首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
M. J. Owens 《Solar physics》2009,260(1):207-217
Magnetic clouds are a class of interplanetary coronal mass ejections (CME) predominantly characterised by a smooth rotation in the magnetic field direction, indicative of a magnetic flux rope structure. Many magnetic clouds, however, also contain sharp discontinuities within the smoothly varying magnetic field, suggestive of narrow current sheets. In this study we present observations and modelling of magnetic clouds with strong current sheet signatures close to the centre of the apparent flux rope structure. Using an analytical magnetic flux rope model, we demonstrate how such current sheets can form as a result of a cloud’s kinematic propagation from the Sun to the Earth, without any external forces or influences. This model is shown to match observations of four particular magnetic clouds remarkably well. The model predicts that current sheet intensity increases for increasing CME angular extent and decreasing CME radial expansion speed. Assuming such current sheets facilitate magnetic reconnection, the process of current sheet formation could ultimately lead a single flux rope becoming fragmented into multiple flux ropes. This change in topology has consequences for magnetic clouds as barriers to energetic particle propagation.  相似文献   

2.
A family of exact analytic solutions of the time-independent Vlasov-Maxwell equations is presented. The solutions describe two-dimensional equilibrium current sheet with magnetic field structures resembling that produced by the tearing instability. In particular, the solutions presented here do not restrict the field in the magnetic island to small magnitude. It is shown that as the scale length of the magnetic island increases, the thickness of the current sheet increases while the average current and the average magnetic energy decrease. The tearing structures described by the solutions may exist in the magnetotail current sheet, the magnetopause current layer and the field-aligned auroral sheet current.  相似文献   

3.
The X-ray activity of anomalous X-ray pulsars and soft γ-ray repeaters may result from the heating of their magnetic corona by direct currents dissipated by magnetic reconnection. We investigate the possibility that X-ray flares and bursts observed from anomalous X-ray pulsars and soft γ-ray repeaters result from magnetospheric reconnection events initiated by development of the tearing mode in magnetically dominated relativistic plasma. We formulate equations of resistive force-free electrodynamics, discuss the relation of the latter to ideal electrodynamics, and give examples of both ideal and resistive equilibria. Resistive force-free current layers are unstable towards the development of small-scale current sheets where resistive effects become important. Thin current sheets are found to be unstable due to the development of the resistive force-free tearing mode. The growth rate of the tearing mode is intermediate between the short Alfvén time-scale  τA  and a long resistive time-scale  τR: Γ∼ 1/(τRτA)1/2  , similar to the case of non-relativistic non-force-free plasma. We propose that growth of the tearing mode is related to the typical rise time of flares, ∼10 ms. Finally, we discuss how reconnection may explain other magnetar phenomena and ways to test the model.  相似文献   

4.

Crossings of the heliospheric current sheet (HCS) at the Earth’s orbit are often associated with observations of anisotropic beams of energetic protons accelerated to energies from hundreds of keV to several MeV and above. A connection between this phenomenon and the occurrence of small-scale magnetic islands (SMIs) near reconnecting current sheets has recently been found. This study shows how pre-accelerated protons can be energized additionally due to oscillations of multiple SMIs inside the ripple of the reconnecting HCS. A model of the electromagnetic field of an oscillating 3D SMI with a characteristic size of ~0.001 AU is developed. A SMI is supposed to be bombarded by protons accelerated by magnetic reconnection at the HCS to energies from ~1keV to tens of keV. Numerical simulations have demonstrated that the resulting longitudinal inductive electric fields can additionally reaccelerate protons injected into a SMI. It is shown that there is a local “acceleration” region within the island in which particles gain energy most effectively. As a result, their average escape energies range from hundreds of keV to 2 MeV and above. There is almost no particle acceleration outside the region. It is shown that energies gained by protons significantly depend on the initial phase and the place of their entry into a SMI but weakly depend on the initial energy. Therefore, low-energy particles can be accelerated more efficiently than high-energy particles, and all particles can reach the total energy limit upon their escape from a SMI. It is also found that the escape velocity possesses a strong directional anisotropy. The results are consistent with observations in the solar wind plasma.

