首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A three-dimensional baroclinic shelf sea model was employed to simulate the seasonal characteristics of the South China Sea (SCS) upper circulation. The results showed that: in summer, an anticyclonic eddy, after its formation between the Bashi Channel and Dongsha Islands in the northeastern SCS, moves southwestward until it disperses slowly. There exists a northward western boundary current along the east shore of the Indo-China Peninsula in the western SCS and an anticyclonic gyre in the southern SCS. But at the end of summer and beginning of autumn, a weak local cyclonic eddy forms in the Nansha Trough, then grows slowly and moves westward till it becomes a cyclonic gyre in the southern SCS in autumn. At the beginning of winter, there exists a cyclonic gyre in the northern and southern SCS, and there is a southward western boundary current along the east shore of the Indo-China Peninsula. But at the end of winter, an anticyclonic eddy grows and moves toward the western boundary after forming in the Nansha Trough. The eddy‘s movement induces a new opposite sign eddy on its eastern side, while the strength of the southward western boundary current gets weakened. This phenomenon continues till spring and causes eddies in the southern SCS.  相似文献   

2.
Inter-annual variability of the Kuroshio water intrusion on the shelf of East China Sea (ECS) was simulated with a nested global and Northwest Pacific ocean circulation model. The model analysis reveals the influence of the variability of Kuroshio transport east of Taiwan on the intrusion to the northeast of Taiwan: high correlation (r = 0.92) with the on-shore volume flux in the lower layer (50–200 m); low correlation (r = 0.50) with the on-shore flux in the upper layer (0–50 m). Spatial distribution of correlations between volume fluxes and sea surface height suggests that inter-annual variability of the Kuroshio flux east of Taiwan and its subsurface water intruding to the shelf lag behind the sea surface height anomalies in the central Pacific at 162°E by about 14 months, and could be related to wind-forced variation in the interior North Pacific that propagates westward as Rossby waves. The intrusion of Kuroshio surface water is also influenced by local winds. The intruding Kuroshio subsurface water causes variations of temperature and salinity of bottom waters on the southern ECS shelf. The influence of the intruding Kuroshio subsurface water extends widely from the shelf slope northeast of Taiwan northward to the central ECS near the 60 m isobath, and northeastward to the region near the 90 m isobath.  相似文献   

3.
Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on the background of the Kuroshio intrusion into the South China Sea (SCS) from the Luzon Strait. Because the WBC existed different current states with respect to different wind stress control parameters, we chose three steady WBC states (loop current, eddy shedding and leaping) as the background flow field and simulated the path transition of the WBC due to mesoscale eddies. Our simulations indicated that either an anticyclonic or cyclonic eddy can lead to path transition of the WBC with different modes. The simulation results also show that the mesoscale eddies can lead to path transition of the WBC from loop and eddy shedding state to leaping state because of the hysteresis effect. The leaping state is relatively stable compared with the mesoscale eddies. Moreover, an anticyclonic eddy is more effective in producing the WBC path transition for the path transition than a cyclonic eddy. Our results may help to explain some phenomena observed regarding the path transition of the Kuroshio due to the mesoscale eddies at the Luzon Strait.  相似文献   

4.
Using a 19-year altimetric dataset, the mean properties and spatiotemporal variations of eddies in the Kuroshio recirculation region are examined. A total of 2 001 cyclonic tracks and 1 847 anticyclonic tracks were identifi ed using a geometry-based eddy detection method. The mean radius was 57 km for cyclonic eddies and was 61 km for anticyclonic eddies, respectively, and the mean lifetime was about 10 weeks for both type eddies. There were asymmetric spatial distributions for eddy generation and eddy termination, which were domain-dependent. Mean eddy generation rates were 2.0 per week for cyclonic eddies and were 1.9 per week for anticyclonic eddies. Both type eddies tended to deform during their lifetime and had different propagation characteristics, which mainly propagated westward and southwestward with velocities 4.0–9.9 cm/s, in the Kuroshio recirculation region. Further discussion illustrates that the eddy westward speed maybe infl uenced by the combined effect of vertical shear of horizontal currents and nonlinearity of eddy. To better understand the evolution of eddy tracks, a total of 134 long-lived tracks(lifetime ≥20 weeks) were examined. Comparison between short-span eddies(lifetime ≥4 weeks and 20 weeks) and long-lived eddies is also conducted and the result shows that the short-span and long-lived eddies have similar time evolution. Finally, eddy seasonal variations and interannual changes are discussed. Correlation analysis shows that eddy activity is sensitive to the wind stress curl and meridional gradient of sea surface temperature on interannual timescales. Besides, the strength and orientation of background fl ows also have impacts on the eddy genesis.  相似文献   

