首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Jurassic-Cretaceous rift successions and basin geometries of the Sverdrup Basin are reconstructed from a review and integration of stratigraphy, igneous records, outcrop maps, and subsurface data. The rift onset unconformity is in the Lower Jurassic portion of the Heiberg Group (approximately 200–190 Ma). Facies transgress from early syn-rift sandstones of the King Christian Formation to marine mudstones of the Jameson Bay Formation. The syn-rift succession of marine mudstones in the basin centre, Jameson Bay to Deer Bay formations, ranges from Early Jurassic (Pleinsbachian) to Early Cretaceous (Valanginian). Early post-rift deposits of the lower Isachsen Formation are truncated by the sub-Hauterivian unconformity, which is interpreted as a break up unconformity at approximately 135–130 Ma. Cessation of rift subsidence allowed for late post-rift sandstone deposits of the Isachsen Formation to be distributed across the entire basin. Marine deposition to form mudstone of the Christopher Formation throughout the Canadian Arctic Islands and outside of the rift basin records establishment of a broad marine shelf during post-rift thermal subsidence at the start of a passive margin stage. The onset of the High Arctic Large Igneous Province at approximately 130 Ma appears to coincide with the breakup unconformity, and it is quite typical that magma-poor rifted margins have mainly post-rift igneous rocks. We extend the magma-poor characterization where rifting is driven by lithospheric extension, to speculatively consider that the records from Sverdrup Basin are consistent with tectonic models of retro-arc extension and intra-continental rifting that have previously been proposed for the Amerasia Basin under the Arctic Ocean.  相似文献   

2.
The depositional environments of the wave-dominant successions in the middle to late Miocene Belait and Sandakan Formations in northwestern and northern Borneo, respectively, were determined based on grain size distributions, sedimentary structures and facies successions, as well as trace and microfossil assemblages. Generally, progradational shoreface successions in the Belait Formation were deposited in very low wave energy environments where longshore currents were too weak to generate trough cross-bedding. Shoreface sands are laterally continuous for several km and follow the basin contours, suggesting attached beaches similar to the modern Brunei coastline. In contrast, trough cross-bedding is common in the coarser Sandakan Formation and back-barrier mangrove swamp deposits cap the progradational succession as on the modern northern Dent Peninsula coastline, indicating barrier development and higher wave energy conditions than in the Belait Formation. The Borneo examples indicate that barrier systems that include significant tidal facies form under higher wave energy conditions than attached beaches with virtually no tidal facies. Also, Borneo’s low latitude climate promotes back-barrier mangrove which reduces tidal exchange and reduces tidal influence relative to comparable temperate climate systems. The results of the study indicate that depositional systems on low energy, wave-dominated coasts are highly variable, as are the sand bodies and facies associations they generate.  相似文献   

3.
4.
The Lower Cretaceous succession in the Barents Sea is listed as a potential play model by the Norwegian Petroleum Directorate. Reservoirs may occur in deep to shallow marine clastic wedges located in proximity to palaeo-highs and along basin margins. In addition, shelf-prism-scale clinoforms with high amplitude anomalies in their top- and bottomsets have been reported from reflection seismic but they have never been drilled. In Svalbard, the exposed northwestern corner of the Barents Shelf, Lower Cretaceous strata of shelfal to paralic origin occur, and includes the Rurikfjellet (Valanginian–Hauterivian/lowermost Barremian), Helvetiafjellet (lower Barremian–lower Aptian) and Carolinefjellet formations (lower Aptian–middle Albian). By combining sedimentological outcrop studies and dinocyst analyses with offshore seismic and well ties, this study investigate the link between the onshore strata and the offshore clinoforms. Age-vise, only three (S1–S3) of the seismic sequences defined in the offshore areas correlate to the onshore strata; S1 correspond to the Rurikfjellet Formation, S2 to the Helvetiafjellet Formation and the lower Carolinefjellet Formation, and S3 to the upper Carolinefjellet Formation. Offshore, all three sequences contain generally southward prograding shelf-prism-scale clinoforms. A lower Barremian subaerial unconformity defines the base of the Helvetiafjellet Formation, and its extent indicates that most of the Svalbard platform was exposed and acted as a bypass zone in the early Barremian. Onshore palaeo-current directions is generally towards the SE, roughly consistent with the clinoform accretion-direction towards the S. The local occurrence of a 150 m thick succession of gravity flow deposits transitionally overlain by prodelta slope to delta front deposits in the Rurikfjellet Formation, may indicate that shelf-edges also developed in Svalbard. The late Hauterivian age of theses deposits potentially highlights the inferred offlapping nature of the Lower Cretaceous strata as they predate the lower Barremian unconformity, and thus record a hitherto unknown regression in Svalbard. The presence of the lower Barremian subaerial unconformity in Svalbard, the general southeastward palaeo-current directions, and the age-equivalent clinoform-packages south of Svalbard, suggests that the onshore and offshore strata is genetically linked and was part of the same palaeo-drainage system.  相似文献   

