首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We determine detailed 3-D Vp and Vs structures of the crust and uppermost mantle beneath the Kyushu Island, southwest Japan, using a large number of arrival times from local earthquakes. From the obtained Vp and Vs models, we further calculate Poisson’s ratio images beneath the study area. By using this large data set, we successfully image the 3-D seismic velocity and Poisson’s ratio structures beneath Kyushu down to a depth of 150 km with a more reliable spatial resolution than previous studies. Our results show very clear low Vp and low Vs anomalies in the crust and uppermost mantle beneath the northern volcanoes, such as Abu, Kujyu and Unzen. Low-velocity anomalies are seen in the mantle beneath most other volcanoes. In contrast, there are no significant low-velocity anomalies in the crust or in the upper mantle between Aso and Kirishima. The subducting Philippine Sea slab is imaged generally as a high-velocity anomaly down to a depth of 150 km with some patches of normal to low seismic wave velocities. The Poisson’s ratio is almost normal beneath most volcanoes. The crustal seismicity is distributed in both the high- and low-velocity zones, but most distinctly in the low Poisson’s ratio zone. A high Poisson’s ratio region is found in the forearc crustal wedge above the slab in the junction area with Shikoku and Honshu; this high Poisson’s ratio could be caused by fluid-filled cracks induced by dehydration from the Philippine Sea slab. The Poisson’s ratio is normal to low in the forearc mantle in middle-south Kyushu. This is consistent with the absence of low-frequency tremors, and may indicate that dehydration from the subducting crust is not vigorous in this region.  相似文献   

2.
One in-line wide-angle seismic profile was conducted in 1990 in the course of the Southeastern China Continental Dynamics project aimed at the study of the contact between the Cathaysia block and the Yangtze block. This 380-km-long profile extended in NW–SE direction from Tunxi, Anhui Province, to Wenzhou, Zhejiang Province. Five in-line shots were fired and recorded at seismic stations with spacing of about 3 km along the recording line. We have used two-dimensional ray tracing to model P- and S-wave arrivals and provide constraints on the velocity structure of the upper crust, middle crust, lower crust, Moho discontinuity, and the top part of the lithospheric mantle. P-wave velocity, S-wave velocity and VP/VS ratio are mapped. The crust is 36-km thick on average, albeit it gradually thins from the northwest end to the southeast end (offshore) of the profile. The average crustal velocity is 6.26 km/s for P-waves but 3.6 km/s for S-waves. A relatively narrow low-velocity layer of about 4 km of thickness, with P- and S-wave velocities of 6.2 km/s and 3.5 km/s, respectively, marks the bottom of the middle crust at a depth of 23-km northwest and 17-km southeast. At the crust–mantle transition, the P- and S-wave velocity change quickly from 7.4 to 7.8 km/s (northwest) and 8.0 to 8.2 km/s (southeast) and from 3.9 to 4.2 km/s (northwest) and 3.9 to 4.5 km/s (southeast), respectively. This result implies a lateral contrast in the upper mantle velocity along the 140 km sampled by the profile approximately. The average VP/VS ratio ranges from 1.68–1.8 for the upper crust to 1.75 for the middle and 1.75–1.85 for lower crust. With the interpretation of the wide-angle seismic data, Jiangshan–Shaoxin fault is considered as the boundary between the Yangtze and the Cathaysia block.  相似文献   

