首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
苏超群 《广东气象》2014,36(6):77-80
利用新兴县气象观测站新、旧站2012年的气象观测资料进行差值对比分析,对比结果表明:新站年平均气温、平均最高、最低气温分别比旧站偏低0.4、0.5和0.5℃,各时次、各月平均气温普遍比旧站低。分析认为受气温直减率和城市热岛效应的影响,新站年平均相对湿度比旧站偏小3.5%;新站年平均风速比旧站大0.49 m/s;新、旧站年最多风向均为N,风向频率分别为15%和20%,旧站各月最多风向为北风;新站年平均本站气压、平均最高、最低气压比旧站分别偏低3.4、3.4和3.3h Pa,气压差异与海拔高度的变化基本相吻合。深层地温年平均差异最大的是320 cm地温,新站比旧站低1.3℃,80 cm地温差异最小,各深层地温的月平均差值具有明显的季节性变化。  相似文献   

2.
利用2016-2018年库尔勒气象站迁站前后基本气象要素的观测资料进行对比分析,结果显示:(1)平均气温、平均最低气温年、月值均是新站低于旧站,年值分别低2.1℃和4.1℃,年平均最高气温持平;春季气温差值变化相对较小,夏、秋、冬季气温差值变化相对偏大。(2)各月相对湿度新站大于旧站,各季相对湿度差值夏季最大,年平均相对湿度新站比旧站高11%。(3)平均气压新站高于旧站,年平均气压差值为3.2pha。各季差值冬季最大,(4)平均风速新站比旧站偏大0.1m/s,春季、夏季风速大于其他季节;最大风速新站比旧站偏大1.3-6.2m/s;主导风向由ENE转为E。(5)年平均气温、最低气温、平均湿度和年平均气压,迁站前后资料有显著差异,年平均最高气温、平均风速无显著差异。(6)测站周围环境、海拔高度、下垫面、地形等因素是造成新旧站气象要素差异的主要原因。  相似文献   

3.
通过对2022年1—12月安塞国家气象观测站新旧站平均气温,最高气温,最低气温,平均相对湿度,平均风速,降水量的月值、年值进行对比分析及评估,明确观测站变迁造成的观测数据的差异。结果表明:新站和旧站的平均气温、最高气温、最低气温、降水量、平均相对湿度差异不显著;但平均风速差异显著,新站风速较旧站略偏大,年平均风速偏大02 m/s,1—12月月平均风速除7月和9月无偏差外,其余月份均偏大,差值范围在01~05 m/s之间,因此新站风速资料需要经过订正后才能续接合并使用。  相似文献   

4.
湛江观测站迁移对气象要素的影响   总被引:2,自引:0,他引:2  
采用差值的方法,对湛江气象观测站新旧两站1、4、7月份的气温、湿度、风向风速对比观测气象资料进行分析,发现旧站月平均气温(包括最高、最低)均比新站偏高,其中月平均气温差值(旧站-新站)变化范围在0.5~0.8 ℃,1、7月份旧站气温偏高现象比4月明显,表现为在冷热季节里,两者温差加大;旧站相对湿度略比新站偏小;新站月平均风速、月极大风速均比旧站大,风向也不太一致.并从地理位置、测站环境、仪器安装等方面分析了形成差值的原因,为气象资料序列延续和订正提供依据,为今后查阅使用气象资料提供参考.  相似文献   

5.
基于新旧站2010年1、4、7、10月平行观测的气温、气压、相对湿度和全年风向风速资料,采用差值分析法和t检验,分析了气温、气压、相对湿度和风向风速在迁站前后的差异特征,结果表明:4个月份中,新站的定时观测气温、气压以及月平均气压、平均气温比旧站偏低;相对湿度7月份比旧站偏高,其他月份比旧站偏低;全年平均风速新站比旧站偏高,主导风向新旧站有差异;迁站前后气压和风速存在显著性差异。造成新旧站气象资料差异的主要原因可能是探测环境和海拔高度等因素发生变化。  相似文献   