5.
INTRODUCTIONAnimportantachievementofoceanographysincethe 1960swasthediscoveryofmesoscaleed dieswithspatialscaleofhundredsofmeters,andtimescaleofhours;andaverageflowvelocityofabout 10cm s.Theenormousenergyofthemesoscaleeddyiscomparabletothatofacycloneoran ticycloneintheatmosphere .Themesoscaleeddyisoneoftheimportantfactorsthatdecidethechangeoftheocean .Intherecentdecades,ChineseandforeignscientistshavedonelotsofworkontheEastChinaSeasmesoscaleeddies,theformationmechanismofwhicharethefocuso…  相似文献   

6.
Since the last rising of sea level, two branches of the Kuroshio, the Huanghai (Yellow Sea) coastal current (HCC; mainly cold water mass) and the Changjiang River outflow have controlled the modern dynamic deposition in the East China Sea. There are three depositing areas on the sea-bed under the above currents: a relict sand area un der the Taiwan Warm Current and the Huanghai Warm Current at the south-eastern area, the about 60 km2 round mud bank under the Huanghai Coastal Current at the northern area and the large subaqueous delta of mainly fine sand and silt under the Changjiang discharge flow in its estuary and the large narrow mud bank under the Zhejiang-Fujian Coastal Current, another round mud bank under the Changjiang discharge flow off Hangzhou Bay. The relict sand area has a coarsesand block under the Taiwan Warm Current bypassing Taiwan at the northern part of the island. The two round mud banks were formed in relatively static states by an anticlockwise converging cyclonic eddy. The coarsesand block was formed by a clockwise diverging cyclonic eddy. This new dynamic deposition theory can be used to explain not only the dynamic deposition process of clay, but also the patchy distribution of sediments on the shelves of the world ocean s.  相似文献   

7.
A numerical study on seasonal variations of the Taiwan Warm Current   总被引:3,自引:0,他引:3  
Princeton Ocean Model (POM) is employed to investigate the Taiwan Warm Current (TWC) and its seasonal variations. Results show that the TWC exhibits pronounced seasonal variations in its sources, strength and flow patterns. In summer, the TWC flows northeast in straight way and reaches around 32°N; it comes mainly from the Taiwan Strait, while its lower part is from the shelf-intrusion of the Kuroshio subsurface water (KSSW). In winter, coming mainly from the shelf-intrusion of the Kuroshio northeast of Taiwan, the TWC flows northward in a winding way and reaches up around 30°N. The Kuroshio intrusion also has distinct seasonal patterns. The shelf-intrusion of KSSW by upwelling is almost the same in four seasons with a little difference in strength; it is a persistent source of the TWC. However, Kuroshio surface water (KSW) can not intrude onto the shelf in summer, while in winter the intrusion of KSW always occurs. Additional experiments were conducted to examine effects of winds and transport through  相似文献   

8.
A three-dimensional baroclinic shelf sea model‘ s numerical simulation of the South China Sea (SCS) middle and deep layer circulation structure showed that: 1. In the SCS middle and deep layer, a seulhward boundary current exists along the east shore of the Indo-China Peninsula all year long.A cyclonic eddy (gyre) is formed by the current in the above sea areas except in the middle layer in spring, when an anticyclonic eddy exists on the eastern side of the current. In the deep layer, a larges-cale anticyclonic eddy often exists in the sea areas between the Zhongsha Islands and west shore of southern Luzon Island. 2. In the middle layer in snmmer and autumn, and in the deep layer in autumn and winter, there is an anticyclonic eddy (gyre) in the northeastern SCS, while in the middle layer in winter and spring, and in the deep layer in spring and snmmer, there is a cyclonic one. 3. In the middle layer,there is a weak northeastward current in the Nansha Trough in spring and snmmer, while in autumn and winter it evolves inl~ an anticyclonic eddy ( gyre), which then spreads westward l~ the whole western Nansha Islands sea areas.  相似文献   