3.
A total of 13 regional Ocean Bottom Seismograph (OBS) profiles with an accumulated length of 2207 km acquired on the Vøring Margin, NE Atlantic have been travel time modelled with regards to S-waves. The Vp/Vs ratios are found to decrease with depth through the Tertiary layers, which is attributed to increased compaction and consolidation of the rocks. The Vp/Vs ratio in the intra-Campanian to mid-Campanian layer (1.75–1.8) in the central Vøring Basin is significantly lower than for the layers above and beneath, suggesting higher sand/shale ratio. This layer was confirmed by drilling to represent a layer of sandstone. This mid-Cretaceous ‘anomaly’ is also present in the northern Vøring Basin, as well as on the southern Lofoten Margin further north. The Vp/Vs ratio in the extrusive rocks on the Vøring Plateau is estimated to be 1.85, conformable with mafic (basaltic) rocks. Landward of the continent/ocean transition (COT), the Vp/Vs ratio in the layer beneath the volcanics is estimated to be 1.67–1.75. These low values suggest that this layer represents sedimentary rocks, and that the sand/shale ratio might be relatively high here. The Vp/Vs ratio in the crystalline basement is estimated to be 1.67–1.75 in the basin and on the landward part of the Vøring Plateau, indicating the presence of granitic/granodioritic continental crust. In the lower crust, the Vp/Vs ratio in the basin decreases uniformly from southwest to northeast, from 1.85–1.9 to 1.68–1.73, suggesting a gradual change from mafic (gabbroic) to felsic (granodioritic) lower crust. Significant (3–5%) azimuthal S-wave anisotropy is observed for several sedimentary layers, as well as in the lower crust. All these observations can be explained by invoking the presence of liquid-filled microcracks aligned vertically along the direction of the present day maximum compressive stress (NW–SE).  相似文献   

4.
E.A. Hetland  F.T. Wu  J.L Song   《Tectonophysics》2004,386(3-4):157-175
During 1998–1999, we installed a temporary broadband seismic network in the Changbaishan volcanic region, NE China. We estimated crustal structure using teleseismic seismograms collected at the network. We detected a near surface region of strong anisotropy directly under the main volcanic edifice of the volcanic area. We modeled 109 receiver functions from 19 broadband stations using three techniques. First we used a “slant-stacking” method to model the principal crustal P reverberation phases to estimate crustal thickness and the average crustal P to S speed ratio (vp/vs), assuming an average P-wave velocity in the crust. We then estimated crustal S-wave velocity (vs) and vp/vs profiles by modeling stacked receiver functions using a direct search. Finally, we inverted several receiver functions recorded at stations closest to the main volcanic edifice using least squares to estimate vs velocity profiles, assuming a vp/vs value. The results from the three estimation techniques were consistent, and generally we found that the receiver functions constrained estimates of changes in wave speeds better than absolute values. We resolved that the crust is 30–39 km thick under the volcanic region and 28–32 km thick away from the volcanic region, with a midcrust velocity transition at about 10–15 km depth. We estimated that the average crust P-wave velocity is about 6.0–6.2 km/s surrounding the main volcanic region, while it is slightly lower in the vicinity of the main volcanic edifice. The estimates of vp/vs were more ambiguous, but we inferred that the bulk crustal Poisson's ratio (which is related to vp/vs) ranges between 0.20 and 0.30, with a suggestion that the Poisson's ratio is lower under the central volcanic region compared to the surrounding areas. We resolved low S-wave velocities (down to about 3 km/s) in the middle crust in the region of the main volcanic edifice. The low velocity anomaly extends from about 5–10 to 15–25 km below the surface, probably indicating a region of elevated temperatures. We were unable to determine if partial melt is present with the data we considered in this paper.  相似文献   

5.
P and S velocity and attenuation estimates in the lower crust are obtained from a set of wide angle reflection–refraction profiles in the region of active tectonics at the NE edge of the Tibetan Plateau and discussed together with respect to similar data at its Himalaya–south Tibet edge.The quality factor is estimated in the lower half of the crust by accounting for the differential effect on amplitude–frequency observed between waves of different penetrations, and both in P and S modes. Attenuation values allow to exclude a significant proportion of partial melt and to estimate the homologous temperature, ratio of in situ to solidus absolute temperatures. The latter depend on the physical conditions being of dry, wet or dehydration melting, which are found different among the regions of the northern Bayan Har and northern Qang Tang boundaries between blocks, as well as the Tethyan–Himalayas, south of the Indus–Tsangpo suture. Their in situ temperatures differ also as estimated from their different Vp for a similar felsic composition.Joint measurement of several parameters, Vp, Vs, Qp and Qs reveals the composition, mineralogy, temperature and hydration conditions of the lower half of the thickened crust of Tibet that may be discussed in terms of evolution. The material presently in the thickened crust, even its lower part, has a felsic composition, upper to middle crustal lithology, and the temperature conditions estimated suggest that basic material that could have underlain it could be eclogitized and not appear anymore above the seismic Moho.Under northern Qang Tang, the felsic material in the lower half of the crust appears as hot and dry. Its burial may have occurred earlier or may have been moderate in the postcollisional phase. This is consistent with a model of indentation of the Qang Tang crust by an originally thinner Bayan Har crust to bring part of its crust to greater depth, suggested from imaging the crustal architecture. Under northern Bayan Har, the material in the lower half of the crust appears as felsic, at low temperature and not dry conditions. This is evidence that it has been transported from a shallower depth, and this recently enough not to be yet dehydrated and temperature equilibrated in a conductive geotherm. It supports a model of recent overriding of the middle crust of the north Kun Lun block to the north independently suggested from the image of crustal architecture. The Tethyan Himalayas case appears bracketed by these two cases in northern Tibet for Vp and temperature conditions, but shows highest attenuation in the lower crust that is colder but less dry than under northern Qang Tang.  相似文献   