5.
The Kaimiro Formation is an early to middle Eocene, NE-SW trending reservoir fairway in Taranaki Basin, and comprises a range of coastal plain through to shallow marine facies. A time of regional transgression is observed across the Paleocene–Eocene transition, which is linked to a general global warming trend and to regional thermal relaxation-related subsidence in New Zealand. The earliest Eocene transgressive deposits pass upwards into a series of cyclically stacked packages, interpreted as 3rd and 4th order sequences. Maximum regression occurred within the early Eocene and was followed by punctuated retrogradational stacking patterns associated with shoreline retreat and subsequent regional transgression in the middle Eocene.The Kaimiro Formation is considered a good reservoir target along most of the reservoir fairway, which can largely be attributed to a consistently quartz-rich, lithic-poor composition and reasonably coarse sand grain size. Correlations demonstrate that within the early Eocene the main reservoir facies are channel-fill sandstones overlying candidate sequence boundaries in paleoenvironmentally landward (proximal) settings, and upper shoreface/shoreline sandstones in relatively basinward (distal) settings. Middle Eocene reservoir facies are not represented in distal wells due to overall transgression at this time, yet they form a significant target in more proximal well locations, particularly on the Taranaki Peninsula.Depositional facies is one of the principal controls on sandstone reservoir quality. However, while reservoir facies have been proven along the length of the reservoir fairway, it is evident that diagenesis has significantly impacted sandstone quality. Relatively poor reservoir properties are predicted for deeply buried parts of the basin (maximum burial >4.5 km) due to severe compaction and relatively abundant authigenic quartz and illite. In contrast, good reservoir properties are locally represented in reservoir facies where present-day burial depths are <4 km due to less severe compaction, cementation and illitisation. Within these beds (<4 km) the presence of locally occurring authigenic grain-coating chlorite (shallow marine facies) and/or well-developed secondary porosity are both favourable to reservoir quality, while pervasive kaolinite and/or carbonate are both detrimental to reservoir quality.These results illustrate how an interdisciplinary approach to regional reservoir characterisation are used to help reduce risk during prospect evaluation. Assessment of both reservoir distribution and quality is necessary and can be undertaken through integrated studies of facies, sequence stratigraphy, burial modelling and petrography.  相似文献   

6.
Reconstructions of the Albian to Campanian foreland basin adjacent to the northern Canadian Cordillera are based on outcrop and well log correlations, seismic interpretation, and reconnaissance-level detrital zircon analysis. The succession is subdivided into two tectonostratigraphic units. First is an Albian tectonostratigraphic unit that was deposited on the flexural margin of a foreland basin. At the base is a shallow marine sandstone interval that was deposited during transgressive reworking of sediment from cratonic sources east of the basin that resulted in a dominant 2000–1800 Ma detrital zircon age fraction. Subsequent deposition in a west-facing muddy ramp setting was followed by east-to-west shoreface progradation into the basin.Near the Albian–Cenomanian boundary, regional uplift and exhumation resulted in an angular unconformity at the base of the Cenomanian–Campanian tectonostratigraphic unit. Renewed subsidence in the Cenomanian resulted in deposition of organic-rich, radioactive, black mudstone of the Slater River Formation in a foredeep setting. Cenomanian–Turonian time saw west-to-east progradation of a shoreface-shelf system from the orogenic margin of the foreland basin over the foredeep deposits. Detrital zircon age peaks of approximately 1300 Ma, 1000 Ma, and 400 Ma from a Turonian sample are consistent with recycling of Mississippian and older strata from the Cordillera west of the study area, and show that the orogen-attached depositional system delivered sediment from the orogen to the foreland basin. A near syndepositional detrital zircon age of ca. 93 Ma overlaps with known granitoid ages from the Cordillera. After the shelf system prograded across the study area, subsequent pulses of subsidence and uplift resulted in dramatic thickness variations across an older structural belt, the Keele Tectonic Zone, from the Turonian to the Campanian.The succession of depositional systems in the study area from flexural margin to foredeep to orogenic margin is attributed to coupled foreland propagation of the front of the Cordilleran orogen and the foreland basin. Propagation of crustal thickening and deformation toward the foreland is a typical feature of orogens and so the distal to proximal evolution of the foreland basin should also be considered as typical.  相似文献   

