traveltimes as high as 10,000 years, whereas water that has not penetrated deeper than the Magothy aquifer attains traveltimes of only 2,000 years. The finite-element approach used in this study is particularly suited to ground-water systems that have complex hydrostratigraphy and cross-sectional symmetry.  相似文献   

8.
A mathematical model to simulate stream/aquifer interactions in an unconfined aquifer subjected to time varying river stage was developed from the linearized Boussinesq equation using the principle of superposition and the concept of semigroups. The mathematical model requires an estimate of three parameters to simulate ground-water elevations; transmissivity, specific yield, and recharge. The solution has physical significance and includes terms for the steady-state water level, the steady-state water level as influenced by a change in river stage, a transient redistribution of water levels in the aquifer from the previous day, and a transient change in water level caused by a change in river stage. The mathematical model was tested using observed water table elevations at three locations across a 2-km-wide alluvial valley aquifer. The average absolute deviation between observed and simulated daily water levels was 0.09 m. The difference in river stage over the test year was 4.9 m.  相似文献   

9.
Patterns and Age Distribution of Ground-Water Flow to Streams   总被引:2,自引:0,他引:2  
Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the down gradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Base flow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.  相似文献   

10.
Development of saline ground water through transpiration of sea water   总被引:2,自引:0,他引:2  
As vegetation usually excludes salt during water uptake, transpiration will increase the salinity of the residual water. If the source water is sea water, then the residual water may become highly saline. In the unconfined coastal aquifer of the tropical Burdekin River delta, northeastern Australia, areas of highly saline ground water with chloride concentrations up to almost three times that of sea water occur up to 15 km from the present coastline, and are attributed to transpiration by mangrove vegetation during periods of high sea level. Radiogenic ((14)C) carbon isotope analyses indicate that ground water with chloride concentrations between 15,000 and 35,000 mg/L is mostly between 4000 and 6000 years old, at which time sea level was 2 to 3 m higher than present. Stable isotope analyses of oxygen-18 and deuterium show no evidence for evaporative enrichment of this water. Oxygen-18, deuterium, and stable (delta(13)C) carbon isotope analyses of ground water and soil water point to a recharge environment beneath the mangrove forests during this postglacial sea level high stand. During that period, transpiration of the mangrove forests would have led to high chloride concentrations in the residual ground water, without inducing isotopic fractionation. Due to the higher density, this hypersaline water moved downward through the aquifer by gravity and has formed lenses of highly saline ground water at the bottom of the unconfined aquifer.  相似文献   

11.
Abstract

Fresh-water lenses are formed in unconfined saline aquifers in response to deep percolation from rainfall, artificial recharge, and seepage from irrigation waters and/or in response to injecting fresh water through vertical or horizontal wells. An approximate differential equation is derived in terms of the depth of the fresh-salt water interface below the initial position of the saline-water table. This equation is analogous to that of the ground-water motion in two dimensions. The wealth of knowledge available from solving the latter equation is used to obtain approximate expressions for the movement of the fresh-salt water interface in several flow systems wherein this interface does not reach the bottom of the aquifer. These approximate solutions as well as others for related quantities of interest may afford useful tools for rationally planning the extraction of usable waters from such flow systems.  相似文献   