6.
The Latur earthquake (Mw 6.1) of 29 September 1993 is a rare stable continental region (SCR) earthquake that occurred on a previously unknown blind fault. In this study, we determined detailed three-dimensional (3-D) P- and S-wave velocity (Vp, Vs) and Poisson's ratio (σ) structures by inverting the first P- and S-wave high-quality arrival time data from 142 aftershocks that were recorded by a network of temporary seismic stations. The source zone of the Latur earthquake shows strong lateral heterogeneities in Vp, Vs and σ structures, extending in a volume of about 90 × 90 × 15 km3. The mainshock occurred within, but near the boundary, of a low-Vp, high-Vs and low-σ zone. This suggests that the structural asperities at the mainshock hypocenter are associated with a partially fluid-saturated fractured rock in a previously unknown source zone with intersecting fault surfaces. This might have triggered the 1993 Latur mainshock and its aftershock sequence. Our results are in good agreement with other geophysical studies that suggest high conductivity and high concentration of radiogenic helium gas beneath the source zone of the Latur earthquake. Our study provides an additional evidence for the presence of fluid related anomaly at the hidden source zone of the Latur earthquake in the SCR and helps us understand the genesis of damaging earthquakes in the SCR of the world.  相似文献   

7.
Vp and Vs values have been measured experimentally and calculated for granulite-facies lower crustal xenoliths from central Ireland close to the Caledonian Iapetus suture zone. The xenoliths are predominantly foliated and lineated metapelitic (garnet–sillimanite–K-feldspar) granulites. Their metapelitic composition is unusual compared with the mostly mafic composition of lower crustal xenoliths world-wide. Based on thermobarometry, the metapelitic xenoliths were entrained from depths of c. 20–25 ± 3.5 km and rare mafic granulites from depths of 31–33 ± 3.4 km. The xenoliths were emplaced during Lower Carboniferous volcanism and are considered to represent samples of the present day lower crust.Vp values for the metapelitic granulites range between 6.26 and 7.99 km s− 1 with a mean value of 7.09 ± 0.4 km s− 1. Psammite and granitic orthogneiss samples have calculated Vp values of 6.51 and 6.23 km s− 1, respectively. Vs values for the metapelites are between 3.86 and 4.34 km s− 1, with a mean value of 4.1 ± 0.15 km s− 1. The psammite and orthogneiss have calculated Vs values of 3.95 and 3.97 km s− 1, respectively.The measured seismic velocities correlate with density and with modal mineralogy, especially the high content of sillimanite and garnet. Vp anisotropy is between 0.15% and 13.97%, and a clear compositional control is evident, mainly in relation to sillimanite abundance. Overall Vs anisotropy ranges from 1% to 11%. Poisson's ratio (σ) lies between 0.25 and 0.35 for the metapelitic granulites, mainly reflecting a high Vp value due to abundant sillimanite in the sample with the highest σ. Anisotropy is probably a function of deformation associated with the closure of the Iapetus ocean in the Silurian as well as later extension in the Devonian. The orientation of the bulk strain ellipsoid in the lower crust is difficult to constrain, but lineation is likely to be NE–SW, given the strike-slip nature of the late Caledonian and subsequent Acadian deformation.When corrected for present-day lower crustal temperature, the experimentally determined Vp values correspond well with velocities from the ICSSP, COOLE I and VARNET seismic refraction lines. Near the xenolith localities, the COOLE I line displays two lower crustal layers with in situ Vp values of 6.85–6.9 and 6.9–8.0 km s− 1, respectively. The upper (lower velocity) layer corresponds well with the metapelitic granulite xenoliths while the lower (higher velocity) layer matches that of the basic granulite xenoliths, though their metamorphic pressures suggest derivation from depths corresponding to the present-day upper mantle.  相似文献   