7.
Diagenesis in the uppermost Jurassic to Lower Cretaceous deltaic sandstones and shales of the Scotian Basin is an important control on reservoir quality. Ferruginous zone (sub-oxic) marine pore-water diagenesis controls the initial formation of Fe2+-silicates that are the precursors of grain-rimming chlorite that preserves porosity. This study assesses the regional controls on the type of marine pore-water diagenesis by studying the sedimentology, mineralogy, and geochemistry of the retrogradational units and underlying progradational units in parasequences from conventional cores in two wells in different parts of the basin. Coated grains preserve a record of whether marine pore-water diagenesis below the seafloor was dominantly in the ferruginous or sulphidic geochemical zone. Four types of coated grain were distinguished, each with a different mineral paragenesis. Mineralogical and chemical evidence of ferruginous zone diagenesis includes the presence of diagenetic chlorite and siderite, and the correlation of P with Fe or Ti. Pyrite and Fe-calcite are found where the sulphidic zone is more significant than the ferruginous zone. Ferruginous zone diagenesis was common in low-sedimentation rate retrogradational sediments with low organic carbon, and in delta-front turbidites and river-mouth sandstones. Estuarine, tidal flat and prodeltaic facies that are directly supplied by riverine sediments have a lower Fe:Ti ratio than do fully marine shoreface and open shelf facies as a result of input of detrital ilmenite and its alteration products. The relative contribution of colloidal iron (hydr)-oxides appears greater in distal low-sedimentation rate environments. Where large changes in sedimentation rate occurred at ravinement surfaces, the underlying progradational rocks have evidence of ferruginous zone diagenesis, whatever their facies. Rapid upward migration of the pore-water profile resulting from the change in sedimentation rate reduced the time available for mineral products to form in the deeper pore-water zones. This study has shown that the availability of Fe and organic carbon varying in a complex manner in marine deltaic sediments, but that the resulting diagenesis by marine pore-water can be predicted from facies and paleogeographic setting.  相似文献   

8.
珠江口盆地第三纪古地理及沉积演化   总被引:5,自引:0,他引:5  
珠江口盆地第三纪以来经历了断陷、拗陷两个构造演化阶段,具有“南北分带”、“东西分块”的构造格局和先陆后海的沉积特征。本文根据前人资料进行综合整理,编制了珠江口盆地古近纪神狐组、文昌组、恩平组、珠海组地层和新近纪珠江组地层的岩相古地理图。神狐组发育有冲积扇和河湖相,主要分布在珠三坳陷南断裂的狭长地带。文昌组沉积半深湖—深湖相,恩平组水深变浅,河沼相广泛分布。珠海组岩相古地理发生了较大的变化,为海陆过渡相沉积。随后海平面振荡上升,珠江口盆地处于陆架—陆坡环境,发育浅海—半深海沉积。对整个珠江口盆地岩相古地理图的编制为详细研究盆地内各区块的岩相古地理演变提供了区域背景,也为区域构造演化和油气地质条件的研究提供了基础依据。  相似文献   

9.
A chemostratigraphic study of Upper Jurassic sandstones in the northern Danish Central Graben has been undertaken within the framework of a well-defined stratigraphic/sedimentological model based particularly on cored well sections. Two reservoir sandstone units are recognised, the transgressive marginal marine to shoreface sandstone of the Gert Member and the regressive to transgressive shoreface sandstone of the Ravn Member. Both members belong to the Heno Formation, which is equivalent to the Fulmar Formation (UK) and the Ula Formation (Norway).  相似文献   