6.
选取墨玉新旧站2017年逐小时气温、相对湿度、风速3个气象观测要素进行差值分析,同时选择旧站1966—2013年与新站2014—2021年的月平均数据做t检验。结果表明:(1)墨玉新旧站气温、相对湿度和风速差值均呈偏态分布,气温差值分布较分散,仅有38.68%的差值在-1~1℃,相对湿度和风速差值分布较集中,58.91%的相对湿度差值在-10%~10%,79%的风速差值在-1~1 m·s-1。(2)新站平均气温低于旧站,全年平均气温差值为-1.7℃;新站平均相对湿度和平均风速大于旧站,全年平均相对湿度差和平均风速差分别为11%和0.3 m·s-1。(3)经t检验,在0.05的显著性条件下,3种要素均存在断点,需进一步订正。平均气温在1、2、7、9月连续,平均相对湿度在1—3月和10—12月连续,平均风速仅3月连续。  相似文献   

7.
2013年,由于陈桥观测站观测环境的破坏,观测场搬到了远离市区的红山森林公园。为了验证观测资料在搬迁前后是否有明显差异,通过T检验对潮州新旧观测站之间的各项气象要素进行显著性检验,再对潮州新旧站点之间的各项气象要素进行差值对比分析,结果表明:新站个别月份的月平均气温和月平均风速与旧站存在显著差异;新站除了个别月份之外,月平均气温、月平均最高气温、月平均最低气温、月极端最高气温、月极端最低气温与旧站相比,均比旧站低,相对湿度则是新站比旧站高;新站的月平均风速基本比旧站小,盛行风向有明显的季节性变化,新站的风向特征与本地历史风向特征有一定的差异;新旧站之间的降水量差异较小。  相似文献   

8.
通过对延安国家基本气象站(53845)新、旧站2013年1—12月气压、空气温度、空气湿度、风向风速、降水、地温等观测资料的对比分析,发现新站气压、气温、湿度、平均地温、极端日最低地温低(小)于旧站,降水、风速以及地面日极端最高温度大部高(大)于旧站。并从海拔高度、两站周围环境差异等方面分析了新、旧站各气象要素差异的形成原因,为延安站资料的序列延续和订正提供依据。  相似文献   

9.
对甘肃合水气象站2013年站址迁移前后对比观测资料中的气温、降水、风、相对湿度等主要气象要素利用差值、风向相符率、显著性检验等方法进行对比分析,发现合水新站的日平均气温、日最高气温、日最低气温低于旧站;新站4—6月降水量小于旧站,7—10月降水量大于旧站;新站平均风速大于旧站,全年风向相符率为30.5%,两站风向差异明显;新站1、2、12月相对湿度小于旧站,其它各月大于旧站,而新站最小相对湿度小于旧站。新、旧站温度、相对湿度在均值和方差方面均无显著性差异,可用新站观测数据替代旧站使用。  相似文献   

10.
揭阳新旧站气象观测资料对比分析   总被引:1,自引:0,他引:1  
利用揭阳新、旧观测站2010年观测资料,选取其中气温、气压、相对湿度、风向风速等气象要素资料,采用差值分析方法进行对比分析.结果表明:新站月平均气温、月平均最高最低气温、月平均本站气压均比旧站偏低,气温偏低的幅度不大,气压偏低的幅度较大.两站最多风向及频率不完全一致,新站月平均风速比旧站略偏大;新站相对湿度比旧站偏大.气象要素产生差异的原因主要是由新旧站址的观测环境、海拔高度、下垫面差异以及城市热岛效应造成的.  相似文献   

11.
气象站迁站前后气温同期观测资料对比   总被引:4,自引:0,他引:4  
通过对山东省东阿县新旧地面气象观测站同期(2008年1、4、7月)气温观测资料对比分析,发现两站之间气温存在明显的正温差,旧测站气温存在城市热岛效应。这种效应夜间大于白天,冬、春(秋)季较为明显,夏季最小;城市热岛效应使最低气温下降,从而减小气温日较差,故旧测站气温较高;统计检验表明,旧测站与新测站气温存在显著的正相关,但两地气温差异显著,两地气温资料已经不适合合并计算。所以,对于旧测站的气温记录,应做出必要的订正后,才能得到较准确的代表当地气温的统计资料。  相似文献   