  相似文献   

5.
Two-dimensional stationary magnetic reconnection models that include a thin Syrovatskii-type current sheet and four discontinuous magnetohydrodynamic flows of finite length attached to its endpoints are considered. The flow pattern is not specified but is determined from a self-consistent solution of the problem in the approximation of a strong magnetic field. Generalized analytical solutions that take into account the possibility of a current sheet discontinuity in the region of anomalous plasma resistivity have been found. The global structure of the magnetic field in the reconnection region and its local properties near the current sheet and attached discontinuities are studied. In the reconnection regime in which reverse currents are present in the current sheet, the attached discontinuities are trans-Alfvénic shock waves near the current sheet endpoints. Two types of transitions from nonevolutionary shocks to evolutionary ones along discontinuous flows are shown to be possible, depending on the geometrical model parameters. The relationship between the results obtained and numerical magnetic reconnection experiments is discussed.  相似文献   

6.
We present two-dimensional numerical simulations of magnetic reconnection in a configuration relevant to two-ribbon solar flares. The calculations extend those of Forbes and Priest (1982a, b, 1983) and some puzzling aspects of their results are clarified. In particular, the roles of magnetic diffusion, of the tearing mode and of turbulence are individually examined. We stress the important part played by boundary conditions in determining the evolution of the initial current sheet and suggest that in future the evolution of the entire overlying magnetic arcade be modelled as well as the current sheet that is created below the rising arcade. Tearing at very high magnetic Reynolds numbers is likely to develop into an impulsive bursty regime of reconnection after a time which depends on the initial level of turbulence.  相似文献   

7.
This work is devoted to study the magnetic reconnection instability under solar spicule conditions. Numerical study of the resistive tearing instability in a current sheet is presented by considering the magnetohydrodynamic (MHD) framework. To investigate the effect of this instability in a stratified atmosphere of solar spicules, we solve linear and non-ideal MHD equations in the x?z plane. In the linear analysis it is assumed that resistivity is only important within the current sheet, and the exponential growth of energies takes place faster as plasma resistivity increases. We are interested to see the occurrence of magnetic reconnection during the lifetime of a typical solar spicule.  相似文献   

8.
吴宁  李燕  沈呈彩  林隽 《天文学进展》2012,30(2):125-158
从理论和观测两个方面来介绍和讨论出现在太阳爆发过程中的磁重联电流片及其物理本质和动力学特征。首先介绍在理论研究和理论模型中,磁重联电流片是如何在爆发磁结构当中形成并发展的,对观测研究有什么指导意义。然后介绍观测工作是从哪几个方面对理论模型预测的电流片进行证认和研究的。第三,将介绍观测研究给出了哪些过去所没有能够预期的结果,这些结果对深入研究耀斑一CME电流片以及其中的磁重联过程的理论工作有什么重要的、挑战性的意义。第四,讨论最新的与此有关的理论研究和数值实验。最后,对未来的研究方向和重要课题进行综述和展望。  相似文献   

9.
A two-dimensional magnetohydrodynamic model of the dynamics of tail-like current layers caused by anomalous electrical resistivity in a plasma with lower-hybrid-drift (LHD) turbulence is considered. Additionally to the LHD-resistivity, a resistivity pulse in the magnetic neutral sheet is given initiating a magnetic reconnection process. Then the temporal and spatial evolution of the magnetic and electric fields, the plasma convection and the anomalous resistivity are obtained numerically. Taking into account more exact expressions for the LHD-resistivity in the current layer as done in former works, the LHD-turbulence is found to be excited farther from the neutral sheet, and thus, with the time, secondary current sheets are obtained in the plasma-magnetic field system. It is shown that the inductive electric field moving from the magnetic neutral sheet to the current layer periphery during the reconnection process may be considered as indicator of the plasma disturbances.  相似文献   

10.
In this paper, the Space–Time Conservation Element and Solution Element (CESE) method is applied to 2.5-dimensional resistive magnetohydrodynamics (MHD) equations in Cartesian coordinates, with the purpose of modeling the magnetic reconnection study. To show the validity and capacity of its application to MHD reconnection problem, spontaneous fast reconnection and magnetic reconnection in multiple heliospheric current sheets are studied, which show good consistency with those obtained formerly by other authors. In order to assess the ∇ ⋅ B = 0 constraint numerically, the contours and evolution of ∇ ⋅ B are analyzed. The numerical results tell us that the CESE numerical scheme not only has good numerical resolution but also can keep the divergence-free condition for magnetic fields in the reconnection problems during the evolutionary process without any special treatment.  相似文献   