10.
11.
The distribution of diagenetic alterations in Triassic fluvio-deltaic, quartzarenitic to sublitharenitic, lowstand systems tract (LST) sandstones of the Grès á Voltzia Formation, anastomosing fluvial, quartzarenitic transgressive systems tract (TST) sandstones of the Grès á Roseaux Formation, and shallow marine, quartzarenitic to sublitharenitic, TST sandstones of the Grès Coquiller Formation, the Paris Basin (France), can be linked to transgression and regression events, and thus to the sequence stratigraphic context. Near-surface eogenetic alterations, which display a fairly systematic link to the depositional facies and sequence stratigraphic framework, include: (i) cementation by meteoric water calcite (δ18O=−8.9‰ and δ13C=−9.1‰) in the fluvio-deltaic, LST sandstones, (ii) cementation by mixed marine–meteoric calcite (δ18O=−5.3‰ to −2.6‰ and δ13C=−3.9‰ to −1.3‰) and dolomite (δ18O=−4.6‰ to −2.6‰ and δ13C=−2.9‰ to −2.3‰) in the foreshore, TST sandstones and below parasequence boundaries (PB), and transgressive surface (TS), and in the shoreface, TST sandstones below maximum flooding surfaces (MFS), being facilitated by the presence of carbonate bioclasts, (iii) dissolution of detrital silicates and precipitation of K-feldspar overgrowths and kaolinite, particularly in the fluvio-deltaic, LST sandstones owing to effective meteoric water circulation, and (vi) formation of autochthonous glauconite, which is increases in abundance towards the top of the fluvio-deltaic, LST sandstones, and along TS, and in the shoreface, TST sandstones, by alteration of micas owing to the flux of seawaters into the sandstones during transgression, whereas parautochthonous glauconite is restricted to the TS sandstones owing to marine reworking. Mesogenetic alterations, which include cementation by quartz overgrowths and illite, display fairly systematic link to fluvio-deltaic, LST sandstones. This study has revealed that linking of diagenesis to transgression and regression events enables a better understanding of the parameters that control the spatial and temporal distribution of diagenetic alterations in sandstones and of their impact on reservoir quality evolution.  相似文献   

12.
Sediment vibracores and surface samples were collected from the mixed carbonate/siliciclastic inner shelf of west–central Florida in an effort to determine the three-dimensional facies architecture and Holocene geologic development of the coastal barrier-island and adjacent shallow marine environments. The unconsolidated sediment veneer is thin (generally <3 m), with a patchy distribution. Nine facies are identified representing Miocene platform deposits (limestone gravel and blue–green clay facies), Pleistocene restricted marine deposits (lime mud facies), and Holocene back-barrier (organic muddy sand, olive-gray mud, and muddy sand facies) and open marine (well-sorted quartz sand, shelly sand, and black sand facies) deposits. Holocene back-barrier facies are separated from overlying open marine facies by a ravinement surface formed during the late Holocene rise in sea level. Facies associations are naturally divided into four discrete types. The pattern of distribution and ages of facies suggest that barrier islands developed approximately 8200 yr BP and in excess of 20 km seaward of the present coastline in the north, and more recently and nearer to their present position in the south. No barrier-island development prior to approximately 8200 yr BP is indicated. Initiation of barrier-island development is most likely due to a slowing in the Holocene sea-level rise ca. 8000 yr BP, coupled with the intersection of the coast with quartz sand deposits formed during Pleistocene sea-level highstands. This study is an example of a mixed carbonate/siliciclastic shallow marine depositional system that is tightly constrained in both time and sea-level position. It provides a useful analog for the study of other, similar depositional systems in both the modern and ancient rock record.  相似文献   