8.
The large-scale seismic refraction and wide-angle reflection experiment POLONAISE'97 together with LT-7 and TTZ profiles carried out with the most modern techniques gave a high resolution of crustal structure of the Trans-European Suture Zone (TESZ) in NW and central Poland. The results of seismic investigations show the presence of relatively low velocity rocks (Vp < 6.1 km/s) down to a depth of 20 km beneath the Polish Basin (PB), and a high velocity lower crust (Vp = 6.8–7.3 km/s). The crustal thickness in the TESZ is intermediate between that of the East European Craton (EEC) to the northeast (40–45 km) and that of the Variscan crust (VB) to the southwest ( 30 km). Velocities in the uppermost mantle are relatively high (Vp = 8.25–8.45 km/s). The crust is three-layered with substantial differences in the velocities and thickness of individual layers. The area of the TESZ in NW and central Poland can be divided into at least two crustal blocks (terranes), called here Pomeranian Unit (PU, in the northwest) and Kuiavian Unit (KU, in the southeast). The postulated boundary between KU and PU is rather sharp at particular levels of the crust. Velocity distribution in the middle and lower crystalline crust in the TESZ area resemble values recognized in the EEC area, the fundamental difference being the much smaller thickness of both these layers. Our hypothesis/speculation is that the attenuated lower and middle crust of the TESZ belong to proximal terranes built of the EEC crust detached in the southeast and re-accreted to the EEC due to the process of anti-clockwise rotation of the Baltica paleocontinent during the Ordovician–Early Silurian.  相似文献   

9.
Recently, two diverse seismic techniques were applied independently to the study of the crustal structure of the Cumberland Plateau, eastern Tennessee. One involved a reinterpretation of a refraction experiment performed in 1965 by the U.S. Geological Survey, consisting of two 400 km long, reversed refraction lines. The other entailed the inversion of broadband teleseismic P waveforms recorded at a single three-component broadband station, RSCP, located at the intersection of the two refraction profiles. A comparison of the two sets of velocity profiles revealed many similarities and some significant differences. Both sets of velocity models consist of three major crustal layers: (1) an upper crust (Vp = 6.1–6.4 km/s) down to about 17 km, (2) a mid-crust (Vp = 6.7–6.9 km/s) between 17 and 40 km depth, (3) a lower crust (Vp = 7.2–7.4 km/s) from 40 to 51 km depth. The refraction models have linear transition zones up to 11 km thick at the base of each layer, whereas the teleseismic models have more irregular transition zones at the base of the mid- and lower crust. The differences in the results of these studies are attributed to the differing frequency bandwidths of the data sets; the predominant sensitivity of the teleseismic data to shear velocities, compared to compressional velocities for the refraction data; and the different analysis procedures involved in each method. Nevertheless, the similarities indicate that the teleseismic waveform method with broadband data is capable of retreiving comparable crustal information as the Cumberland Plateau refraction survey. In addition, it provides the kind of complementary information required to constrain the composition of the continental lower crust and uppermost mantle.  相似文献   

10.
Detailed seismic investigations of the continental crust have produced evidence of definite regularities in the general layering of the consolidated crust despite its high degree of inhomogeneity. Three main layers may be resolved in the inner part of a continent: an upper layer with velocities of 5.8–6.4 km/s and a velocity gradient about 0.04–0.05 s−1, an intermediate layer with velocities of 6.2–6.6 km/s and velocity gradient about zero, and a lower layer with velocities of 6.8–7.2 km/s and a high-velocity gradient of 0.05–0.1 s−1. The intermediate layer is characteristically different not only because of its low average velocity gradient, but also because of its more pronounced horizontal layering, inversion zones, and its higher “transparency” and Vp/Vs ratio. The gravity and magnetic data have shown that basement inhomogeneities disappear at the top of the intermediate layer. Also there are few earthquakes in this layer. These pecularities may be interpreted as the result of partial melting (weakening) of rocks and their possible horizontal mobility inside this layer.Thus, dynamic models of tectonic processes must take into consideration the possible existence of a weak zone in the crust.  相似文献   