12.
文章通过对内蒙古巴彦淖尔市临河地面气象观测站迁移前、后4a的自动气象站观测要素对比分析,得出临河迁站前、后气象要素存在明显的差异:新站的年、月平均气温比旧站低、相对湿度比旧站高、风速比旧站大。旧站的观测资料仅代表城市中心局部气候状况,已经不能较好的反映本地区的气候特点;而新站则较好的反映了临河地区城郊大范围的天气气候状况。同时分析了新、旧站各气象要素差值的形成原因,期望为天气预报、气候评价、气象服务等提供数据参考。  相似文献   

13.
利用阿勒泰地区7个气象观测站1981-2013年积雪初、终日期、积雪期(积雪初、终日期间日数),以及同期平均气温、平均0厘米地面温度、降水量、日照时数和平均风速资料,分析了该区积雪的变化特征及其与五个气象因子的关系。结果表明:阿勒泰地区平均初日为11月3日,终日为4月2日,平均积雪期为152d;近33年阿勒泰地区积雪初日呈上升的趋势,而终日和积雪期是呈下降趋势;除了吉木乃站的积雪初日气候倾向率是负值外,其余各站均是正值的,积雪终日的气候倾向率各站均为负值,积雪期的气候倾向率除了吉木乃站外其余均是正值;各站在积雪期内与降水量呈显著的正相关,表明降水量越多积雪持续时间越长,而且七个站均通过了显著性检验,降水因子在五个因子的对各站积雪期的影响较大;阿勒泰地区的各站积雪期与积雪初、终日期间的风速、降水量、0厘米地温、日平均气温、日照时数五个因子的相关系数中有57%的通过信度0.05的显著性检验,还有20%的通过了信度0.001的显著性检验;  相似文献   

14.
基于1981—2021年北京地区6个气象站的逐日最大冻土深度、平均气温、平均地表温度及5、10、15、20、40、80 cm地温等资料,分析了近40年北京地区最大冻土深度的时空分布特征及其与气温和地温的关系。结果表明:北京地区最大冻土深度总体呈变浅趋势,气候倾向率为-2.3 cm/10 a,各站点最大冻土深度变浅趋势从西到东呈逐渐减弱趋势。北京地区最大冻土深度与40、80 cm地温相关性最好,与地表温度相关性较差。选取2021至2022年北京地区冻土对比试验数据,评估测温式冻土自动观测仪观测精度,发现仪器安装至少一个冻融周期后与冻土人工观测吻合度更好,测温式冻土自动观测仪的观测精度与仪器安装位置的地下岩层、土质分布密切相关,需要在仪器稳定运行后根据当地实际优化算法和冻融阈值。  相似文献   

15.
为了掌握沈阳地区地温变化规律,并提供更好的大田地温预报服务,降低播种风险,提高粮食生产安全,利用沈阳地区7个气象站点1981-2015年地温和气温数据,运用数理统计方法,分析近35 a地温和气温的变化规律,建立了春播期(4月和5月)地温预报模型。结果表明:1981-2010年,年代际温度呈上升趋势,气温的变化导致地温的变化也更加明显,气温和各层地温的气候倾向率为0.426-0.549℃/10 a,4-10月0-5 cm、5-10 cm、10-20 cm每一层的地温差为1.5℃、0.5℃和0.5℃;0-20 cm地温以及气温在1996年前后发生了突变;春播期西部地区0 cm、5 cm、10 cm的地温和气温差值4-5月由较低转为较高;地温预报模型t检验的P值在P=0.01水平差异均不显著,相对误差控制在±10%以内,可以用于沈阳春播期(4月和5月)地温预测。  相似文献   