9.
Based on a barotropic inflow-outflow model,we examine the formation of the Kuroshio large meander(LM) using conditional nonlinear optimal perturbation(CNOP) method.Both linear and nonlinear evolutions of such perturbations obtained by this method are investigated.The results show that the nonlinear evolution can result in the Kuroshio transition from a straight to LM path,whereas the linear evolution cannot.This implies that nonlinearity plays an important role in the formation of the Kuroshio LM path.The nonlinearity exists as advection in the evolution equations of the perturbation derived from the barotropic inflow-outflow model,namely the nonlinear advection of the perturbation by the perturbation(NAPP).By examining the role of this nonlinearity,we find that the NAPP tends to move the cyclonic eddy induced by the CNOP-type perturbation westward.Together with the beta effect,this offsets part of the eastward advection caused by the interaction between the perturbation and the background flow.Hence,the eastward movement of the cyclonic eddy is significantly weakened,effectively causing the eddy to develop.The sufficient evolution of this cyclonic eddy leads to the formation of the Kuroshio LM.  相似文献   

10.
Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy field and mean flow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean flow to the eddy field in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy field and mean flow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they flank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean flow to the eddy field.  相似文献   

11.
Zhao  Jun  Wang  Fan  Gao  Shan  Hou  Yinglin  Liu  Kai 《中国海洋湖沼学报》2022,40(2):389-412
Journal of Oceanology and Limnology - To quantitatively investigate the water mass transport of mesoscale eddies, the mass transport induced by a simulated anticyclonic eddy in the South China Sea...  相似文献   

12.
The surface path of the Kuroshio Extension’s western sector and the eddies on both sides are systematically analysed based on the GEK-measured surface current and temperature-salinity data from 1955–1985. The main results are shown as follows:1) According to the position and the features of distribution pattern, the surface path of the Kuroshio Extension’s western sector is classified into two kinds (straight and meander) and seven types (f. ne, Sc, Ui or Vi, Vdi or Udi, Ω, f+v). The straight kind accounts for 1/3 and the meander kind accounts for 2/3. 2) The warm eddies on the northern side originate mostly from the area off Sanriku and Joban of Japan. Their moving paths lie in two patterns: Pattern I, eddy moves northeastward or northward; Pattern II, eddy rotates about the original area. The cold eddies on the southern side originate mainly from the area off Boso Peninsula. Their moving paths also lie in two patterns: Pattern III. eddy moves from west to east; Pattern IV, eddy moves from north to south.  相似文献   

13.
An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temperature and salinity exchange on the sea surface. The results were consistent with observation and showed that the Kuroshio intrudes in large scale into the East China Sea continental shelf East China, during which its water is exchanged ceaselessly with outer sea water along Ryukyu Island. The Tsushima Warm Current is derived from several sources, a branch of the Kuroshio, part of the Taiwan Warm Current, and Yellow Sea mixed water coming from the west of Cheju Island. The water from the west of Cheju Island contributes approximately 13% of the Isushima Warm Current total transport through the Korea Strait. The circulation in the Bohai Sea and Yellow Sea is basically cyclonic circulation, and is comprised of coastal currents and the Yellow Sea Warm Current. Besides simulation of the real circulation, numerical experiments were conducted to study the dynamic mechanism. The numerical experiments indicated that wind directly drives the East China Sea and Yellow Sea Coastal Currents, and strengthens the Korea Coastal Current and Yellow Sea Warm Current. In the no wind case, the kinetic energy of the coastal current area and main YSWC area is only 1% of that of the wind case.Numerical experiments also showed that the Tsushima Warm Current is of great importance to the formation of the Korea Coastal Current and Yellow Sea Warm Current.  相似文献   

14.
Historical hydrographic data across several sections in the South China Sea (SCS) and Taiwan Strait have been reconsidered. The year-around existence of the South China Sea Warm Current (SCSWC) along the shelf break off the Guangdong coast and the seemingly year-around southwestward current to the east of SCSWC are both evident in the data. The data also showed that the northward current in the Taiwan Strait seemed to be the extension of SCSWC. A barotropic numerical model is employed to explain some of the observed features. Reasonable simulation of the circulation in the northeast part of SCS has been found.  相似文献   

15.
This study investigates the contribution of mesoscale eddies to the subduction and transport of North Pacific Eastern Subtropical Mode Water(ESTMW)using the high-frequency output of an eddy-resolved ocean model spanning the period 1994–2010.Results show that the subduction induced by mesoscale eddies accounts for about 31%of the total subduction of ESTMW formation.The volume of ESTMW trapped by anticyclonic eddies is slightly larger than that trapped by cyclonic eddies.The ESTMW trapped by all eddies in May reaches up to about 2.8×1013m3,which is approximately 16%of the total ESTMW volume.The eddy-trapped ESTMW moves primarily westward,with its meridional integration at 18°–30°N reaching about 0.17Sv,which is approximately 18%of the total zonal ESTMW transport in this direction,at 140°W.This study highlights the important role of eddies in carrying ESTMW westward over the northeastern Pacific Ocean.  相似文献   