11.
The crustal structure along a 312 km transect, stretching from the axial mountains of the North Atlantic Knipovich Ridge to the continental shelf of Svalbard, has been obtained using seismic reflection data and wide angle OBS data. The resulting seismic Vp and Vs models are further constrained by a 2-D-gravity model. The principal objective of this study is to describe and resolve the physical and compositional properties of the crust in order to understand the processes and creation of oceanic crust in this extremely slow-spreading counterpart of the North Atlantic Ridge Systems. Vp is estimated to be 3.50–6.05 km/s for the upper oceanic crust (oceanic layer 2), with a marked increase away from the ridge. The measured Vp of 6.55–6.95 km/s for oceanic layer 3A and 7.10–7.25 km/s for layer 3B, both with a Vp/Vs ratio of 1.81, except for slightly higher values at the ridge axis, does not allow a clear distinction between gabbro and mantle-derived peridotite (10–40% serpentized). The thickness of the oceanic crust varies a lot along the transect from the minimum of 5.6 km to a maximum of 8.1 km. The mean thickness of 6.7 km for the oceanic crust is well above the average thickness for slow-spreading ridges (<10 mm/year half-spreading rate). The areas of increased thickness could be explained by large magma production-rates found in the zones of axial highs at the ridge axis, which also have generated the off-axial highs adjacent the ridge. We suggest that these axial and off-axial highs along the ridge control the lithological composition of the oceanic crust. This approach suggests normal gabbroic oceanic crust to be found in the areas bound by the active magma segments (the axial and off-axial highs) and mantle-derived peridotite outside these zone.  相似文献   

12.
The large-scale seismic experiment POLONAISE '97 (POlish Lithospheric ONsets—An International Seismic Experiment) was carried out in May 1997 in Poland, Lithuania, and Germany. Its main purpose was to investigate the structure of the crust and the uppermost mantle in the region of the Trans European Suture Zone (TESZ) that lies between the East European Craton (EEC) and the Palaeozoic Platform. This paper covers the interpretation of seismic data along the NW–SE-trending, 180-km-long profile P5 located on the EEC. The recordings were of a high quality with seismic energy clearly visible along the whole profile. We have not found waves refracted below the upper crust in first arrivals. In the NW part of the profile, we have delineated a high-velocity body with the P-wave velocity in the range of 6.5–6.75 km/s in the upper crust. It corresponds to the K trzyn anorthosite massif within the Mazury complex. The Mazowsze massif is rather uniformly characterized by P-wave velocities 5.9–6.05 and 6.2–6.35 km/s in two layers, respectively. Sufficient S-wave data were available to estimate the Vp/Vs ratio (as well as the Poisson ratio), being 1.80 (0.277) in the high-velocity body and 1.67 (0.220) in the upper crust.Apart from the 2-D model along the profile, results of 3-D modelling in the area of the P5 profile are presented. Using off-line recordings, we got P-wave velocity field up to 8 km/s below the P5 profile at the depth of about 40 km as well as horizontal extent of the high-velocity body.  相似文献   