12.
Electromagnetic (EM) logging provides an efficient method for high-resolution, vertical delineation of electrically conductive contamination in glacial sand-and-gravel aquifers. LM. gamma, and lithologic logs and specific conductance data from sand-and-gravel aquifers at five sites in the northeastern United States were analyzed to define the relation of KM conductivity to aquifer lithology and water quality. Municipal waste disposal, septic waste discharge, or highway deicing salt application at these sites has caused contaminant plumes in which the dissolved solids concentration and specific conductance of ground water exceed background levels by as much as 10 to 20 limes.
The major hydrogeologic factors that affected KM log response at the five sites were the dissolved solids concentration of the ground water and the silt and clay content in the aquifer. KM conductivity of sand and gravel with uncontaminated water ranged from less than 5 to about 10 millisiemens per meter (mS/m); that of silt and clay zones ranged from about 15 to 45 mS/m: and that of the more highly contaminated zones in sand and gravel ranged from about 10 to more than 80 mS/m. Specific conductance of water samples from screened intervals in sand and gravel at selected monitoring well installations was significantly correlated with KM conductivity.
CM logging can be used in glacial sand-and-gravel aquifer investigations to (1) determine optimum depths for the placement of monitoring well screens: (2) provide a nearly continuous vertical profile of specific conductance to complement depth-specific water quality samples; and (3) identify temporal changes in water quality through sequential logging. Detailed lithologic or gamma logs, preferably both, need to be collected along with the F.M logs to define zones in which elevated EM conductivity is caused by the presence of sill and clay beds rather than contamination.  相似文献   

13.
At an aviation gasoline spill site in Traverse City, Michigan, historical records indicate a positive correlation between significant rainfall events and increased concentrations of slightly soluble organic compounds in the monitoring wells of the site. To investigate the recharge effect on ground water quality due to infiltrating, water percolating past residual oil and into the saturated zone, an in situ infiltration experiment was performed at the site. Sampling cones were set at various depths below a circular test area, 13 feet (4 meters) in diameter. Rainfall was simulated by sprinkling the test area at a rate sufficiently low to prevent runoff. The sampling cones for soil-gas and ground water quality were installed in the unsaturated and saturated zones to observe the effects of the recharge process. At the time of the test, the water table was below the residual oil layer. The responses of the soil-gas and ground water quality were monitored during the recharge and drainage periods, which resulted from the sprinkling.
Infiltrated water was determined to have transported organic constituents of the residual oil, specifically benzene, toluene, ethylbenzene, and ortho-xylene (BTEX), into the ground water beneath the water table, elevating the aqueous concentrations of these constituents in the saturated zone. Soil-gas concentrations of the organic compounds in the unsaturated zone increased with depth and time after the commencement of infiltration. Reaeration of the unconfined aquifer via the infiltrated water was observed. It is concluded that water quality measurements are directly coupled to recharge events for the sandy type of aquifer with an overlying oil phase, which was studied in this work. Ground water sampling strategies and data analysis need to reflect the effect of recharge from precipitation on shallow, unconfined aquifers where an oil phase may be present.  相似文献   

14.
Eloctromigraiion offers a potential tool for remediating ground water contaminated with highly soluble components, such as Na+, Cl, NO3 and SO4. A field experiment was designed to lest the efficacy of electromigration for preconcontrating dissolved SO42 in ground water associated with a fossil-fuel power plant. Two shallow wells, 25 feel apart (one 25 feel deep, the other 47 feet deep), were constructed in the upper portion of an unconfined alluvial aquifer. The wells were constructed with a double-wall design, with an outer casing of 4-inch PVC and an inner lube of 2-inch FVC; both were fully slotted (0.01 inch). Electrodes were constructed by wrapping the inner lulling with a 100-foot length of rare-earth metal oxide/copper wire. An electrical potential of 10.65 volts DC Was applied, and tests were run for periods of 12, 44, and 216 hours. Results showed large changes in the pH from the initial pH of ground water of about 7.5 to values of approximately 2 and 12 at the anode and cathode, respectively. Despite the fact that the test conditions were far from ideal, dissolved SO42-; was significantly concentrated at the anode. Over a period of approximately nine days, the concentration of SO42- at the anode reached what appeared to he a steady-state value of 2200 mg/L. compared lo the initial value in ground water of approximately 1150 mg/L. The results of this field lest should encourage further investigation of electromigration as a tool in the remediation of contaminated ground water.  相似文献   