13.
The estimated in-place hydrocarbon volume of the giant Johan Sverdrup field is 3.5 billion barrels of oil, the bulk of which is contained in the Upper Jurassic intra-Draupne Formation sandstone. The intra-Draupne Formation sandstone is composed of unusually coarse grained siliciclastic sediments, with an average net/gross of 97% and average porosity of 28%. The median core permeability ranges from 0.5 to 40 Darcies in individual wells, and may reach even higher values based on drill stem testing.The reservoir is interpreted to be a time-transgressive sheet sand, ranging from 2 to 38 m in thickness and covering an area of more than 200 km2. Vertical and lateral facies and grain size trends, combined with biostratigraphy and palaeocurrent indicators, are interpreted to demonstrate a westward onlapping, transgressive shoreface depositional system, with local fan delta input.Reservoir properties vary significantly across the field and relative to facies association. In terms of permeability, the upper and lower shoreface associations in the Avaldsnes High area in the east show the highest median values of 25–27 Darcies. The upper and lower shoreface associations in the Augvald Graben area to the west show median values of 15 and 21 Darcies, respectively. The lowest values are observed in the transgressive shoreline, fan delta and spiculitic shoreface associations, i.e. 8 Darcies, 2 Darcies and 0.1 Darcies, respectively. The latter two facies associations are restricted to local areas in the west and northwest.The coarse grain size, lack of fines, scarcity of cementation and extensive sheet-like distribution of siliciclastic sediments make the intra-Draupne Formation sandstone an ideal reservoir. The depositional model presented in this paper may be used as an analogue when exploring for similar, high quality, shallow marine reservoir sands.  相似文献   

14.
A tectonostratigraphic model for the evolution of rift basins has been built, involving three distinct stages of basin development separated by key unconformities or unconformity complexes. The architecture and signature of the sediment infill for each stage are discussed, with reference to the northern North Sea palaeorift system. The proto-rift stage describes the rift onset with either doming or flexural subsidence. In the case of early doming, a proto-rift unconformity separates this stage from the subsequent main rift stage. Active stretching and rotation of fault blocks during the rift stage is terminated by the development of the syn-rift unconformity. Where crustal separation is accomplished, a break-up unconformity commonly marks the boundary to the overlying thermal relaxation or post-rift stage. Tabular architectures, thickening across relatively steep faults, characterize the proto-rift stage. Syn-rift architectures are much more variable. Depending on the ability of the sediment supply to fill the waxing and waning accommodation created during rotation and subsidence, one-, two- or three-fold lithosome architectures are likely to develop. During the post-rift stage, an early phase with coarse clastic infilling of remnant rift topography often precedes late stage widening of the basin and filling with fine-grained sediments.  相似文献   

15.
The Ostreaelv Formation (latest Pliensbachian–Toarcian) of the Neill Klinter Group is exposed along a >105 km wide, ENE-trending section in Jameson Land, East Greenland. Deposition took place in a large embayment (Jameson Land Basin) that was connected to the proto-Norwegian-Greenland Sea. Lithofacies in the Ostreaelv Formation range from clean sandstone to muddy heterolithic facies typified by strong grain-size contrasts.The Ostreaelv Formation is divided into four distinct and overall retrograding allostratigraphic units each composed of a characteristic set of tide-influenced, tide-dominated and wave-influenced facies associations. The allostratigraphic units are bounded by subaerial unconformities, interpreted as sequence boundaries, and are up to 75 m thick and 16 to >20 km in width. The allostratigraphic units include a sandy heterolithic estuary bay-head delta succession overlain by two sandy tide-dominated estuary fill successions, interbedded with a muddy heterolithic offshore marine succession. Each of the three estuarine allostratigraphic units was accumulated in an incised valley formed during fall in relative sea level and filled during successive transgressions with sediment supplied from marine and reworked fluvial deposits.In the three incised valleys fluvial sediments were deposited on top of an initial subaerial unconformity surface (SU) and were later reworked by succeeding transgressive ravinement along a transgressive surface (TS), thus creating combined SU/TS sequence boundaries. The data from the Ostreaelv Formation also provides knowledge and conceptual understanding of valley infill processes (tidal current, wave and fluvial energy), and both lateral and vertical variations in lithofacies architecture within incised valleys.Moreover, the study provides quantitative input data, such as incised valley dimensions, sand-containing capacity, and geometry to subsurface reservoir characterisation and modelling efforts of estuary fill successions.  相似文献   