13.
Abstract: The ratio of P- to S-wave velocities (Vp/Vs) is regarded as one of the most diagnostic properties of natural rocks. It has been used as a discriminant of composition for the continental crust and provides valuable constraints on its formation and evolution processes. Furthermore, the spatial and temporal changes in Vp/Vs before and after earthquakes are probably the most promising avenue to understanding the source mechanics and possibly predicting earthquakes. Here we calibrate the variations in Vp/Vs in dry, anisotropic crustal rocks and provide a set of basic information for the interpretation of future seismic data from the Wenchuan earthquake Fault zone Scientific Drilling (WFSD) project and other surveys. Vp/Vs is a constant (Ф0) for an isotropic rock. However, most of crustal rocks are anisotropic due to lattice-preferred orientations of anisotropic minerals (e.g., mica, amphibole, plagioclase and pyroxene) and cracks as well as thin compositional layering. The Vp/Vs ratio of an anisotropic rock measured along a selected pair of propagation-vibration directions is an apparent value (Фij) that is significantly different from the value for its isotropic counterpart (Ф0). The usefulness of apparent Vp/Vs ratios as a diagnostic of crustal composition depends largely on rock seismic anisotropy. A 5% of P- and S-wave velocity anisotropy is sufficient to make it impossible to determine the crustal composition using the conventional criteria (Vp/Vs≤1.756 for felsic rocks, 1.7561.944 fluid-filled porous/fractured or partially molten rocks) if the information about the wave propagation-polarization directions with respect to the tectonic framework is unknown. However, the variations in Vp/Vs measured from borehole seismic experiments can be readily interpreted according to the orientations of the ray path and the polarization of the shear waves with respect to the present-day principal stress directions (i.e., the orientation of cracks) and the frozen fabric (i.e., foliation and lineation).  相似文献   

14.
The main aim of the TOR project is to study the lithospheric–asthenospheric boundary structure under the Sorgenfrei–Tornquist Zone, across northern Germany, Denmark and southern Sweden. Relative arrival-time residuals of teleseismic P and S phases from 51 earthquakes, recorded by 150 seismic stations along the TOR array, were used to delineate the transition zone in the studied area. The effects of crustal structures were investigated by correcting the teleseismic residuals for travel-time variations in the crust based on a 3D crustal model derived from other data. The inversion was carried out for S phases. The results were then compared with the corresponding P-wave models. As expected, the derived models show that the relatively old and cold Baltic Shield has higher velocity at depth than the younger lithosphere farther South. The models show two sharp and distinct increases in depth to velocities which are low compared to our reference model, as we move from South to North. The location and sharpness of these boundaries suggests that the features resolved are, at least partially, compositional in origin, presumably related to mantle depletion. A sharp and steep subcrustal boundary is found roughly coincident with the southern edge of Sweden. This is below where the edge of the Baltic Shield is usually placed, based on surface geological evidence (the Sorgenfrei–Tornquist Zone). Another less significant transition is recognised more or less beneath the Elbe-lineament. Relatively high d(Vp / Vs) ratios under the central part of the profile (Denmark) indicate relatively low S-velocity in an area where a gravity high supports the hypothesis of extensive mafic intrusions.  相似文献   

15.
A 3-D density model for the Cretan and Libyan Seas and Crete was developed by gravity modelling constrained by five 2-D seismic lines. Velocity values of these cross-sections were used to obtain the initial densities using the Nafe–Drake and Birch empirical functions for the sediments, the crust and the upper mantle. The crust outside the Cretan Arc is 18 to 24 km thick, including 10 to 14 km thick sediments. The crust below central Crete at its thickest section, has values between 32 and 34 km, consisting of continental crust of the Aegean microplate, which is thickened by the subducted oceanic plate below the Cretan Arc. The oceanic lithosphere is decoupled from the continental along a NW–SE striking front between eastern Crete and the Island of Kythera south of Peloponnese. It plunges steeply below the southern Aegean Sea and is probably associated with the present volcanic activity of the southern Aegean Sea in agreement with published seismological observations of intermediate seismicity. Low density and velocity upper mantle below the Cretan Sea with ρ  3.25 × 103 kg/m3 and Vp velocity of compressional waves around 7.7 km/s, which are also in agreement with observed high heat flow density values, point out at the mobilization of the upper mantle material here. Outside the Hellenic Arc the upper mantle density and velocity are ρ ≥ 3.32 × 103 kg/m3 and Vp = 8.0 km/s, respectively. The crust below the Cretan Sea is thin continental of 15 to 20 km thickness, including 3 to 4 km of sediments. Thick accumulations of sediments, located to the SSW and SSE of Crete, are separated by a block of continental crust extended for more than 100 km south of Central Crete. These deep sedimentary basins are located on the oceanic crust backstopped by the continental crust of the Aegean microplate. The stretched continental margin of Africa, north of Cyrenaica, and the abruptly terminated continental Aegean microplate south of Crete are separated by oceanic lithosphere of only 60 to 80 km width at their closest proximity. To the east and west, the areas are floored by oceanic lithosphere, which rapidly widens towards the Herodotus Abyssal plain and the deep Ionian Basin of the central Mediterranean Sea. Crustal shortening between the continental margins of the Aegean microplate and Cyrenaica of North Africa influence the deformation of the sediments of the Mediterranean Ridge that has been divided in an internal and external zone. The continental margin of Cyrenaica extends for more than 80 km to the north of the African coast in form of a huge ramp, while that of the Aegean microplate is abruptly truncated by very steep fractures towards the Mediterranean Ridge. Changes in the deformation style of the sediments express differences of the tectonic processes that control them. That is, subduction to the northeast and crustal subsidence to the south of Crete. Strike-slip movement between Crete and Libya is required by seismological observations.  相似文献   