15.
Methods for predicting aquifer sensitivity to contamination typically ignore geochemical factors that affect the occurrence of contaminants such as nitrate. Use of geochemical information offers a simple and accurate method for estimating aquifer sensitivity to nitrate contamination. We developed a classification method in which nitrate-sensitive aquifers have dissolved oxygen concentrations > 1.0 mg/L, Eh values >250 mV, and either reduced iron concentrations < 0.1 mg/L or total iron concentrations < 0.7 mg/L. We tested the method in four Minnesota aquifer systems having different geochemical and hydrologic conditions. A surficial sand aquifer in central Minnesota exhibited geochemical zonation, with a rapid shift from aerobic to anaerobic conditions 5 m below the water table. A fractured bedrock aquifer in east-central Minnesota remained aerobic to depths of 50 m, except in areas where anaerobic ground water discharged upward from an underlying aquifer. A bedrock aquifer in southeast Minnesota exhibited aerobic conditions when overlain by surficial deposits lacking shale, whereas anaerobic conditions occurred under deposits that contained shale. Surficial sand aquifers in northwest Minnesota contained high concentrations of sulfate and were anaerobic throughout their extent. Nitrate-nitrogen was detected at concentrations exceeding 1 mg/L in 135 of 149 samples classified as sensitive. Nitrate was not detected in any of the 109 samples classified as not sensitive. We observed differences between our estimates of sensitivity and existing sensitivity maps, which are based on methods that do not consider aquifer geochemistry. Because dissolved oxygen, reduced iron, and Eh are readily measured in the field, use of geochemistry provides a quick and accurate way of assessing aquifer sensitivity to nitrate contamination.  相似文献   

16.
The ground-water flow system in the Lower Susquehanna River Basin in Pennsylvania and Maryland can be considered as one complex unconfined aquifer in which secondary porosity and permeability are the dominant influences on the occurrence and flow of ground water. The degree of development of secondary porosity and permeability in the various lithologies of the lower basin determines the aquifer characteristics of each lithology. Based on qualitative evidence, the use of a porous-media model was assumed to be appropriate on a regional scale and a finite-difference ground-water flow model was constructed for the lower basin. The conceptual model of ground-water flow in the lower basin incorporates the major features of the flow system. Through the use of two layers, 21 hydrogeologic units, and five topographic settings, the conceptual model was systematically reduced to arrive at a simplified conceptual model. Further reduction produced a numerical model representation of the conceptual model, in which the essential features of the lower-basin flow system were quantified for input into the numerical model. The model was calibrated under both steady-state and transient conditions, and was used to evaluate the water-supply potential of the 21 hydrogeologic units. The carbonate units have the greatest potential for ground-water development and the Triassic sedimentary and crystalline units have the least potential. A total ground-water yield potential of about 900 million gallons per day could be obtained from the lower basin with a consequent 50-percent reduction of base flow in streams.  相似文献   

17.
Abstract. Ground water rising to within 6 m (20 feet) of average ground surface elevations in Louisville, Kentucky caused concern to municipal officials and building owners in the central urban area. An average rise of more than 11 m (35 feet) occurred between 1969 and 1980.
An evaluation of foundation conditions and structural configurations in central Louisville indicated rising ground water could create:
1. slight but significant possibilities of structural settlement problems;
2. high possibilities of damage to basement floors and walls; and
3. very high possibilities for disruption of utility conduits.
Efforts to determine the cause of this rise in ground-water level have focused on the historical relationships between ground-water levels, pumpage rates and precipitation values.
Historical data indicated that ground-water levels in a system undisturbed by man could reach ground surface elevations in central Louisville. Preliminary studies indicated a strong relation between average ground-water levels and changes in pumping rates and incident precipitation. A further detailed study showed extremely high correlation (R = 0.995) between average ground-water levels in 1966–1980 and cumulative departures in precipitation and pumping rates from 1950–1965 average precipitation and pumping rates.
A study of the feasibility of lowering ground-water levels while simultaneously storing energy in the aquifer system was begun but was interrupted by devastating explosions of hexane in the sewers beneath south-central Louisville on February 13, 1981. Although a dry year in 1980 and no change in pumping rate have slowed the rise in ground-water level temporarily, long-term solutions to this problem need to be developed.  相似文献   