16.
The present paper highlights the sequence development within the Mesoproterozoic Koldaha Shale Member of the Kheinjua Formation, Vindhyan Supergroup which records the occurrence of a forced regressive wedge and associated discontinuity surfaces at the base of the wedge. Nine lithofacies have been identified within the study area that are grouped into three lithofacies associations varying in depositional setting from outer shelf, through shoreface-foreshore-beach to continental braidplain. The outer shelf sediments are aggradational to slightly progradational representing highstand systems tract. The rapidly progradational, wedge-shaped shoreface to foreshore-beach succession occurs sharply or erosively above the outer shelf sediments and is bounded by a regressive surface of marine erosion (RSME) at the base and by a subaerial unconformity at the top. This, along with its downstepping trajectory, supports deposition of this sedimentary wedge during falling sea level. A laterally extensive soft sediment deformation zone occurs at the base of the wedge.The forced regressive wedge is incised by fluvial braidplain deposits that rest on an erosive surface representing a sequence boundary. The thin braidplain deposits are the product of aggradation during a subsequent early rise in relative sea level, and thus, they are inferred to represent a lowstand systems tract. The constituent architectural elements that characterize the braidplain deposits are downstream accretion elements and small channel elements. Further landward, the base and top of the shoreface wedge merge to form an unconformity across deposits that rest directly on the outer shelf sediments. The identification of forced regressive wedges has significant economic importance in view of the potential occurrence of hydrocarbons within the Proterozoic formations.  相似文献   

17.
The Campos, Santos and Pelotas basins have been investigated in terms of 2D seismo-stratigraphy and subsidence. The processes controlling accommodation space (e.g. eustacy, subsidence, sediment input) and the evolution of the three basins are discussed. Depositional seismic sequences in the syn-rift Barremian to the drift Holocene basin fill have been identified. In addition, the subsidence/uplift history has been numerically modeled including (i) sediment flux, (ii) sedimentary basin framework, (iii) relation to plate-tectonic reconfigurations, and (iv) mechanism of crustal extension. Although the initial rift development of the three basins is very similar, basin architecture, sedimentary infill and distribution differ considerably during the syn-rift sag to the drift basin stages. After widespread late Aptian–early Albian salt and carbonate deposition, shelf retrogradation dominated in the Campos Basin, whereas shelf progradation occurred in the Santos Basin. In the Tertiary, these basin fill styles were reversed: since the Paleogene, shelf progradation in the Campos Basin contrasts with overall retrogradation in the Santos Basin. In contrast, long-term Cretaceous–Paleogene shelf retrogradation and intense Neogene progradation characterize the Pelotas Basin. Its specific basin fill and architecture mainly resulted from the absence of salt deposition and deformation. These temporally and spatially varying successions were controlled by specific long-term subsidence/uplift trends. Onshore and offshore tectonism in the Campos and Santos basins affected the sediment flux history, distribution of the main depocenters and occurrence of hydrocarbon stratigraphic–structural traps. This is highlighted by the exhumation and erosion of the Serra do Mar, Serra da Mantiqueira and Ponta Grossa Arch in the hinterland, as well as salt tectonics in the offshore domain. The Pelotas Basin was less affected by changes in structural regimes until the Eocene, when the Andean orogeny caused uplift of the source areas. Flexural loading largely controlled its development and potential hydrocarbon traps are mainly stratigraphic.  相似文献   

18.
Predicting the hydrodynamics, morphology and evolution of ancient deltaic successions requires the evaluation of the three-dimensional depositional process regime based on sedimentary facies analysis. This has been applied to a core-based subsurface facies analysis of a mixed-energy, clastic coastal-deltaic succession in the Lower-to-Middle Jurassic of the Halten Terrace, offshore mid-Norway. Three genetically related successions with a total thickness of 100–300 m and a total duration of 12.5 Myr comprising eight facies associations record two initial progradational phases and a final aggradational phase. The progradational phases (I and II) consist of coarsening upward successions that pass from prodelta and offshore mudstones (FA1), through delta front and mouth bar sandstones (FA2) and into erosionally based fluvial- (FA3) and marine-influenced (FA4) channel fills. The two progradational phases are interpreted as fluvial- and wave-dominated, tide-influenced deltas. The aggradational phase (III) consists of distributary channel fills (FA3 and FA4), tide-dominated channels (FA5), intertidal to subtidal heterolithic fine-grained sandstones (FA6) and coals (FA7). The aggradational phase displays more complex facies relationships and a wider range of environments, including (1) mixed tide- and fluvial-dominated, wave-influenced deltas, (2) non-deltaic shorelines (tidal channels, tidal flats and vegetated swamps), and (3) lower shoreface deposits (FA8). The progradational to aggradational evolution of this coastal succession is represented by an overall upward decrease in grain size, decrease in fluvial influence and increase in tidal influence. This evolution is attributed to an allogenic increase in the rate of accommodation space generation relative to sediment supply due to tectonic activity of the rift basin. In addition, during progradation, there was also an autogenic increase in sediment storage on the coastal plain, resulting in a gradual autoretreat of the depositional system. This is manifested in the subsequent aggradation of the system, when coarse-grained sandstones were trapped in proximal locations, while only finer grained sediment reached the coastline, where it was readily reworked by tidal and wave processes.  相似文献   