16.
For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional circulation model,and calculated Kuroshio onshore volume transport in the ECS at the minimum of 0.48 Sv(1 Sv ;106 m3/s) in summer and the maximum of 1.69 Sv in winter.Based on the data of WOA05 and NCEP,The modeled result indicates that the Kuroshio transport east of Taiwan Island decreased since 2000.Lateral movements tended to be stronger at two ends of the Kuroshio in the ECS than that of the middle segment.In addition,we applied a spectral mixture model(SMM) to determine the exchange zone between the Kuroshio and the shelf water of the ECS.The result reveals a significantly negative correlation(coefficient of-0.78) between the area of exchange zone and the Kuroshio onshore transport at 200 m isobath in the ECS.This conclusion brings a new view for the water exchange between the Kuroshio and the East China Sea.Additional to annual and semi-annual signals,intra-seasonal signal of probably the Pacific origin may trigger the events of Kuroshio intrusion and exchange in the ECS.  相似文献   

17.
With the use of historical data from their 1982-1985 special observation at the source area of the Taiwan Warm Current the authors conducted studies to clarify the temperature and salinity characteristics, variability, and origin of the Taiwan warm Current Water, and its influence on the expanding direction of the Changjiang Diluted Water.The main results are given below.(1)The Taiwan Warm Current Water can be divided into the "Surface Water of the Taiwan Warm Current" formed due to the mixing of the Kuroshio Surface Water flowing northward along the east coast of Taiwan with the Taiwan Strait Water, and the "Deep Water of the Taiwan Warm Current" originated from Kuroshio Subsurface Water to the east of Taiwan. It is characterized by stable low temperature and stable high salinity in summer. The maximum seasonal variation and maximum secular variation of temperature and salinity are 1.87℃, 0.26‰ and 2.96℃, 0.37‰, respectively.(2)The variation in strength of the Taiwan Warm Current is the main influe  相似文献   

18.
The relationship of the interannual variability of the transport and bifurcation latitude of the North Equatorial Current (NEC) to the El Ni o-Southern Oscillation (ENSO) is investigated. This is done through composite analysis of sea surface height (SSH) observed by satellite altimeter during October 1992-July 2009, and correspondingly derived sea surface geostrophic currents. During El Nio/La Ni a years, the SSH in the tropical North Pacific Ocean falls/rises, with maximum changes in the region 0-15°N, 130°E-160°E. The decrease/increase in SSH induces a cyclonic/anticyclonic anomaly in the western tropical gyre. The cyclonic/anticyclonic anomaly in the gyre results in an increase/decrease of NEC transport, and a northward/southward shift of the NEC bifurcation latitude near the Philippine coast. The variations are mainly in response to anomalous wind forcing in the west-central tropical North Pacific Ocean, related to ENSO events.  相似文献   

19.
The self-organizing map method is applied to satellite-derived sea-level anomaly fields of 1993-2012 to study variations of the Kuroshio intrusion northeast of Taiwan Island. Four major features are revealed, showing significant seasonal variability of the intrusion. In general, the intrusion increases (decreases) with a high (low) sea-level anomaly at the edge of the East China Sea shelf in winter (summer). Open-ocean mesoscale eddies play an additional role in modulating the seasonal variation of the intrusion. Further analyses are needed to study eddy-Kuroshio interaction dynamics.  相似文献   

20.
We deployed two ADCP mooring systems west of the Luzon Strait in August 2008, and measured the upper ocean currents at high frequency. Two typhoons passed over the moorings during approximately one-month observation period. Using ADCP observations, satellite wind and heat flux measurements, and high-resolution model assimilation products, we studied the response of the upper ocean to typhoons. The first typhoon, Nuri, passed over one of the moorings, resulting in strong Ekman divergence and significant surface cooling. The cooling of surface water lagged the typhoon wind forcing about one day and lasted about five days. The second typhoon, Sinlaku, moved northward east of the Luzon Strait, and did not directly impact currents near the observation regions. Sinlaku increased anomalous surface water transport exchange across the Luzon Strait, which modulated the surface layer current of the Kuroshio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号