16.
Upper-mantle velocity structure of the lower Great Lakes region   总被引:1,自引:0,他引:1  
The lithospheric root beneath North America contains a prominent indentation beneath the lower Great Lakes region that is approximately aligned with the track of the New England seamounts. By combining data from the recently installed POLARIS network in southern Ontario, Canada with data acquired in 1996 during the Abitibi–Grenville teleseismic experiment, we have performed a tomographic inversion using 4543 P-wave traveltimes from 213 events (5.0 ≤ mb ≤ 6.6), and 1860 S-wave traveltimes from 98 events (5.0 ≤ mb ≤ 6.6), to obtain high-resolution images of the upper mantle beneath the lower Great Lakes. Two salient features of the 3-D models are: 1) a patchy, NNW-trending low-velocity region, and 2) a linear, NE-striking high-velocity anomaly. S-wave images show that the low-velocity anomaly changes from an arcuate feature at 400-km depth, to a NW-striking linear feature at 100-km depth beneath the Neoproterozoic Ottawa–Bonnechere graben. The linear high-velocity anomaly extends to at least 300-km depth and strikes parallel to surface geological belts and the Laurentian continental margin. We interpret the high-velocity anomaly as a possible relict slab associated with ca. 1.35–1.3 Ga subduction beneath the Composite Arc Belt, whereas the low-velocity anomaly is interpreted as a zone of alteration and metasomatism associated with the ascent of magmas that produced the Late Cretaceous Monteregian plutons. Our data support an interpretation of these plutons as melts generated by the passage of North America across a mantle plume, rather than a far-field response to opening of the North Atlantic.  相似文献   

17.
We analyzed the short period Rayleigh waves from the first crustal-scale seismic refraction experiment in the Korean peninsula, KCRUST2002, to determine the shear wave velocity and attenuation structure of the uppermost 1 km of the crust in different tectonic zones of the Korean peninsula and to examine if this can be related to the surface geology of the study area. The experiment was conducted with two large explosive sources along a 300-km long profile in 2002. The seismic traces, recorded on 170 vertical-component, 2-Hz portable seismometers, show distinct Rayleigh waves in the period range between 0.2 s and 1.2 s, which are easily recognizable up to 30–60 km from the sources. The seismic profiles, which traverse three tectonic regions (Gyeonggi massif, Okcheon fold belt and Yeongnam massif), were divided into five subsections based on tectonic boundaries as well as lithology. Group and phase velocities for the five subsections obtained by a continuous wavelet transform method and a slant stack method, respectively, were inverted for the shear wave models. We obtained shear wave velocity models up to a depth of 1.0 km. Overall, the shear wave velocity of the Okcheon fold belt is lower than that of the Gyeonggi and Yeongnam massifs by  0.4 km/s in the shallowmost 0.2 km and by 0.2 km/s at depths below 0.2 km. Attenuation coefficients, determined from the decay of the fundamental mode Rayleigh waves, were used to obtain the shear wave attenuation structures for three subsections (one for each of the three different tectonic regions). We obtained an average value of Qβ− 1 in the upper 0.5 km for each subsection. Qβ− 1 for the Okcheon fold belt ( 0.026) is approximately three times larger than Qβ− 1 for the massif areas ( 0.008). The low shear wave velocity in the Okcheon fold belt is consistent with the high attenuation in this region.  相似文献   