19.
The study integrates petrographical and lithological data from deep exploration wells and outcrops in northern Iraq to better understand the sedimentary environments present in the basin and to evaluate the depositional evolution of the Paleozoic rocks in Iraq. The studied Paleozoic successions are represented by five sedimentary cycles of intracratonic sequences. These are dominated mainly by siliciclastic and mixed sedimentary packages, and are separated by major and minor unconformity surfaces. These cycles are as follow: the Ordovician cycle, represented by the Khabour Formation; the Silurian cycle, represented by the Akkas Formation; the Middle-Late Devonian to Early Carboniferous cycle, represented by the Chalki, Pirispiki, Kaista, Ora and Harur formations; the Permian–Carboniferous cycle, represented by the Ga’ara Formation and late Permian cycle, represented by the Chia Zairi Formation. Generally, the cycles are characterized by siliciclastic and mixed carbonate–clastic facies with abrupt changes during Late Paleozoic reflecting the environmental and tectonic events during this period. The Ordovician Khabour Formation is suggested to be of shallow marine environment of deposition with stacked transgressive and regressive cycles that are eustatically controlled. The shale of Silurian Akkas Formation was deposited in open-marine environment. Depositional regimes in the Late Devonian to Early Carboniferous are considered as a continuation of deposition in the subsiding basin with a wide geographic distribution that reflect the epicontinental or epeiric seas in a homoclinic ramp setting. The Permo-Carboniferous Ga’ara Formation was deposited in continental to paralic environment while the Late Permian Chia Zairi Formation represents the carbonate platform deposition. The study revealed that potential source rocks may include some shale beds of the Khabour Formation, hot shales of Akkas Formation and the shales of Ora Formation. The sandstones of the Khabour, Akkas and Kaista formations have good reservoir potential. The Late Permian carbonates of Chia Zairi Formation may be self-sourcing and contain multiple reservoirs. The occurrence of shale as source rocks and limestone as reservoir rocks and some evaporates as sealing horizons make the formation as a reservoir in its own right.  相似文献   

20.
The Middle–Late Miocene Utsira Formation of the North Sea Basin contains a fully preserved, regional marine sand deposit that records a stable paleogeographic setting of sand transport and accumulation within a deep, epeiric seaway which persisted for >8 Ma. The sediment dispersal system was defined by (1) input through a marginal prograding strandplain platform, coast-to-basin bypass, transport along a narrow strait, and accumulation in strait-mouth shoal complexes within a shelf sea; (2) a high-energy marine regime; (3) very low time-averaged rates of sediment supply and accumulation; and (4) consequent high sediment reworking ratio. Sand distribution and stratal architectures reflect regional along-strike sediment transport and local to sub-regional landward sediment transport. Plume-shaped, south-building, submarine sand shoals that formed along the recurved arc of the strandplain margin nourished the shoal system. Very low-angle sigmoid clinoforms and down-stepping, aggradational top sets are distinctive architectures of these strike-fed sand bodies. The combination of strong marine currents and slow but long-lived sand supply from the Shetland strandplain created regional, sandy shelf shoal depositional systems that individually covered 3,500 to 6,000 km2 of the basin floor. Defining attributes of the shelf shoal systems include their location within the basin axis, abundance of autochthonous sediment, and sandy marine facies composition. Diagnostic depositional architectures include the along-strike-dipping sigmoidal clinoforms, poly-directional low-angle accretionary bedding at both regional and local scales, and mounded depositional topography. Erosional features include regional hummocky, low-relief shelf deflation surfaces, broad, elongate scours and sub-circular scour pits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号