16.
该文使用1961-2020年霜的观测数据分析了贵阳和威宁站霜的气候分布特征,用霜在白天的持续时长与08时的气象要素进行相关性分析得知贵阳站气温、露点温度、地温、5 cm地温与霜持续时长有较好的负相关,相关系数的绝对值均大于0.7,威宁站气温、露点温度、5 cm地温与霜持续时长有较好的负相关,相关系数的绝对值均大于0.4。贵阳和威宁上述几个气象要素在霜消前的变化特征如下:贵阳威宁站的气温均高于地温,二者平均温差贵阳站为2.17℃,威宁站为3.31℃;贵阳站气温和地温的差值有最小的标准差1.53℃,威宁站5 cm地温有最小的标准差2.09℃。从这两个因子的平均态来看,当贵阳站气温和地温之差大于2.17℃、威宁站5 cm地温大于5.09℃时预示着该站霜的消融。  相似文献   

17.
衡阳地区自动站与人工观测站气温对比分析   总被引:1,自引:1,他引:0  
陈涛  叶成志  李超 《气象科学》2014,34(1):112-118
利用衡阳站、常宁站、南岳高山站2004—2006年自动与人工平行观测资料,运用相关分布、对比差值等分析方法,研究了自动站与人工站气温的差异性及变化特点。结果表明:自动气象站与人工站气温值的稳定性均很好,未出现大的系统性偏差。衡阳自动站以偏低为主,南岳高山和常宁自动站则以偏高为主。在气温较低的地区或时间段,自动站与人工站气温值相等出现几率更大。对比差值在逐时变化中表现出"单峰型"分布特征,最大值出现在11时,最小值出现在20时。影响对比差值大小变化的主要因素是气温的变化幅度,这种反应存在一定的滞后性,同时这种变化也是非对称性的,对比差上升增速要大于其下降的减速。衡阳站、南岳高山站气温对比差值,月平均误差范围小,达到《地面气象观测规范》要求。常宁自动气象站气温以偏高为主,温差变化大,特别在春、夏季部分月份表现更为明显。  相似文献   

18.
利用FY-1D极轨气象卫星分裂窗区通道计算陆表温度   总被引:4,自引:2,他引:4       下载免费PDF全文
根据理论和经验上已证明的地表温度与AVHRR窗区通道4、5的亮度温度存在线性或非线性关系, 通过对2818条全球晴空大气廓线做不同比辐射率地表的FY-1D窗区通道4、5辐射率的模拟计算, 推导出FY-1D极轨气象卫星的红外通道4、5亮温与地表温度的二次回归关系式。同时详细介绍了由这一回归关系式和FY-1D高分辨率图像传输 (HRPT) 遥测数据计算陆表温度的方法, 最后给出陆表温度计算结果的精度:用中国地面气象台站的0 cm地温观测数据与相同时刻的分辨率为0.01°×0.01°经纬度的卫星陆表温度相对比, 两者非常吻合, 绝大部分台站|ΔT|<3.0 K。  相似文献   

19.
以矮秆代表作物冬小麦为研究对象,利用郑州农业气象试验站2010年10月15日—2011年6月2日农田小气候观测的各层裸温、气温、总辐射和覆盖度资料,采用对比差值、温度垂直梯度等方法统计分析,并对温度对比差值和总辐射曝辐量相关关系和温度的垂直梯度分布特征进行了研究,结果表明:25cm、150cm和300cm高度的日平均裸温和气温变化趋势基本一致,其对比差值呈由小变大趋势;各层裸温和气温的日分布符合温度日变化分布的一般规律,垂直梯度变化比较明显;各层对比差值呈单峰分布,峰值出现在正午12时左右;裸温和气温的对比差值与总辐射曝辐量呈线性相关。裸温与气温的垂直梯度变化有很好的一致性,可利用裸温不同层次间垂直梯度变化特征确定气温传感器合理的安装高度;根据麦田裸温垂直梯度变化特征,考虑到温度防辐射罩高度限制,矮秆作物田间小气候气温应在距离地表面25cm、50cm和150cm高度附近分别设置观测层次。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号