18.
B. Schurr  A. Rietbrock  G. Asch  R. Kind  O. Oncken   《Tectonophysics》2006,415(1-4):203-223
Data from three temporary seismic networks were merged for tomographic inversion. Although the deployments did not coincide in time, spatial overlap was achieved by re-occupying existing sites. Travel times and t operators of about 1600 earthquakes were inverted for 3D models of νp, νp/νs and P-wave attenuation (Qp− 1). All three attributes provide a consistent image of the entire subduction zone on a lithospheric scale. The tomographic images reveal low velocities and high attenuation in the crust and mantle underlying the Western Cordillera and most of the Puna plateau, indicative of weak rheology and mostly asthenospheric mantle. In contrast, forearc and eastern foreland are characterized by high Qp values, corresponding to cold temperatures in accordance with thermal models. In the backarc, between 23°S and 24°S, a high velocity, high Qp structure beneath the Eastern Cordillera and eastern Puna is interpreted as detaching continental lithosphere that has been thickened in the orogenic process. South of this structure, the mantle is characterized by low velocities, high νp/νs ratios, and low Qp values. Here it is believed that lithosphere originally underlying Andean crust has already been removed. This is supported by new estimates of crustal thickness and volcanic activity.  相似文献   

19.
To understand the generation mechanism of the Bam earthquake (Mw 6.6), we studied three-dimensional VP, VS and Poisson's ratio (σ) structures in the Bam area by using the seismic tomography method. We inverted accurate arrival times of 19490 P waves and 19015 S waves from 2396 aftershocks recorded by a temporal high-sensitivity seismic network. The 3-D velocity structure of the seismogenic region was well resolved to a depth of 14 km with significant velocity variations of up to 5%. The general pattern of aftershock distribution was relocated by using the 3-D structure to delineate a source fault for a length of approximately 20 km along a line 4.5 km west of the known geological Bam fault; this source fault dips steeply westward and strikes a nearly north–south line. The main shallow cluster of aftershocks south of the city of Bam is distributed just under the minor surface ruptures in the desert. The 3-D velocity structure shows a thick layer of high VS and low σ (minimum: 0.20) at a depth range of 2–6 km. The deeper layer, with a thickness of about 2 km, appears to have a low VS and high σ (maximum: 0.28) from 6 km depth beneath Bam to a depth of 9 km south of the city. The inferred increase of Poisson's ratio from 2 to 10 km in depth may be associated with a change from rigid and SiO2-rich rock to more mafic rock, including the probable existence of fluids. The main seismic gap of aftershock distribution at the depth range of 2 to 7 km coincides well with the large slip zone in the shallow thick layer of high VS and low σ. The large slip propagating mainly in the shallow rigid layer may be one of the main reasons why the Bam area suffered heavy damage.  相似文献   

20.
江南造山带位于华南大陆扬子块体和华夏块体之间,其深部地壳结构与变形特征记录了扬子块体与华夏块体拼合与相互作用的痕迹,且在其内部与邻区发育了丰富的多金属矿床,并形成了巨型Cu-Au-Pb-Zn-Ag多金属成矿带,是深化认识华南大陆地壳演化、岩浆作用与成矿系统的关键地域。针对华南大陆地区的地壳结构与成矿过程,国家科技重点研发计划“华南陆内成矿系统的深部过程与物质响应”项目在该区实施了一条密集宽频带地震流动探测剖面,旨在探测其深部结构与物性变化特征和深部成矿背景。本文利用其中江西广昌-湖南浏阳段长320km的宽频带地震流动台站数据开展了远震P波接收函数研究,获得了剖面辖区深部地壳结构和Vp/Vs变化特征。研究结果表明:(1)剖面Moho界面深度在29~35km之间变化,呈近穹窿状分布,平均Moho界面深度为31km左右,低于全球大陆地壳平均值,且与地形高程在整体上呈镜像相关,均衡程度较好;(2)剖面沿线地壳Vp/Vs在1.64~1.83之间呈波浪状起伏变化,平均值为1.72左右,且华夏块体略高于江南造山带...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号