11.
The apparent stability of coronal neutral sheets with respect to the resistive tearing mode has been attributed by previous authors to the influence of a weak normal component of the confining magnetic field. To check this hypothesis a normal mode analysis is performed applying rigorously singular perturbation technique. Allowance is made for a value of the normal component which is large measured in the appropriate units deduced from the dynamics of the one-dimensional tearing mode. The structure of the eigenmodes is completely changed: the singular layer decays into a broad band of filaments with antiparallel flow directions and spatial oscillations in the perturbed current density appear. Surprisingly, the growth rate is not changed. If parameters for a typical neutral sheet in the middle corona (0.5 solar radii) are inserted, the result is that no stabilization by a normal component occurs, if the value of the growth time predicted by the one-dimensional theory is far shorter than ten minutes - independent of the values assumed for the width of the neutral sheet or the resistivity.  相似文献   

12.
The present review concerns the relevance of collisionless reconnection in the astrophysical context. Emphasis is put on recent developments in theory obtained from collisionless numerical simulations in two and three dimensions. It is stressed that magnetic reconnection is a universal process of particular importance under collisionless conditions, when both collisional and anomalous dissipation are irrelevant. While collisional (resistive) reconnection is a slow, diffusive process, collisionless reconnection is spontaneous. On any astrophysical time scale, it is explosive. It sets on when electric current widths become comparable to the leptonic inertial length in the so-called lepton (electron/positron) “diffusion region”, where leptons de-magnetise. Here, the magnetic field contacts its oppositely directed partner and annihilates. Spontaneous reconnection breaks the original magnetic symmetry, violently releases the stored free energy of the electric current, and causes plasma heating and particle acceleration. Ultimately, the released energy is provided by mechanical motion of either the two colliding magnetised plasmas that generate the current sheet or the internal turbulence cascading down to lepton-scale current filaments. Spontaneous reconnection in such extended current sheets that separate two colliding plasmas results in the generation of many reconnection sites (tearing modes) distributed over the current surface, each consisting of lepton exhausts and jets which are separated by plasmoids. Volume-filling factors of reconnection sites are estimated to be as large as \({<}10^{-5}\) per current sheet. Lepton currents inside exhausts may be strong enough to excite Buneman and, for large thermal pressure anisotropy, also Weibel instabilities. They bifurcate and break off into many small-scale current filaments and magnetic flux ropes exhibiting turbulent magnetic power spectra of very flat power-law shape \(W_b\propto k^{-\alpha }\) in wavenumber k with power becoming as low as \(\alpha \approx 2\). Spontaneous reconnection generates small-scale turbulence. Imposed external turbulence tends to temporarily increase the reconnection rate. Reconnecting ultra-relativistic current sheets decay into large numbers of magnetic flux ropes composed of chains of plasmoids and lepton exhausts. They form highly structured current surfaces, “current carpets”. By including synchrotron radiation losses, one favours tearing-mode reconnection over the drift-kink deformation of the current sheet. Lepton acceleration occurs in the reconnection-electric field in multiple encounters with the exhausts and plasmoids. This is a Fermi-like process. It results in power-law tails on the lepton energy distribution. This effect becomes pronounced in ultra-relativistic reconnection where it yields extremely hard lepton power-law energy spectra approaching \(F(\gamma )\propto \gamma ^{-1}\), with \(\gamma \) the lepton energy. The synchrotron radiation limit becomes substantially exceeded. Relativistic reconnection is a probable generator of current and magnetic turbulence, and a mechanism that produces high-energy radiation. It is also identified as the ultimate dissipation mechanism of the mechanical energy in collisionless magnetohydrodynamic turbulent cascades via lepton-inertial-scale turbulent current filaments. In this case, the volume-filling factor is large. Magnetic turbulence causes strong plasma heating of the entire turbulent volume and violent acceleration via spontaneous lepton-scale reconnection. This may lead to high-energy particle populations filling the whole volume. In this case, it causes non-thermal radiation spectra that span the entire interval from radio waves to gamma rays.  相似文献   