18.
Natural Attenuation of Aromatic Hydrocarbons in a Shallow Sand Aquifer   总被引:8,自引:0,他引:8  
Inadvertent release of petroleum products such as gasoline into the subsurface can initiate ground water contamination, particularly by the toxic, water-soluble and mobile gasoline components: benzene, toluene and xylenes (BTX). This study was undertaken to examine the processes controlling the rate of movement and the persistence of dissolved BTX in ground water in a shallow, unconfined sand aquifer.
Water containing about 7.6 mg/ L total BTX was introduced below the water table and the migration of contaminants through a sandy aquifer was monitored using a dense sampling network. BTX components migrated slightly slower than the ground water due to sorptive retardation. Essentially all the injected mass of BTX was lost within 434 days due to biodegradation. Rates of mass loss were similar for all monoaromatics; benzene was the only component to persist beyond 270 days. Laboratory biodegradation experiments produced similar rates, even when the initial BTX concentration varied.
A dominant control over BTX biodegradation was the availability of dissolved oxygen. BTX persisted at the field site in layers low in dissolved oxygen. Decreasing mass loss rates over time observed in the field experiment are not likely due to first-order deeradation rates, but rather to the persistence of small fractions of BTX mass in anoxic layers.  相似文献   

19.
A hydrodynamic survey carried out in semiarid southwest Niger revealed an increase in the unconfined ground water reserves of approximately 10% over the last 50 years due to the clearing of native vegetation. Isotopic samplings (3H, 18O, 2H for water and 14C, 13C for the dissolved inorganic carbon) were performed on about 3500 km2 of this silty aquifer to characterize recharge. Stable isotope analyses confirmed the indirect recharge process that had already been shown by hydrodynamic surveys and suggested the tracers are exclusively of atmospheric origin. An analytical model that takes into account the long-term rise in the water table was used to interpret 3H and 14C contents in ground water. The natural, preclearing median annual renewal rate (i.e., recharge as a fraction of the saturated aquifer volume) lies between 0.04% and 0.06%. For representative characteristics of the aquifer (30 m of saturated thickness, porosity between 10% and 25%), this implies a recharge of between 1 and 5 mm/year, which is much lower than the estimates of 20 to 50 mm/year for recent years, obtained using hydrological and hydrodynamic methods and the same aquifer parameters. Our study, therefore, reveals that land clearing in semiarid Niger increased ground water recharge by about one order of magnitude.  相似文献   

20.
The objective of this study was to assess the possible impact of deep well disposal operations, conducted between 1958 and 1974, on the ground water quality in a shallow fresh water aquifer beneath Sarnia, Ontario, Canada. Because of the breakout of formation fluids in Sarnia and Port Huron, Michigan, in the early 1970s, it had been hypothesized that liquid waste from the disposal zone in bedrock had leaked through numerous abandoned oil, gas, and salt wells in the area up to the shallow fresh water aquifer and from there to the surface.
A monitoring well network of 29 5cm (2 inch) diameter piezometers was established in the thin sand and shale aquifer system, which exists between 30 and 70m (100 and 230 feet) below ground surface. In addition, a 300m (1000 foot) deep borehole was drilled and instrumented with a Westbay multilevel casing, which permitted sampling of the disposal zone.
Ground water samples from the shallow monitoring wells and the Westbay multilevel casing were analyzed for volatiles by GC/MS. Those volatile aromatics that were conspicuously present in the deep disposal zone, e.g., ethyl toluenes and trimethyl benzene, were not detected in the shallow monitoring wells. Thus, if contaminants from the disposal zone did indeed migrate to the shallow aquifer, contamination was not widespread and probably consisted mostly of displaced chloride-rich formation waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号