13.
We present a simplified analytic model of a quadrupolar magnetic field and flux rope to model coronal mass ejections. The model magnetic field is two-dimensional, force-free and has current only on the axis of the flux rope and within two current sheets. It is a generalization of previous models containing a single current sheet anchored to a bipolar flux distribution. Our new model can undergo quasi-static evolution either due to changes at the boundary or due to magnetic reconnection at either current sheet. We find that all three kinds of evolution can lead to a catastrophe, known as loss of equilibrium. Some equilibria can be driven to catastrophic instability either through reconnection at the lower current sheet, known as tether cutting, or through reconnection at the upper current sheet, known as breakout. Other equilibria can be destabilized through only one and not the other. Still others undergo no instability, but they evolve increasingly rapidly in response to slow steady driving (ideal or reconnective). One key feature of every case is a response to reconnection different from that found in simpler systems. In our two-current-sheet model a reconnection electric field in one current sheet causes the current in that sheet to increase rather than decrease. This suggests the possibility for the microscopic reconnection mechanism to run away.  相似文献   

14.
Magnetic dips in the solar wind   总被引:1,自引:0,他引:1  
Using magnetic data from the HELIOS-1 fluxgate magnetometer, with a 0.2 s resolution, we have investigated the structure of several interplanetary discontinuities involving magnetic dips and rotations of the magnetic field vector. A minimum variance analysis illustrates the behaviour of the magnetic field through the transition. Using this analysis, quite different structures have been isolated and, in particular, narrow transitions resembling almost one dimensional reconnected neutral sheets. For the thinner cases (scale lengths of the magnetic rotation of the order or smaller than 103 km), we find that the observed structures can be the nonlinear effect of a resistive tearing mode instability having developed on an originally one dimensional neutral sheet at the solar corona.  相似文献   

15.
Khabarova  O.  Zastenker  G. 《Solar physics》2011,270(1):311-329
Analysis of the Interball-1 spacecraft data (1995 – 2000) has shown that the solar wind ion flux sometimes increases or decreases abruptly by more than 20% over a time period of several seconds or minutes. Typically, the amplitude of such sharp changes in the solar wind ion flux (SCIFs) is larger than 0.5×108 cm−2 s−1. These sudden changes of the ion flux were also observed by the Solar Wind Experiment (SWE), on board the Wind spacecraft, as the solar wind density increases and decreases with negligible changes in the solar wind velocity. SCIFs occur irregularly at 1 AU, when plasma flows with specific properties come to the Earth’s orbit. SCIFs are usually observed in slow, turbulent solar wind with increased density and interplanetary magnetic field strength. The number of times SCIFs occur during a day is simulated using the solar wind density, magnetic field, and their standard deviations as input parameters for a period of five years. A correlation coefficient of ∼0.7 is obtained between the modelled and the experimental data. It is found that SCIFs are not associated with coronal mass ejections (CMEs), corotating interaction regions (CIRs), or interplanetary shocks; however, 85% of the sector boundaries are surrounded by SCIFs. The properties of the solar wind plasma for days with five or more SCIF observations are the same as those of the solar wind plasma at the sector boundaries. One possible explanation for the occurrence of SCIFs (near sector boundaries) is magnetic reconnection at the heliospheric current sheet or local current sheets. Other probable causes of SCIFs (inside sectors) are turbulent processes in the slow solar wind and at the crossings of flux tubes.  相似文献   

16.
A model of forced magnetic reconnection in a force-free magnetic field is considered, which allows calculation of the magnetic energy release during the current sheet reconnection. The dependence of this energy on characteristics of the magnetic configuration has been studied, and it was found that the released energy becomes very large when the field is near the marginal tearing stability. A persistent plasma heating provided by ongoing external driving and internal reconnection is also derived. It shows a typical relaxation-type dependence on the driving frequency, with dissipation becoming most efficient when the time-scales of the driving and reconnection are comparable. Possible implications of the obtained results for the problem of solar coronal heating are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Effects of O+ ions on magnetic reconnection in the magnetotail are examined in a Harris equilibrium using a combination of linear Vlasov theory and large-scale driven and non-driven two-dimensional fully kinetic particle simulations. Linear theory of multiple species plasma indicates that the growth rate is rather insensitive to the composition of the background (lobe) or its temperature but more sensitive to the properties of the current carriers. Thus O+ can affect significant changes to the linear growth rate of tearing mode only as a current carrier. However, it is demonstrated that in the nonlinear stage reconnection can effectively move trace material from the lobes into the current sheet proper. If the supply of lobe markers (like O+) is sufficiently permanent in the lobe, an initially proton-dominated current sheet can be virtually replaced by the marker ions through this “flushing effect”. The dominance of marker ions introduces finite Larmor radius signatures with marker gyroradii scales rather than that of the protons. In this way, the presence of heavier marker species in the lobe can lead to (i) reduced efficiency of energy conversion, (ii) reduction in the number and repetition frequency of secondary islands, (iii) broadening of the quadrupole magnetic structure, (iv) slowing down of the coalescence process and (v) modification of the composition of the ion current carriers. Using Cluster observations, we show the evidence for the “flushing effect” in the data. Detailed comparison with observations is planned for future work.  相似文献   

18.
Pudovkin  M.I.  Runov  A.V.  Zaitseva  S.A.  Besser  B.P.  Meiser  C.-V. 《Solar physics》1999,184(1):173-186
Numerical simulation of magnetic field reconnection at IMF sector boundaries shows that the reconnection line may be carried by the solar wind out of the region of the anomalous resistivity. This makes it possible to observe magnetic loops at the Earth's orbit open to the Sun as well as from it. Besides, it is shown that the current sheet in the vicinity of the reconnection line has to split into two currents.Experimental data on the structure of the sector boundaries are analyzed, and it is shown that the currents at sector boundaries are indeed often splitted.The thickness of the splitted boundaries may amount to 18×106 km; taking into account this value, the heliocentric distance of the region of anomalous resistivity in the interplanetary current sheet is estimated as 0.4–0.5 AU.The probability of observing magnetic loops open towards the Sun seems to be greater than that of loops open from the Sun, which suggests an essential asymmetry of the field reversal regions.  相似文献   

19.
Satellite observations of the heliospheric current sheet indicate that the plasma flow velocity is low at the center of the current sheet and high on the two sides of current sheet. In this paper, we investigate the growth rates and eigenmodes of the sausage, kind, and tearing instabilities in the heliospheric current sheet with the observed sheared flow. These instabilities may lead to the formation of the plasmoids and kink waves in the solar wind. The results show that both the sausage and kink modes can be excited in the heliospheric current sheet with a growth time 0.05–5 day. Therefore, these modes can grow during the transit of the solar wind from the Sun to the Earth. The sausage mode grows faster than the kink mode for < 1.5, while the streaming kink instability has a higher growth rate for > 1.5. Here is the ratio between the plasma and magnetic pressures away from the current layer. If a finite resistivity is considered, the streaming sausage mode evolves into the streaming tearing mode with the formation of magnetic islands. We suggest that some of the magnetic clouds and plasmoids observed in the solar wind may be associated with the streaming sausage instability. Furthermore, it is found that a large-scale kink wave may develop in the region with a radial distance greater than 0.5–1.5 AU.Also at Department of Earth and Space Science, University of Science and Technology of China, Hefei Anhui 230029, China.  相似文献   

20.
Simple models for the MHD eruption of a solar prominence are presented, in which the prominence is treated as a twisted magnetic flux tube that is being repelled from the solar surface by magnetic pressure forces. The effects of different physical assumptions to deal with this magneto-hydrodynamically complex phenomenon are evaluated, such as holding constant the prominence current, radius, flux or twist or modelling the prominence as a current sheet. Including a background magnetic field allows the prominence to be in equilibrium initially with an Inverse Polarity and then to erupt due to magnetic non-equilibrium when the background magnetic field is too small or the prominence twist is too great. The electric field at the neutral point below the prominence rapidly increases to a maximum value and then declines. Including the effect of gravity also allows an equilibrium with Normal Polarity to exist. Finally, an ideal MHD solution is found which incorporates self-consistently a current sheet below the prominence and which implies that a prominence will still erupt and form a current sheet even if no reconnection occurs. When reconnection is allowed it is, therefore, driven by the eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号